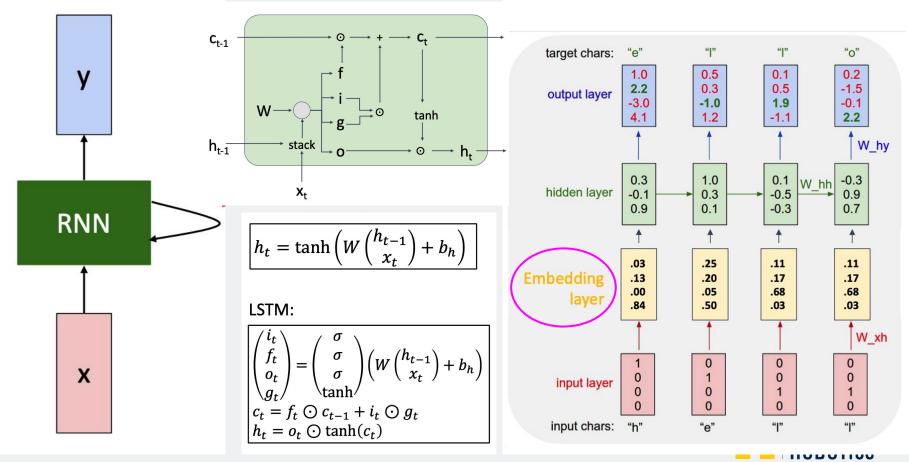
ROB 498/599: Deep Learning for Robot Perception (DeepRob)

Lecture 17: Attention; Transformers 03/19/2025

Today

- Feedback and Recap (5min)
- Attention (30min)
 - Example 1: Language translation
 - Example 2: video classification
- Transformers (30min)
- Vision Transformers (10min)
- Summary and Takeaways (5min)

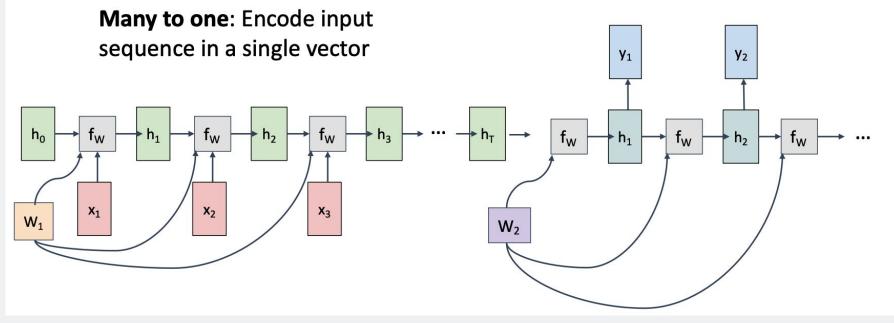
Recap



Recap: Seq2Seq

Sequence to Sequence, "many-to-many"

One to many: Produce output sequence from single input vector



https://proceedings.neurips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Limitations of RNNs

- Modeling long-range dependencies limited by vanishing gradient
- Computational and memory efficiency, especially for long sequences
- Parallelization of layers that depend on <u>sequential</u> information

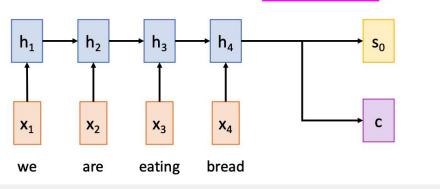
One Example: Language Translation

Input: Sequence $x_1, ..., x_T$ **Output**: Sequence $y_1, ..., y_{T'}$

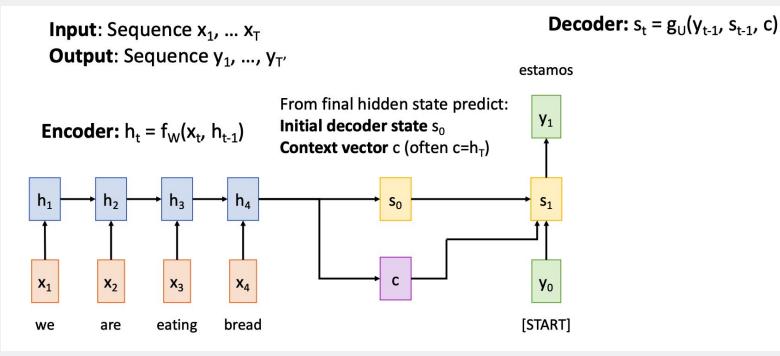
Encoder: $h_t = f_w(x_t, h_{t-1})$

From final hidden state predict: Initial decoder state s₀ Context vector c (often c=h_⊤)

