ROB 498/599: Deep Learning for Robot
Perception (DeepRob)

Lecture 17; Attention; Transformers
03/19/2025

https://deeprob.org/w25/
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https://deeprob.org/w25/

Today

Feedback and Recap (5min)

Attention (30min)

- Example 1: Language translation
- Example 2: video classification

Transformers (30min)
Vision Transformers (10min)
Summary and Takeaways (5min)
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Recap: Seq2Seq
One to many: Produce

Sequence to Sequence, “many-to-many” output sequence from
single input vector

Many to one: Encode input

sequence in a single vector Vi Y2
A A
ho —{fw —ths — fw —pPh, — fw —Phs — = —phe |— |, —Fh, —{ fy —F hy — fy —
Wl X1 Xy X3 Wz

https://proceedings.neurips.cc/paper_files/paper/2014/file/5a18e133cbfof257297f41 Obb7ecag42-Pﬁﬂﬁﬁfﬂf S


https://proceedings.neurips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Limitations of RNNs

e Modeling long-range dependencies limited by vanishing
gradient

o , especially for
long sequences

e Parallelization of layers that depend on seguential
information

ROBOTICS



Modeling Long-Range Dependencies

One Example: Language Translation

Input: Sequence x;, ...
Output: Sequenceyy, ..., Yy

Xy

Encoder: h, = f,y(x,, h.;)

From final hidden state predict:
Initial decoder state s,
Context vector c (often c=h;)

h1 > hz > h3 > h4 > So
?

X4 X, X3 X4 c

we are eating  bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297{410bb7eca942-Paper.pdf

Recall: Seq2Seq + RNN

ROBOTICS


https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Modeling Long-Range Dependencies

One Example: Language Translation

Input: Sequence Xy, ... Xt
Output: Sequencey;y, ..., Yy

Decoder: s, = gy(Yi.1, St.1, €)

estamos
From final hidden state predict:
Encoder: h, = f,(x, h,,) Initial decoder state s, 1
Context vector c (often c=h) [
h, h, h; h, So S,
X, X, X3 X, c Yo
we are eating  bread [START]

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297{410bb7eca942-Paper.pdf
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https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Modeling Long-Range Dependencies
One Example: Language Translation

Input: Sequence X, ... X; Decoder: s, = g(Y.1, St.1, €)
Output: Sequenceysy, ..., Yr

estamos comiendo

From final hidden state predict:

ey y
Encoder: h, = f,(x,, h,,) Initial decoder state s, ‘1 YZ
Context vector c (often c=h)

h, h, hs h, So Sy S,

{ 11
X1 X, X3 Xy c Yo Y1
we are eating bread [START] estamos

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297{410bb7eca942-Paper.pdf H B ”



https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Modeling Long-Range Dependencies
One Example: Language Translation

Input: Sequence X, ... Xt Decoder: s, = g(Yi.1, St.1, €)
Output: Sequenceyy, ..., Yy

estamos comiendo pan [STOP]

From final hidden state predict:

Encoder: h, = fy(x,, h,,) Initial decoder state s, Y1 Y2 Y3 Ya
Context vector c (often c=h,) [ ‘ I [
B T S | S|
X1 x2 X3 X4 * C yo y1 yz y3
we are eating  bread [START]  estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297{410bb7eca942-Paper.pdf



https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Modeling Long-Range Dependencies
One Example: Language Translation

Input: Sequence x;, ... Xy Decoder: s; = gy(Y:.1, St.1, €)
Output: Sequenceyy, ..., Yy

estamos comiendo pan [STOP]
From final hidden state predict:
it y y y y
Encoder: h, = f,(x,, h,,) Initial decoder state s, [ - S 4
Context vector c (often c=h,) [ [ [

1 1 1 [

Problem: Input sequence bottlenecked through
fixed-sized vector. What if T=10007?

