
Lecture 18: Vision Transformers 
03/24/2025

ROB 498/599: Deep Learning for Robot 
Perception (DeepRob)

https://deeprob.org/w25/

https://deeprob.org/w25/


Today
• Feedback and Recap (5min)
• Final Project Reminder (5min)
• Vision Transformer (40min)

– Layer Norm
– ViT

• DETR  (20min)
• Summary and Takeaways (5min)



Final Project

 https://deeprob.org/w25/projects/finalproject/ 

April 1st, 5-min poster “lightning talk” @ CSRB 2246 (classroom)
April 22nd, final project showcase @FRB atrium
April 28th, final project (report, code, video/website) DUE 

*P4 due March 30, 2025*

https://deeprob.org/w25/projects/finalproject/


More Details on “Lightning Talk”
• April 1, 2025 (Tuesday discussion session) 

– starting 3:30pm EST, CSRB 2246
• Each group gets ~5min
• All group members should speak
• Poster/Slides (either are fine).  Content include:

○ Topic/Title
○ Motivation/Background
○ Some Lit Review (“Gaps”)
○ Aim to reproduce/run 1-2 baseline method by then and include 

some baseline results 
○ MUST-DO Goals/Stretch Goals: Describe what you propose to do
○ Group member names/roles/sub-tasks
○ Timeline/Milestone
○ Material (if any); Dataset/Compute resources etc.

~1min

~1min

~3min

● Images/Diagrams 
Highly Encouraged!

● Practice!



More Details on “Lightning Talk”
• Some References

– Look up “3 Minute Thesis” (3MT) winner talks
– UM Research Poster template/resources

• https://guides.lib.umich.edu/poster
• https://branding.med.umich.edu/design-resources/diy-templates/research-posters 
• https://lsa.umich.edu/urop/symposium/spring-symposium/fall-winter-students/poster-resources.html 
• https://branding.med.umich.edu/design-resources/diy-templates/research-posters/posters-templates 

• Post all your materials to “Final_Project_LightningTalk” folder on Google Drive by April 1
– Note: If using external video/images, make sure it has access

5% grade:
● Content/Organization + poster/slides quality
● Clarity 
● Time management, flow of presentation
● Enthusiasm/Audience awareness and connection/ 

communication

Rubrics example
● https://www.readwritethink.org/sites/default/fil

es/30700_rubric.pdf 
● https://open.umich.edu/sites/default/files/dow

nloads/instructmethodshpe-resources-oral_pre
sentation_evaluation_rubric_reformatted-wlice
nseimage.pdf 

Also, Robotics seminars

https://guides.lib.umich.edu/poster
https://branding.med.umich.edu/design-resources/diy-templates/research-posters
https://lsa.umich.edu/urop/symposium/spring-symposium/fall-winter-students/poster-resources.html
https://branding.med.umich.edu/design-resources/diy-templates/research-posters/posters-templates
https://drive.google.com/drive/folders/1Q3lqhDjw6oeCOPOE7Ikuyc7gWymUmAX-?usp=drive_link
https://www.readwritethink.org/sites/default/files/30700_rubric.pdf
https://www.readwritethink.org/sites/default/files/30700_rubric.pdf
https://open.umich.edu/sites/default/files/downloads/instructmethodshpe-resources-oral_presentation_evaluation_rubric_reformatted-wlicenseimage.pdf
https://open.umich.edu/sites/default/files/downloads/instructmethodshpe-resources-oral_presentation_evaluation_rubric_reformatted-wlicenseimage.pdf
https://open.umich.edu/sites/default/files/downloads/instructmethodshpe-resources-oral_presentation_evaluation_rubric_reformatted-wlicenseimage.pdf
https://open.umich.edu/sites/default/files/downloads/instructmethodshpe-resources-oral_presentation_evaluation_rubric_reformatted-wlicenseimage.pdf


Vision Transformer



Recap: Transformers
Scaled Dot-Product Attention

Transformer
Encoder

Multi-Head Attention



Comparing RNNs to Transformer
RNNs 
(+) LSTMs work reasonably well for long sequences. 
(-) Expects an ordered sequences of inputs 
(-) Sequential computation: subsequent hidden states can only be computed after the 
previous ones are done.