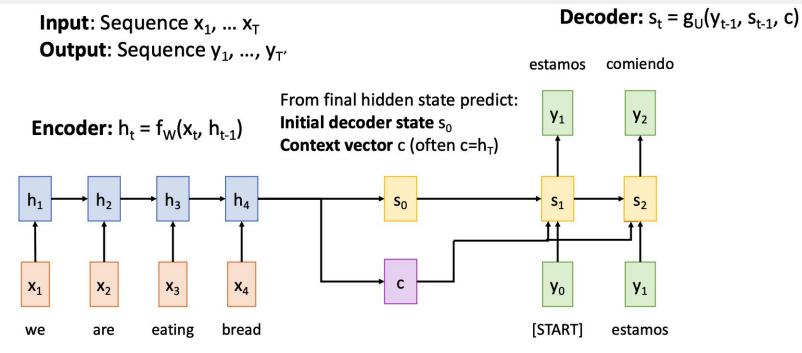
Recall: Seq2Seq + RNN



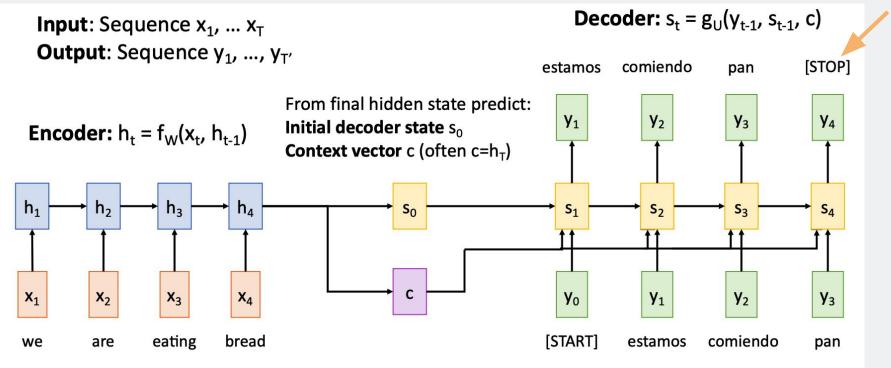
One Example: Language Translation



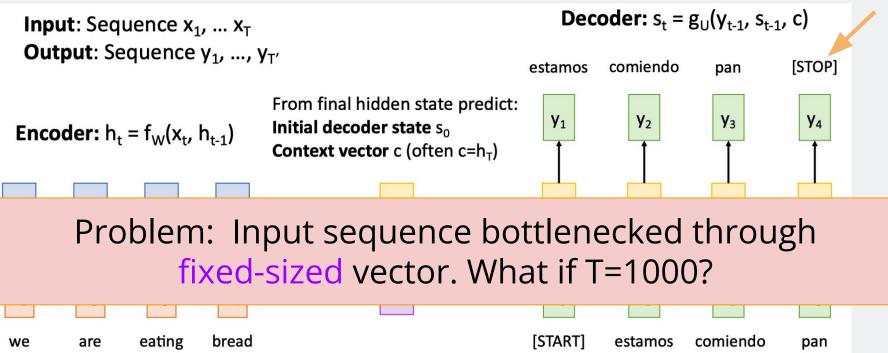
One Example: Language Translation



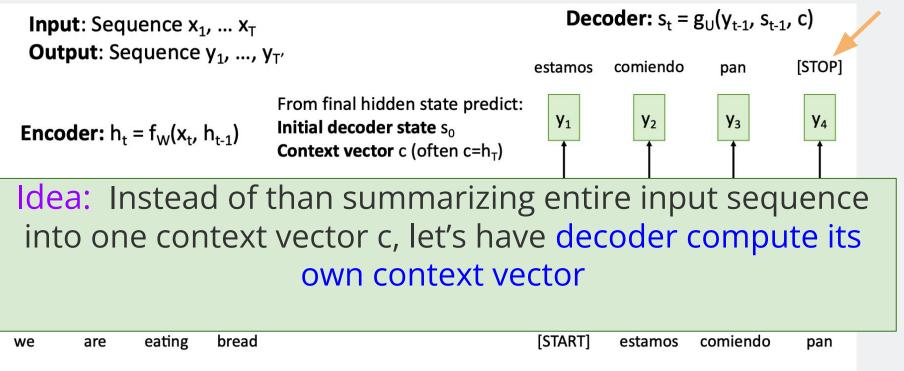
One Example: Language Translation



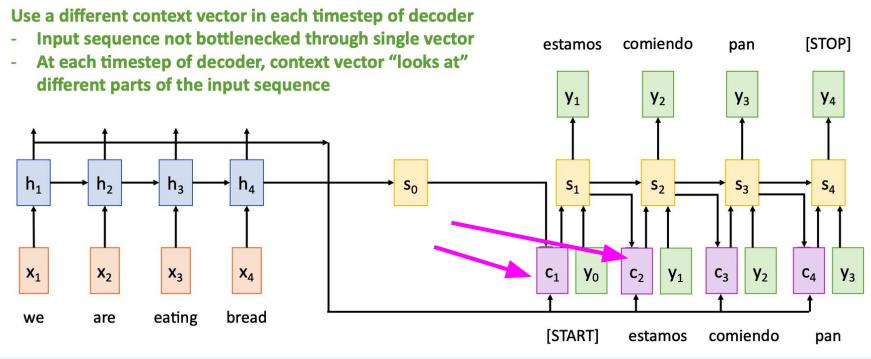
One Example: Language Translation



One Example: Language Translation



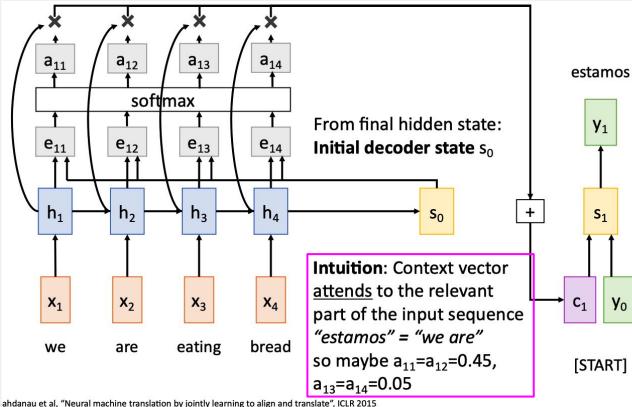
One Example: Language Translation



Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015 <u>https://arxiv.org/abs/1409.0473</u>

Seq2Seq "Attention"

One Example: Language Translation



Compute (scalar) alignment scores $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP) Normalize alignment scores to get attention weights

 $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

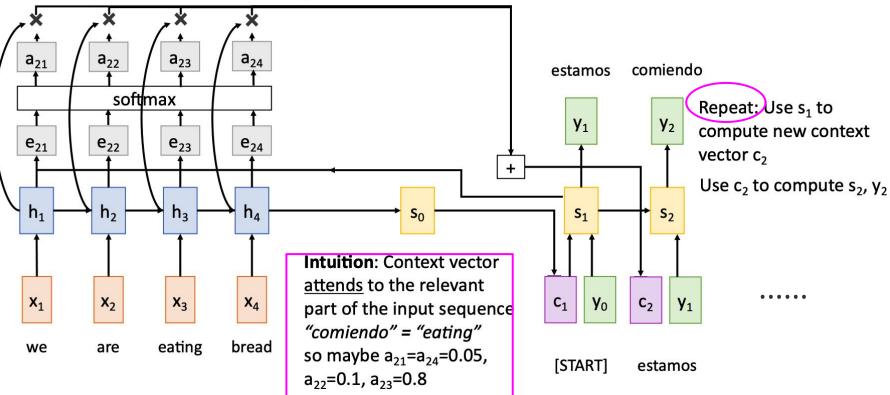
Compute context vector as linear combination of hidden states $c_t = \sum_i a_{t,i} h_i$