1 \ L L |

we are eating  bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297{410bb7eca942-Paper.pdf



https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Modeling Long-Range Dependencies
One Example: Language Translation

Input: Sequence X, ... Xt Decoder: s, = g(Yi.1, St.1, €)
Output: Sequenceyy, ..., Yy

estamos comiendo pan [STOP]

From final hidden state predict:

Encoder: h, = f,(x,, h;,) Initial decoder state s,
Context vector c (often c=h,)

Y1 Y2 Y3 Ya

ldea: Instead of than summarizing entire input sequence
into one context vector ¢, let's have decoder compute its
own context vector

we are eating  bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297{410bb7eca942-Paper.pdf



https://papers.nips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Modeling Long-Range Dependencies
One Example: Language Translation

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through single vector

estamos comiendo pan [STOP]
- At each timestep of decoder, context vector “looks at”
different parts of the input sequence
Y1 Y2 Y3 Ya
h, h, h; h, So S, S4

y

g7 S3
Xq X, X3 X4 \(Q Yo| [Ca||Y1]| |C3||Y2| |Cal|Ys

, t { t t
we are eating  bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

https://arxiv.org/abs/1409.0473 ‘ H [] B [].” [:S



https://arxiv.org/abs/1409.0473

Seq2Seq “Attention”

One Example: Language Translation

Compute (scalar) alignment scores
e = farr(Se.1, hi) (fare is an MLP)

X X X X
+ 4 Y
a; d ’ a3 ‘ | Q14
t t t t
soffmax
t 1 t t From final hidden state:
ellf \ ’ P) ’ ’ e131‘ \ e14T Initial decoder state s,
YN T
h, h, hs h, So +
Intuition: Context vector
attends to the relevant
part of the input sequence
, “estamos” = “we are”
we are eating bread
so maybe a,;,=a,,=0.45,
a,3=a,,=0.05

ahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

\ 4

estamos . .
Normalize alignment scores
to get attention weights
Y1 0<a,;<1 Sa,=1
] Compute context vector as linear
combination of hidden states
s
1 C= Ziat,ihi
[ l Use context vector in
decoder: s; = gy(Yt.1, St1, Ct)
G Yo
This is all differentiable! Do not
[START]

supervise attention weights -
backprop through everything


https://arxiv.org/abs/1409.0473

Seq2Seq “Attention”

One Example: Language Translation

X X X X
4 4 ‘ 4 ’ ‘ 4
ay ay CVE! d i
; ; ' 1 estamos comiendo
1 1Suu naX1 : ses,; to
‘ | Y1 Y2 compute new context
€, \ €, \ €3 \ ‘ €24 4 i vector c
A o + l ‘
\ \ \ Use ¢, to computess,, y,
h1 i h2 i h3 i h4 - So 51 i 52
W
Intuition: Context vector | |
attends to the relevant
X1 X3 A5 X4 part of the input sequence Ci|Yo| |[C2] V2
. s “comiendo” = “eating”
we are eatin rea
& so maybe a,,=a,,=0.05, [START]  estamos
a,,=0.1, a,3=0.8

|
https://arxiv.org/abs/1409.0473 TNUOUIILY



https://arxiv.org/abs/1409.0473

Visualizing Attention (language example)
One Example: Language Translation

. Visualize attention weights a;
Example: English to French sualiz WEIEDTS Ay

translation e 2E 5 o5 4
; g?%%fju@gg%sg% é
s://ahaslides.com L
Input: “The agreement on the  Meeesiesceminize kg
European Economic Area was i
signed in August 1992.” , zone
g g Q what does économique
diagonal européenne
Output: “L'accord sur la zone ~ Weights mean? I
économique européenne a signé
en
été signé en aolt 1992.” aodt
1992
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 <end>l

https://arxiv.org/abs/1409.0473

HUuvulivd


https://arxiv.org/abs/1409.0473
https://ahaslides.com/0BWPC

Modeling Long-Range Dependencies

Per-frame video classification

Question:
what do
you think
the chefis
making?