Transformer: 
(+) Good at long sequences. Each attention calculation looks at all inputs. 
(+) Can operate over unordered sets or ordered sequences with positional 
encodings. 
(+) Parallel computation: All alignment and attention scores for all inputs can be done 
in parallel. 
(-) Requires a lot of memory: N x M alignment and attention scalers need to be 
calculated and stored for a single self-attention head. 
(but GPUs/TPUs are getting bigger and better)



Layer Normalization (LayerNorm)

https://arxiv.org/abs/1607.06450 

Recall: From Lecture 7

(Also check the supplementary materials)

https://arxiv.org/abs/1607.06450


Layer Normalization (LayerNorm)

https://arxiv.org/abs/1607.06450 

Why?
“One of the challenges of deep learning is that the gradients with respect to the 
weights in one layer are highly dependent on the outputs of the neurons in the 
previous layer especially if these outputs change in a highly correlated way.”

“covariate shift”

BatchNorm: over the whole data distribution
- Can be impractical
- Hard to apply to recurrent NNs

LayerNorm:
Fixing the 
mean and 
variance within 
each layer

https://arxiv.org/abs/1607.06450


Layer Normalization (LayerNorm)

https://arxiv.org/abs/1607.06450 

Forward: 
Input: x: shape (*, D) 

1. Compute mean and variance over the 
features (D) for each data point (N)

2. Normalizing the input data of shape (*, D)
3. Scale and shift using gamma and beta

out = gamma * div + beta
4. Store cache needed for backward pass

D

https://arxiv.org/abs/1607.06450


Layer Normalization (LayerNorm)

https://robotchinwag.com/posts/layer-normalization-deriving-the-gradient-for-t
he-backward-pass/ 

Backward: 
Input: dout: Upstream derivatives, of shape (*, D) 

1. Compute gradients w.r.t. gamma and beta
2. Compute gradients w.r.t. input x

a. ddiv = dout * gamma
b. dx

Dout = gamma * div + beta

dgamma, dbeta

return dx, dgamma, dbeta

https://robotchinwag.com/posts/layer-normalization-deriving-the-gradient-for-the-backward-pass/
https://robotchinwag.com/posts/layer-normalization-deriving-the-gradient-for-the-backward-pass/


Can we apply Transformers to Images?

Yes!

Idea: Treat the image as a set of patches of pixels



Vision Transformers

Dosovitskiy et al. ICLR’21

https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


Vision Transformers

● Convert image into 16x16 patches
○ E.g. (1, 240, 240, 3) -> (1, 15x15, 16x16x3)

● Apply shared linear projection to each patch
○ E.g. (1, 15x15, 16x16x3) -> (1, 15x15, 64)

● Concatenate learnable class token for classifier 
output

○ E.g. (1, 1+15x15, 64)

● Add position embedding to each patch
○ E.g. (1, 1+15x15, 64) + (1, 1+15x15, 64)

patchify(P4)



Vision Transformers - cls token

[cls] token

Added in front of every 
input example

(also appears in BERT)
https://arxiv.org/pdf/1810.
04805 

https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/1810.04805


Vision Transformer Encoder

Dosovitskiy et al. ICLR’21

● Based on the Transformer encoder

● Sequence of LNorm->MHSA->LNorm->MLP 
with residual skip connections

● For input embedded patches: (1, 1+15x15, D_in)
○ Output: (1, 1+15x15, D_out)

● For final classification decision:
○ Apply MLP and softmax to the class token
○ (1, 1, D_out) -> (1, 1, N_classes)

MLP: “two layers with a GELU non-linearity.”
Linear -> GELU -> Linear

Class TransformerEncoder (P4)



Vision Transformer Encoder

Dosovitskiy et al. ICLR’21

● Based on the Transformer encoder

● Sequence of LNorm->MHSA->LNorm->MLP 
with residual skip connections

● *One note on current autograder:
○ x_norm2 + mlp_out

(in TransformerEncoder class)



Vision Transformer 

__INIT__ part:      Initialize
1. a projection (linear) layer, that takes in patches and output embed_dim (embeddings)
2. transformer layers, where you have range(self.num_layers) of TransformerEncoder layers.
3. the MLP head, where it is essentially a LayerNorm  + a Linear layer.

forward part:         Pass through input x through all these layers. So:
1. patchify
2. call the projection layer
3. get cls_tokens (repeat self.cls_token  for N times)
4. concatenate outputs from 2 and 3
5. add position embedding to 4. This will be the input that goes in stacks of transformer layers
6. loop through all self.transformer_layers , this gives you the out_tokens  and attention maps . 

(see TransformerEncoder  class for more details). 
7.  pass the out_tokens  from 6 through your mlp_head  (that you initialized in step 3 in the __init__). 

This will be out_cls.

Class VisionTransformer (P4)

Based on Fig.1 of ViT paper



Vision Transformer - Attention Maps Visualization

https://arxiv.org/pdf/2010.11929 

Input Attention

https://arxiv.org/pdf/2010.11929


Vision Transformer Encoder

Dosovitskiy et al. ICLR’21

● Q: Why skip connection?

https://arxiv.org/pdf/1712.09913 

https://arxiv.org/pdf/1712.09913


Vision Transformer Encoder

Dosovitskiy et al. ICLR’21

● Q: What is inductive bias?