Use context vector in decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

This is all differentiable! Do not supervise attention weights – backprop through everything

Seq2Seq "Attention"

One Example: Language Translation



UADAHIPY

Visualizing Attention (language example)

https://ahaslides.com/0BWPC

Q: what does

weights mean?

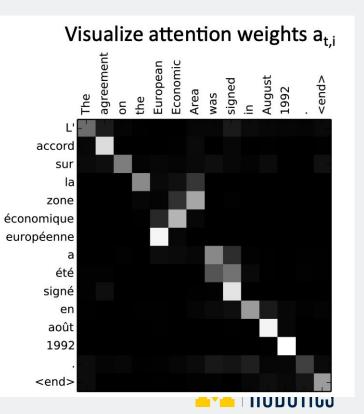
diagonal

One Example: Language Translation

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."



Another Example: Per-frame video classification

Question: what do you think the chef is making?

Source: TurkuazKitchen

Example: Per-frame video classification

Question: what do you think the chef is making?

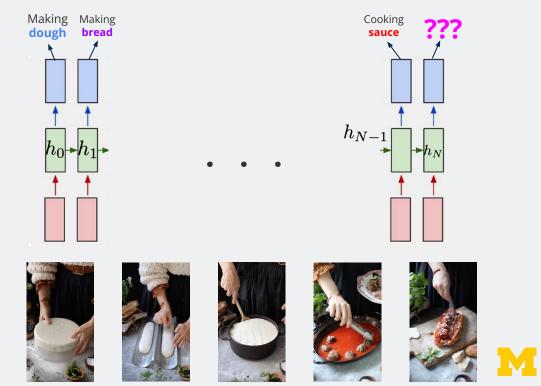
Max-Likelihood:

- Pasta sauce (p=0.5)
- Meatballs (p=0.5)

Source: TurkuazKitchen

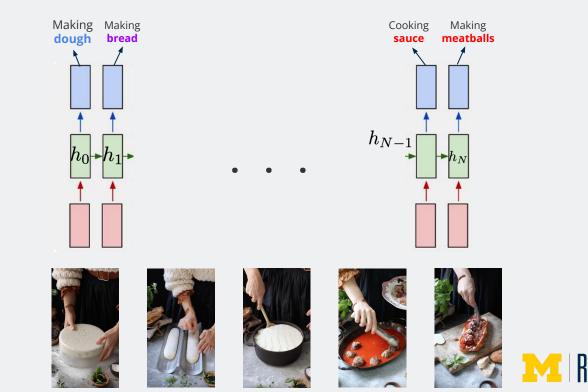
Q: What happens if the hidden state can't encode all previous images' information?