Sourcs: TurkazKichen ROBOTICS


https://www.youtube.com/@TurkuazKitchen/shorts
http://www.youtube.com/watch?v=mueAwK63h00

Modeling Long-Range Dependencies

Example: Per-frame video classification

Question: what do you think the
chef is making?

Max-Likelihood:
e Pasta sauce (p=0.5)

AN e Meatballs (p=0.5)

‘-‘ R
’ Y
t i 3
[ “ “
. |
. !’.d-u' -

Source: TurkuazKichen ROBOTICS


https://docs.google.com/file/d/1MaFQdX3FY1EcntQDWaWsLvlPMmipoXp3/preview
https://www.youtube.com/@TurkuazKitchen/shorts

Modeling Long-Range Dependencies

Q: What happens if the hidden state can't encode all
~ previous images’ information?

e e Cookre 292
N/ N/
e WE
tt tt

Source: TurkuazKitchen

ROBOTICS


https://docs.google.com/file/d/1MaFQdX3FY1EcntQDWaWsLvlPMmipoXp3/preview
https://www.youtube.com/@TurkuazKitchen/shorts

Modeling Long-Range Dependencies

A: The predictions will be biased by local information

Making Making Cooking ~ Making
dough bread sauce meatballs
o/ N/
N i
ho-bhl—b | >h N
t 1 i

N
o A[‘ ' i b
Ty L
o/
o L
L e -
. .
N n ;
s .
., . T
" AFE P - .

Source: TurkuazKitchen
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https://docs.google.com/file/d/1MaFQdX3FY1EcntQDWaWsLvlPMmipoXp3/preview
https://www.youtube.com/@TurkuazKitchen/shorts

Modeling Long-Range Dependencies
Q: How can we ensure the model has access to earlier

information?
tougt st | . Contextt W 72
N/ N/
N i
Ie e gLt
faof>{haf> g N
tt 1t

—
e _ - .(f“
L L .
~
)~ . 54
L8 LI Y
[ n ‘ |
. :
o N i L

Source: TurkuazKitchen

ROBOTICS


https://docs.google.com/file/d/1MaFQdX3FY1EcntQDWaWsLvlPMmipoXp3/preview
https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Q: How can we ensure the model has access to earlier
information?

Making Making Important Cooking

dough briad |~ Context! sauce 227
L N/
i W
L[] An-—1[] [
hO"hl" > hy
ot t ot

ROBOTICS


https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Q: How can we ensure the model has access to earlier

information?
ldea 1: Combine all previous hidden

Making  Making Important Cooking  mymy=my states to provide context before decoding
dough bread | _ — Context! sauce oBelle

ROBOTICS


https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Q: How can we ensure the model has access to earlier
information?

ldea 2: Linearly combine all previous hidden

Making Making Important Cooking ==y states conditioned on current hidden state
dough bread | ,_ — Context! sauce HOHH -

it 11 i
I 1— 1— I h?\l:iaihi

exp(score(hy, h;))
> exp(score(hn, hy))

’i:

Normalize scores
Source: w tosumto 1
TurkuazKitchen 1 -

ROBOTICS


https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Q: How can we ensure the model has access to earlier
information?

ldea 2: Linearly combine all previous hidden

Making Making Important Cooking ==y states conditioned on current hidden state
dough bread | ,_ — Context! sauce HOHH -

i 1t by
I 1— 1— I h?\l:iaihi

exp(score(hy, h;))

’i:

Z;V:o exp(score(hn, hj))

Issue: How to define the

scoring function?
ROBOTICS

Source: 5
TurkuazKitchen e


https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Q: How can we ensure the model has access to earlier
information?

ldea 3: Train the model to linearly combine

Making Making Important Cooking ==y all previous hidden states conditioned on
dough bread | ,_ — Context! sauce HOHH -

it 11 i
I 1— 1— I h?\l:iaihi

exp(score(hy, h;))
> exp(score(hn, hy))

’i:

Use a learned NN to model the score function,
thereby decoder learns to model ‘attention’