The inductive bias (also known as learning bias) of a 
learning algorithm is the set of assumptions that the 
learner uses to predict outputs of given inputs that it 
has not encountered

● Pre-trained on larger scale (14M-300M 
images)

● (authors claim) Vision Transformer has much 
less image-specific inductive bias than CNNs

https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


Improving Vision Transformer 
● Regularization for ViT models:

○ Weight Decay
○ Stochastic Depth
○ Dropout (in FFN layers of transformer)

● Data Augmentation for ViT models:
○ MixUp
○ RandAugment

● Distillation for ViT models:
○ Teacher-Student model
○ (will discuss more on this)

https://arxiv.org/pdf/1503.02531  

● Revisit 
High-frequency 
Components

https://arxiv.org/pdf/2204.00993 

● ViT + Evolutionary 
Algorithm

https://link.springer.com/content/pdf/10.1007/
s11263-024-02034-6.pdf 
 

https://arxiv.org/pdf/2106.10270

● ConViT: Soft convolutional 
inductive bias (gated positional 
self-attention)

https://proceedings.mlr.press/v139/d-ascoli21a/d-as
coli21a.pdf 
 

Large-scale pre-training

https://arxiv.org/pdf/1503.02531
https://arxiv.org/pdf/2204.00993
https://link.springer.com/content/pdf/10.1007/s11263-024-02034-6.pdf
https://link.springer.com/content/pdf/10.1007/s11263-024-02034-6.pdf
https://arxiv.org/pdf/2106.10270
https://proceedings.mlr.press/v139/d-ascoli21a/d-ascoli21a.pdf
https://proceedings.mlr.press/v139/d-ascoli21a/d-ascoli21a.pdf


DETR



DETR: DEtection TRansformer
https://arxiv.org/pdf/2005.12872 (Facebook AI, 2020) 

https://arxiv.org/pdf/2005.12872


DETR: DEtection TRansformer
https://arxiv.org/pdf/2005.12872 (Facebook AI, 2020) 

Motivation:
● End-to-end
● No NMS (post-processing)
● Direct “set prediction” problem - removing duplicate

Key architecture components: 
● Transformer Encoder-Decoder 
● Bipartite loss - Hungarian Algorithm

*Fixed-size N (large) predictions

https://arxiv.org/pdf/2005.12872


DETR: DEtection TRansformer
https://arxiv.org/pdf/2005.12872 (Facebook AI, 2020) https://github.com/facebookresearch/detr

(Archived 2024) 

https://arxiv.org/pdf/2005.12872
https://github.com/facebookresearch/detr


Deformable-DETR 
https://arxiv.org/pdf/2010.04159 
 (ICLR 2021) 

Address two DETR issues: 
(1) It requires much longer 
training epochs to converge 
than the existing object 
detectors

(2) DETR delivers relatively 
low performance at 
detecting small objects

Deformable attention

https://openaccess.thecvf.com/content_ICCV_2
017/papers/Dai_Deformable_Convolutional_Ne
tworks_ICCV_2017_paper.pdf 

https://arxiv.org/pdf/2010.04159
https://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.pdf


RT-DETR (real-time)
https://zhao-yian.github.io/RTDETR/ (CVPR 2024)

https://openaccess.thecvf.com/content/CVPR202
4/papers/Zhao_DETRs_Beat_YOLOs_on_Real-ti
me_Object_Detection_CVPR_2024_paper.pdf 

https://zhao-yian.github.io/RTDETR/
https://openaccess.thecvf.com/content/CVPR2024/papers/Zhao_DETRs_Beat_YOLOs_on_Real-time_Object_Detection_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Zhao_DETRs_Beat_YOLOs_on_Real-time_Object_Detection_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Zhao_DETRs_Beat_YOLOs_on_Real-time_Object_Detection_CVPR_2024_paper.pdf


RF-DETR (real-time)
https://github.com/roboflow/rf-detr (released March 20, 2025) (claims >60AP)

https://github.com/roboflow/rf-detr


Detectron2

https://github.com/facebookresearch/detectron2 

https://github.com/facebookresearch/detectron2


Summary

● ViT
● DETR
● Swin Transformer
● More…

Reminder:
● P4 Due March 30, 

2025
(Lecture 13 on 
poseCNN, 
Lecture 17, 18 on 
attention and ViT)
● Final Project 

“lightning talk” 
April 1, 2025

● Canvas Quiz will 
be released