Source: TurkuazKitchen



A: The predictions will be biased by local information

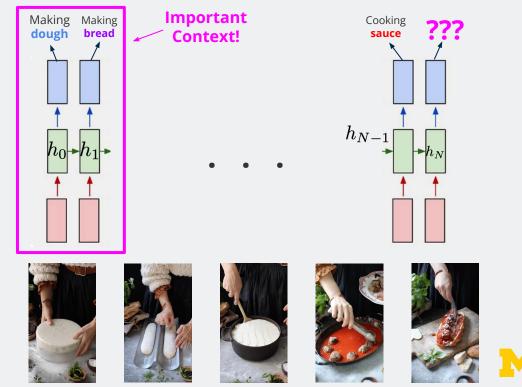
Source: TurkuazKitchen



ICS

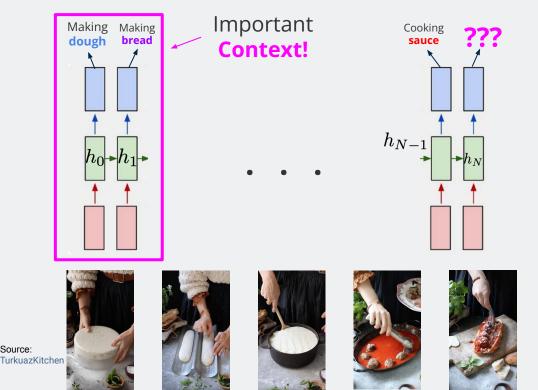
Q: How can we ensure the model has access to earlier information?

Source: TurkuazKitchen

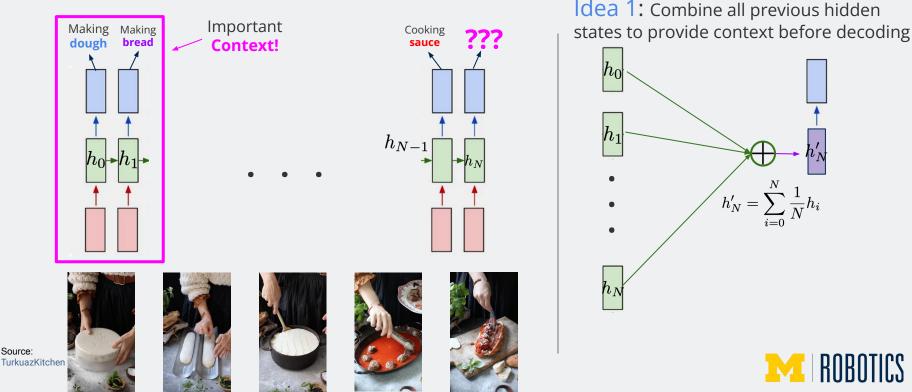


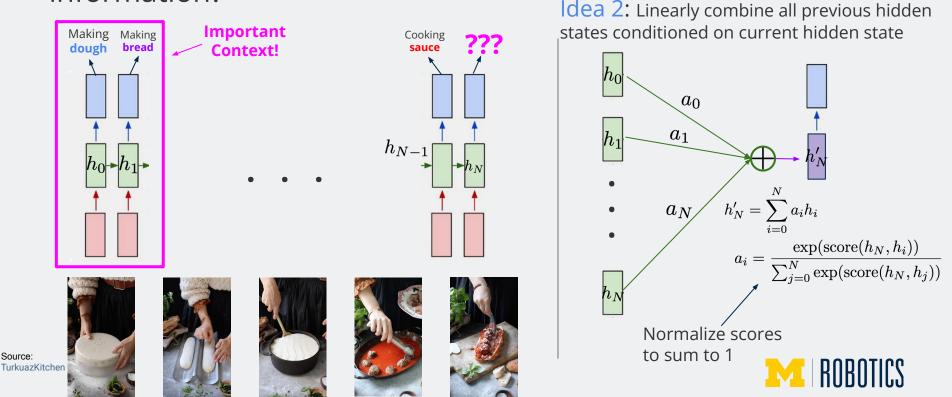
TICS

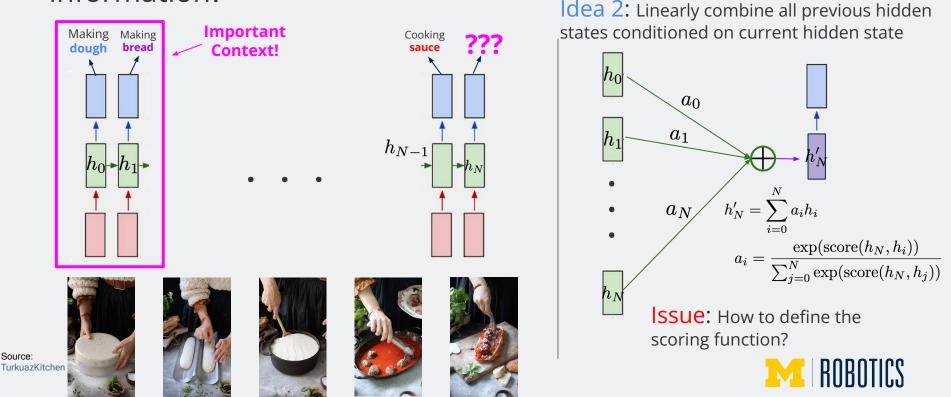
Q: How can we ensure the model has access to earlier information?