ROBOTICS

Source: 5
TurkuazKitchen e


https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Making Making Stirring Cooking  Making a meat

dough bread sauce sandwich
\ 7 N/
m m T
, Wyl ] bl
@ 1 N Key idea: Recombine input
T oA~ features to provide context
hol»hl> hav—y . relevant to current output token
1t 1t

ROBOTICS


https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Making Making Stirring Cooking  Making a meat
dough bread sauce sandwich
\ N
m m T r |
oL
1 -t | b | In other words: “lookup” the relevant
—————x ¥ |cContext from past token features
hy_1 | [ ] |using current token features as a ‘key’
h0—>h,1—> > H1h N
S t ot

ROBOTICS


https://www.youtube.com/@TurkuazKitchen/shorts

Attention for Modeling Long-Range Dependencies

Making Making Stirring Cooking  Making a meat

dough bread sauce sandwich
\ N/
1 vl by Modeling the score function is a
———=——=—= ¢ design choice

hn_1 | [ ]

T*T* « . . LT For this course:

@ 0 t t scaled dot-product attention

will be used

ROBOTICS


https://www.youtube.com/@TurkuazKitchen/shorts

Introducing Attention and the Transformer Architecture

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | Eukasz Kaiser*
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Vaswani et al. NeurIPS'17
https://arxiv.org/abs/1706.03762 ‘ HUB[]'”ES



https://arxiv.org/abs/1706.03762

Formalizing Attention: Scaled Dot-Product Attention

Inspiration: (Example:) Database/Lookup Table
e The attention
mechanism is Keys Values

reminiscent of a
database system

e We have stored features ROB101 Linear Algebra
from past tokens
e We want to ‘lookup’ ROB320 Robot Oper. Sys.

information from

relevant token features ROB498-004 DeepRob
conditioned on our

current feature

ROB498-004

(soon-to-be ROB430:) ) 'ROBOTICS



Formalizing Attention: Scaled Dot-Product Attention

Inspiration:

The attention mechanism is reminiscent of a database system
We have stored features from past tokens

We want to ‘lookup’ information from relevant token features
conditioned on our current feature

Intuition:
= Think of as a
-> Past token features as the values to

e 2

search/recombine
Values then are the index used to search
past tokens

Database/Lookup Table

Keys Values
Learned | Past Token
Lookup Features

Operation

Query

Current Token
Features

ROBOTICS




Formalizing Attention: Scaled Dot-Product Attention

Scaled Dot-Product Attention

Inspiration: $
e The attention mechanism is reminiscent of a database system MatMul
e We have stored features from past tokens 1 1
e We want to ‘lookup’ information from relevant token features SofMax
conditioned on our current feature 3
Mask (opt.)
)
Scale
Intuition: 1
- Think of current features as a query MatMul
- Past token features as the values to search/recombine 1 1
- Values then are the index used to search past tokens Q K V

Vaswani et al. NeurlPS'17

ROBOTICS



Formalizing Attention: Scaled Dot-Product Attention

Inputs:
Scaled Dot-Product Attention
Q = RPXdk
K € ]RNXdk MathuI
’ A
V e RV*d SoftMax
)
Mask (opt.)
where, P is the number of input tokens to attend 4
d_k is the dimension of input token features Scale
d_v is the dimension of output token features 1
N is the number of context tokens (e.g. sequence length ety
or number of patches for vision transformer) g) IE "

Vaswani et al. NeurlPS'17

ROBOTICS



Scaled Dot-Product Attention

Inputs:
Q c RPXdk
K e RV*%
V € RVXdv

Each row measures the inner product between a given input
token’s features and each key feature vector

T PxN
QK™ eR MarMuI

|

Scaled Dot-Product Attention

MatMul

1
SoftMax
)
Mask (opt.)
)

Scale

t 1
Q K

A

\%

Vaswani et al. NeurlPS'17

ROBOTICS



Scaled Dot-Product Attention

Inputs:

Q = RPXdk
K e RV*%
V € RV*dv

T

Vi

attention = softmax( ) € REXN

N

Zattentioni,j =1 Viel...P
j=1

Softmax ensures the attention weights sum to 1 for

each input token

Scaled Dot-Product Attention

/

|

MatMul

A A

SoftMax

)

Mask (opt.)