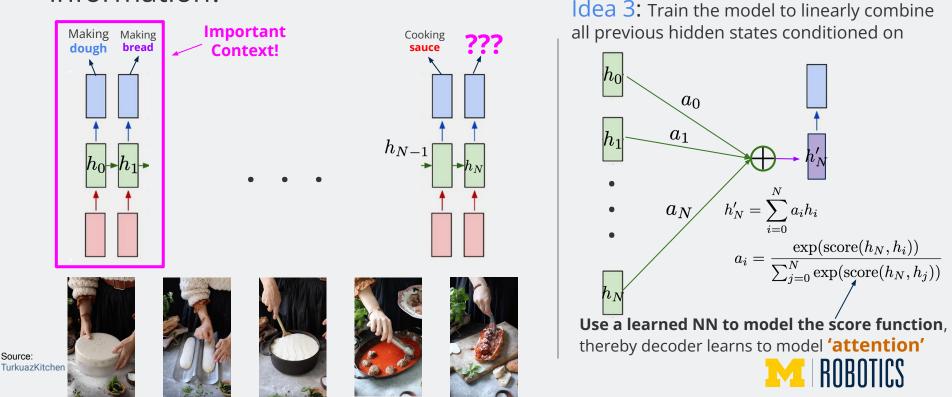


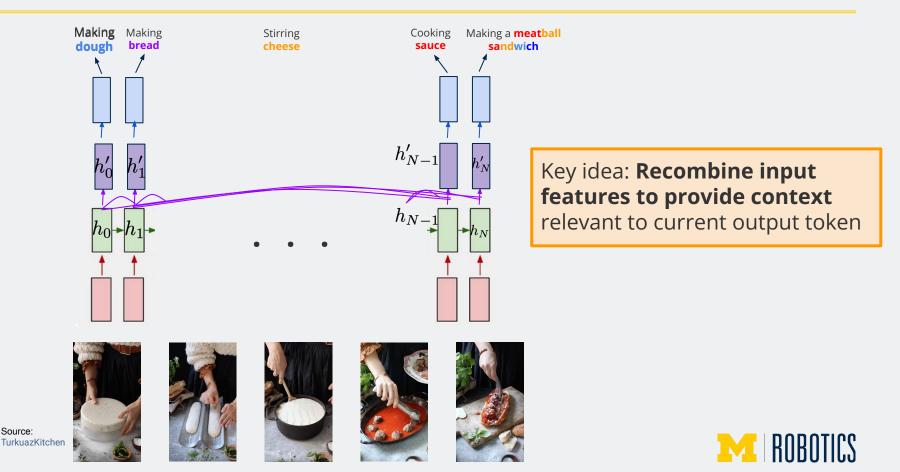
Source:

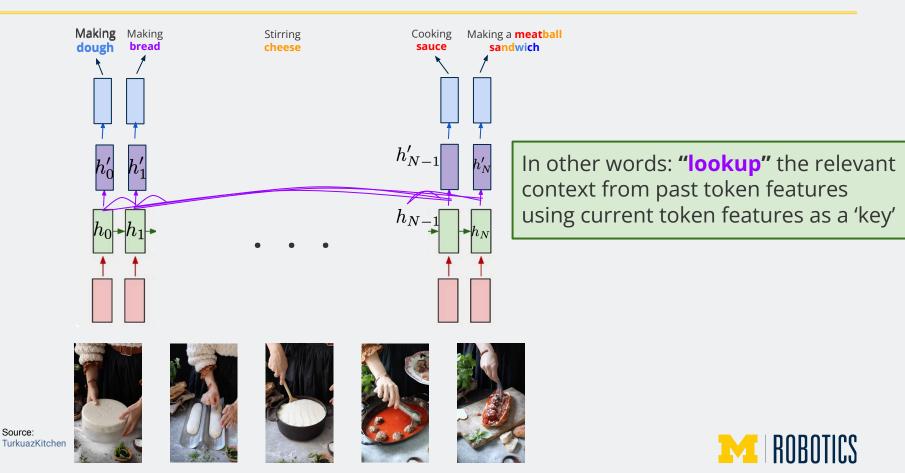


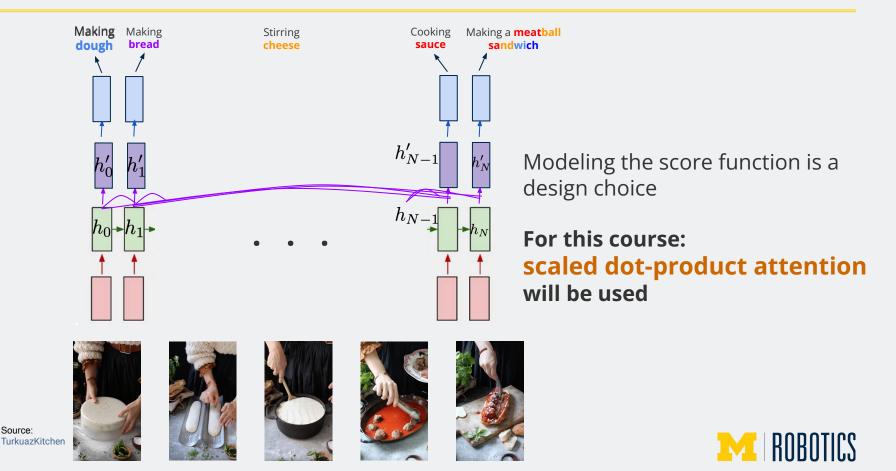












Introducing Attention and the Transformer Architecture

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{* †} University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

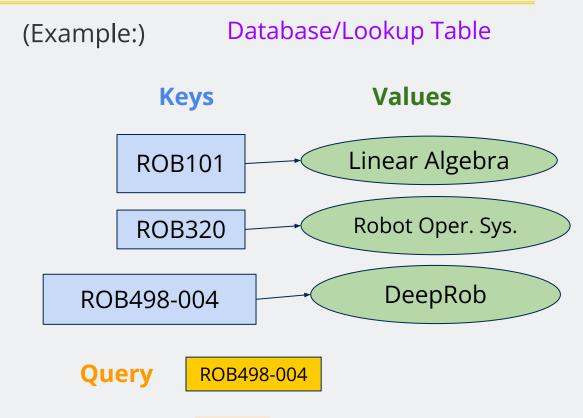
Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Vaswani et al. NeurIPS'17

https://arxiv.org/abs/1706.03762

Inspiration:

- The attention mechanism is reminiscent of a database system
- We have stored features from past tokens
- We want to 'lookup' information from relevant token features conditioned on our current feature



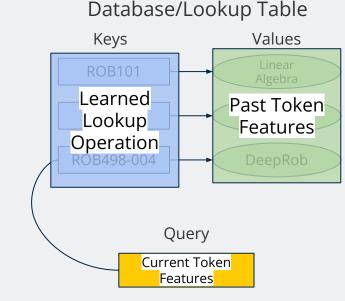
(soon-to-be <mark>ROB430</mark> :))

Inspiration:

- The attention mechanism is reminiscent of a database system
- We have stored features from past tokens
- We want to 'lookup' information from relevant token features conditioned on our current feature

Intuition:

- → Think of current features as a query
- → Past token features as the values to search/recombine
- → Values then are the index used to search past tokens

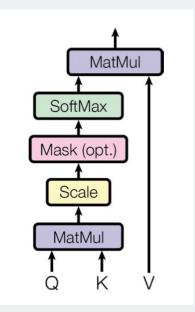


Inspiration:

- The attention mechanism is reminiscent of a database system
- We have stored features from past tokens
- We want to 'lookup' information from relevant token features conditioned on our current feature

Intuition:

- → Think of current features as a query
- → Past token features as the values to search/recombine
- → Values then are the index used to search past tokens



Scaled Dot-Product Attention

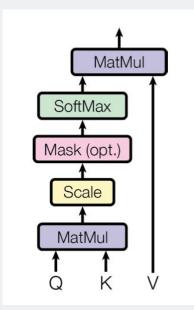
Vaswani et al. NeurIPS'17

Inputs:

$$Q \in \mathbb{R}^{P \times d_k}$$
$$K \in \mathbb{R}^{N \times d_k}$$
$$V \in \mathbb{R}^{N \times d_v}$$

where, P is the number of input tokens to attend d_k is the dimension of input token features d_v is the dimension of output token features N is the number of context tokens (e.g. sequence length or number of patches for vision transformer)