1

Scale

T

MatMul

t 1

Q KV

Vaswani et al. NeurlPS'17

ROBOTICS



Scaled Dot-Product Attention

Inputs:
Q c RPXdk
K e RV*%
V e RN*dv
" Pxd
softmax( WV e R X%
V dy

Output is a linear (re-)combination of the input value tokens
based on the pairwise similarity of query and key features

Scaled Do

t-Product Attention

|

MatMul

Y W .

S

oftMax

)

Mask (opt.)

1

Scale

1

MatMul

|
Q

t

KV

Vaswani et al. NeurlPS'17

ROBOTICS



Scaled Dot-Product Attention

Inputs: i
Q € RPxd» (Section 3.2.1 paper)
K e RV*%
V e RV*do
r Pxd
softmax V e R X%
( A )

Q: Given an input sequence of token

features, what are the query, key and value

features?

Scaled Dot-Product Attention

|

MatMul

1

SoftMax

)

Mask (opt.)

1

Scale

1

MatMul

|
Q

t

K

\%

Vaswani et al. NeurlPS'17

ROBOTICS



Scaled Dot-Product Attention

Inputs:
Scaled Dot-Product Attention
Q = RPXdk KT b
X d.y
K € RNVxd softmax( VA W eR MathuI“
V e RVx% Soft*Max
Mask*(opt.)
Answer: Given a set of input token features X, the query, 1
key and value features are formed by applying three ek
independent learned linear layers to transform X into Q, K Manul
and V respectively r 1
e Effectively allows model to learn the lookup operation Q K V

e Referredto as self-attention

Vaswani et al. NeurlPS'17

ROBOTICS



Multi-Head Attention

(Section 3.2.2 paper)

In-practice, it is often beneficial to project the
input tokens into multiple (h) subspaces before
applying scaled dot-product attention

The final output is then the concatenated
result of each independent attention head

You will experiment with this in project 4
transformer part

Multi-Head Attention

t

Linear

1

Concat

Scaled Dot-Product J& 5
Attention >

Atl I nl | “l |
W o Ve e
Linear Linear Linear

Y ¥ 7

V K Q

Vaswani et al. NeurlPS'17

ROBOTICS



The Transformer Architecture

Transformer Block:
Input: Set of vectors x
Output: Set of vectorsy

Self-attention is the only
etween vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Vaswani et al. NeurlPS17

* FeW Y1 Y2 VE! Ys
Parameters! e t f t
Layer Normalization ‘
layernorm1 -> (li)
(multihead)self-atten I ! I |
. MLP MLP MLP MLP
tion -> " R ;

layernorm2 -> | ' |

Layer Normalization

mip 5
E

ﬂl/\l

with residual Self-Attention 17 7V
connections from input t t t
to attention output and ! 1 f t
from pre-layernorm2 to X X, X; X,

mlp output

ROBOTICS



The Transformer Architecture

Other Key Components

Recurrent connections between sequential blocks to
avoid vanishing gradients

Positional encodings provide the model knowledge
of the sequence structure

o Without positional encodings, model treats
natural language as a bag of words (BoW)
instead of structured sequence

o With positional encodings, model can learn in
which cases local features are important and in
which cases global information is important

Output
Probabilities

( Add & Norm ]
Feed
Forward

J
1 | Add & Norm |<\

Multi-Head
Attention

Nise Add & Norm
Add & Norm EERe

Multi-Head Multi-Head
Attention Attention

L | | A4

\_ J U —

Positional D @ Positional
Encoding Encoding

Add & Norm

Feed
Forward

|

h

Input Output
Embedding Embedding

I !