Scaled Dot-Product Attention



Vaswani et al. NeurIPS'17

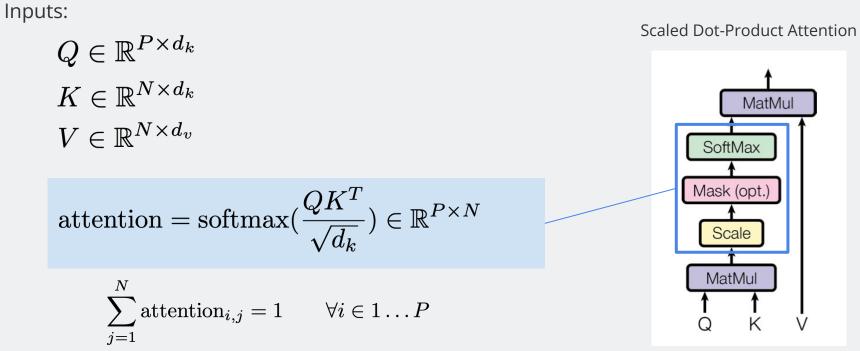
Scaled Dot-Product Attention



token's features and each key feature vector

Vaswani et al. NeurIPS'17

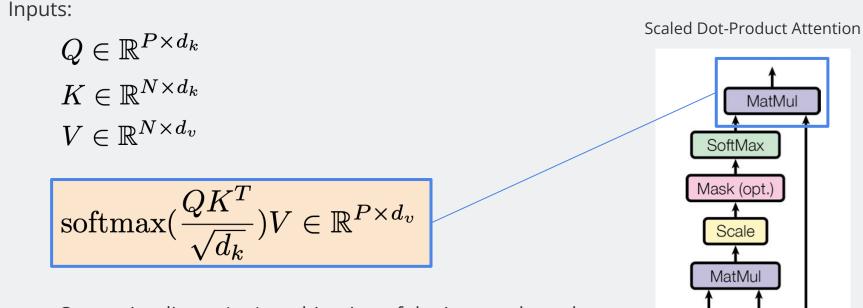
Scaled Dot-Product Attention



Softmax ensures the attention weights sum to 1 for each input token

Vaswani et al. NeurIPS'17

Scaled Dot-Product Attention

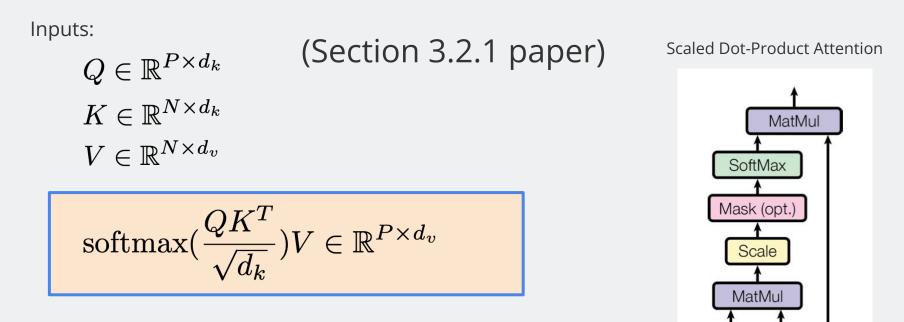


Output is a linear (re-)combination of the input value tokens based on the pairwise similarity of query and key features

Vaswani et al. NeurIPS'17

K

Scaled Dot-Product Attention



Q: Given an input sequence of token features, what are the query, key and value features?

Vaswani et al. NeurIPS'17

Scaled Dot-Product Attention

Inputs:

$$Q \in \mathbb{R}^{P \times d_k}$$

$$K \in \mathbb{R}^{N \times d_k}$$
 softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right) V \in \mathbb{R}^{P \times d_v}$

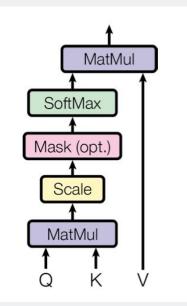
$$V \in \mathbb{R}^{N \times d_v}$$

Answer: Given a set of input token features X, the query, key and value features are formed by applying three independent learned linear layers to transform X into Q, K and V respectively

- Effectively allows model to learn the lookup operation
- Referred to as **self-attention**

(P4) class Attention

Scaled Dot-Product Attention



Vaswani et al. NeurIPS'17

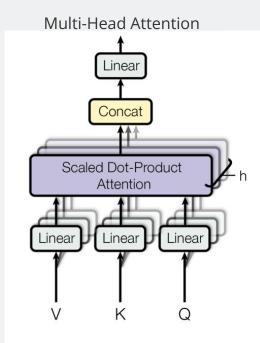
Multi-Head Attention

(Section 3.2.2 paper)

In-practice, it is often beneficial to project the input tokens into multiple (h) subspaces before applying scaled dot-product attention

The final output is then the **concatenated** result of each independent attention head

You will experiment with this in project 4 transformer part



Vaswani et al. NeurIPS'17

(P4) class MultiHeadAttention

The Transformer Architecture

Transformer Block: Input: Set of vectors x Output: Set of vectors y

Self-attention is the only interaction between vectors!

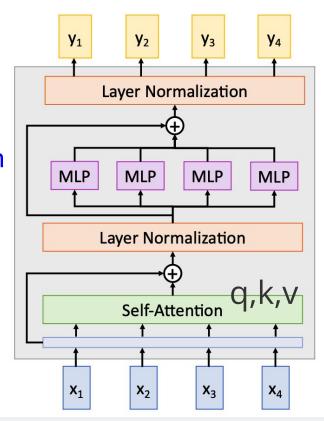
Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

*Few Parameters!

layernorm1 -> (multihead)self-atten tion -> layernorm2 -> mlp

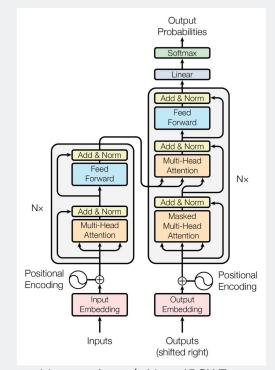
with residual connections from input to attention output and from pre-layernorm2 to mlp output