Inputs Outputs
(shifted right)

Vaswani et al. NeurlPS'17

ROBOTICS



The Transformer Architecture

PE(pos,Zi—l— 1)

PE(pos,2i)

sin(pos 100002/ dmoer)
cos(pos/ 100002"/ Gmodel )

(@)

Without positional encodings, model treats
natural language as a bag of words (BoW)

[ T (Add 8 Norm [
or Viasked
ulti-Hea Multi-Head
i Attention
1t

) @_® Prc:ghonal

instead of structured sequence E=n i
f

With positional encodings, model can learn in e hiioq gt

which cases local features are important and in Vaswani et al. NeurlPS'17

which cases global information is important

ROBOTICS




Recall: Three limitations of RNNs

1. Modeling long-range dependencies limited by vanishing
gradient

2. Computational and memory efficiency, especially for long
sequences

3. Parallelization of layers that depend on sequential
information

How does Attention address the limitations of RNNs?

ROBOTICS




How does Attention Address the Limitations of RNNs

Layer Type Complexity per Layer Sequential | Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Vaswani et al. NeurlPS'17

Limitation 1:

e Self-Attention ensures that each output token has access to all
previous input tokens (path length of 1)

e Meanwhile for RNNs, the output at token N has a path length of N to
interact with input token 1 ‘ROBOTICS




How does Attention Address the Limitations of RNNs

Layer Type Complexity per Layer | Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Vaswani et al. NeurlPS'17

Limitation 2:

e When sequence length (or restricted context) is much smaller
than dimension, self-attention will be at least as efficient as RNN

ROBOTICS



How does Attention Address the Limitations of RNNs

Layer Type Complexity per Layer | Sequential | Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Vaswani et al. NeurlPS'17

Limitation 3:
e Self-attention uses constant number of sequential operations

while RNN requires N sequential forward propagation steps to

generate N-th output

AOROTIES




Can we apply Transformers to Images?

Yes!

Idea: Treat the image as a set of patches of pixels

ROBOTICS



Vision Transformers

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy* T, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

Dosovitskiy et al. ICLR'21

https://arxiv.orq/pdf/2010.11929

ROBOTICS


https://arxiv.org/pdf/2010.11929

Vision Transformers

Convert image into 16x16 patches

o E.g. (1,240, 240, 3) -> (1, 15x15, 16x16x3) MLP
Head

Apply shared linear projection to each patch ,

© Eg (1 ' 15x1 5: 16X1 6X3) = (1 ! 15x1 5: 64) Transformer Encoder ]
Concatenate learnable class token for classifier 3 ‘ ‘
output paeheposton @) @) @) B0 €0 6D 60 6) B

@) E g (1 , 1+1 5X1 5, 64) ?cﬁigg]liaﬁﬂlggmg [ Linear Projection of Flattened Patches

SEE N A

Add position embedding to each patch %}3%—’.%% oY A s

o E.g. (1, 1+15x15, 64) + (1, 1+15x15, 64) A e

(P4)  patchify ROBOTICS



Vision Transformer Encoder

Transformer Encoder

A
Based on the Transformer encoder kX @4—
MLP |

Sequence of LNorm->MHSA->LNorm->MLP X
with residual skip connections [ Norm |

For input embedded patches: (1, 1+15x15, D_in)

o Output: (1, 1+15x15, D_out) B

For final classification decision: , Nolrm I

o Apply MLP and softmax to the class token ‘

o (1,1, D_out)-> (1, 1, N_classes) e ]
Patches

Dosovitskiy et al. ICLR21 ‘ H[]B[]”ES



Reminder
e *P4 Due March 30, 2025*

e We will post a template for poster (“lightning talk”)
Consider:

Topic/Title

Aim to reproduce/run 1-2 baseline method by then

MUST-DO Goals/Stretch Goals

Some Lit Review (“Gaps”)

Group member roles/sub-tasks

Timeline/Milestone

Material (if any)

*Bonus: for showcasing on a real robot!*

O O 0O 0O 0O O O O

ROBOTICS