The Transformer Architecture

Other Key Components

- Recurrent connections between sequential blocks to avoid vanishing gradients
- Positional encodings provide the model knowledge of the sequence structure
 - Without positional encodings, model treats natural language as a bag of words (BoW) instead of structured sequence
 - With positional encodings, model can learn in which cases local features are important and in which cases global information is important

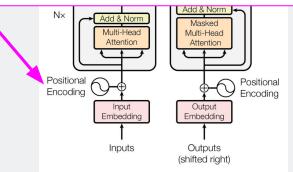


Vaswani et al. NeurIPS'17

The Transformer Architecture

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

- Without positional encodings, model treats natural language as a bag of words (BoW) instead of structured sequence
- With positional encodings, model can learn in which cases local features are important and in which cases global information is important



Vaswani et al. NeurIPS'17

Recall: Three limitations of RNNs

- 1. Modeling long-range dependencies limited by vanishing gradient
- 2. Computational and memory efficiency, especially for long sequences
- 3. Parallelization of layers that depend on sequential information

How does Attention address the limitations of RNNs?

How does Attention Address the Limitations of RNNs

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Vaswani et al. NeurIPS'17

Limitation 1:

- Self-Attention ensures that each output token has access to all previous input tokens (path length of 1)
- Meanwhile for RNNs, the output at token N has a path length of N to interact with input token 1

How does Attention Address the Limitations of RNNs

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention Recurrent	$O(n^2 \cdot d) \ O(n \cdot d^2)$	O(1)	O(1) O(n)
Convolutional	$O(n \cdot a^{-}) \ O(k \cdot n \cdot d^{2}) \ O(r \cdot n \cdot d)$	O(n) O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r\cdot n\cdot d)$	O(1)	O(n/r)

Vaswani et al. NeurIPS'17

Limitation 2:

• When sequence length (or restricted context) is much smaller than dimension, self-attention will be at least as efficient as RNN

How does Attention Address the Limitations of RNNs

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r\cdot n\cdot d)$	O(1)	O(n/r)

Vaswani et al. NeurIPS'17

Limitation 3:

 Self-attention uses constant number of sequential operations while RNN requires N sequential forward propagation steps to generate N-th output

Can we apply Transformers to Images?

Yes!

Idea: Treat the image as a set of patches of pixels

Vision Transformers

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy^{*,†}, Lucas Beyer^{*}, Alexander Kolesnikov^{*}, Dirk Weissenborn^{*}, Xiaohua Zhai^{*}, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby^{*,†} ^{*}equal technical contribution, [†]equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

Dosovitskiy et al. ICLR'21

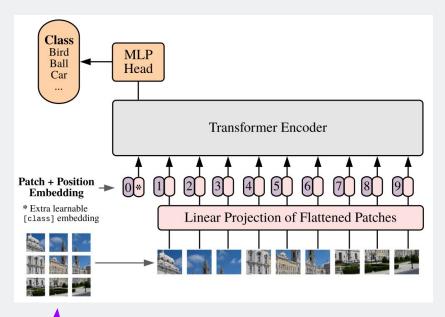
M | **ROBOTICS**

https://arxiv.org/pdf/2010.11929

Vision Transformers

- Convert image into 16x16 patches

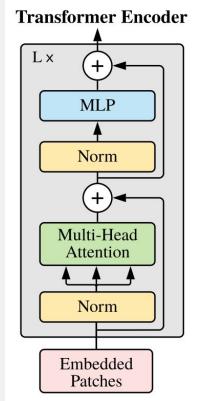
 E.g. (1, 240, 240, 3) -> (1, 15x15, 16x16x3)
- Apply shared linear projection to each patch
 E.g. (1, 15x15, 16x16x3) -> (1, 15x15, 64)
- Concatenate learnable class token for classifier output
 - E.g. (1, 1+15x15, 64)
- Add position embedding to each patch
 - E.g. (1, 1+15x15, 64) + (1, 1+15x15, 64)



(P4) patchify

Vision Transformer Encoder

- Based on the Transformer encoder
- Sequence of LNorm->MHSA->LNorm->MLP with residual skip connections
- For input embedded patches: (1, 1+15x15, D_in)
 Output: (1, 1+15x15, D_out)
- For final classification decision:
 - Apply MLP and softmax to the class token
 - (1, 1, D_out) -> (1, 1, N_classes)



Reminder

- *P4 Due March 30, 2025*
- We will post a template for poster ("lightning talk") Consider:
 - Topic/Title
 - Aim to reproduce/run 1-2 baseline method by then
 - MUST-DO Goals/Stretch Goals
 - Some Lit Review ("Gaps")
 - Group member roles/sub-tasks
 - Timeline/Milestone
 - Material (if any)
 - *Bonus: for showcasing on a real robot!*

