ROB 498/599: Deep Learning for Robot Perception (DeepRob)

Lecture 16: Sequences (RNNs, Seq2Seq) 03/17/2025

Today

- Feedback and Recap (5min)
- Processing Sequences (40min)
 - RNN
 - LSTM
 - Seq2Seq
- Midterm Review (~20min)
- Summary and Takeaways (5min)

So far...

(Vanilla) Recurrent Neural Networks

Sometimes called a "Vanilla RNN" or an "Elman RNN" after Prof. Jeffrey Elman

Recurrent Neural Networks: computational graph

Re-use the same weight matrix at every time-step

Aha Slides (In-class participation)

https://ahaslides.com/0BWPC

Q1: why re-use (shared) weights?

(Vanilla) Recurrent Neural Networks: Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 https://ieeexplore.ieee.org/document/279181 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013 https://ieeexplore.ieee.org/document/279181

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^T)

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t} + b_{h})$$

= $\tanh\left((W_{hh} \quad W_{hx}) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix} + b_{h}\right)$
= $\tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix} + b_{h}\right)$

Computing gradient of h₀ involves many factors of W (and repeated tanh)

Computing gradient of h₀ involves many factors of W (and repeated tanh) Largest singular value > 1: Exploding gradients

Largest singular value < 1: Vanishing gradients

Computing gradient of h₀ involves many factors of W (and repeated tanh) Largest singular value > 1: Exploding gradients

Largest singular value < 1: Vanishing gradients

Change RNN architecture!

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997 <u>https://www.bioinf.jku.at/publications/older/2604.pdf</u>

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997 <u>https://www.bioinf.jku.at/publications/older/2604.pdf</u>

Input vector (x)

- f: Forget gate, Whether to erase cell
- o: <u>Output gate</u>, How much to reveal cell

g: Gate gate (?), How much to write to cell

Uninterrupted gradient flow!

M | ROBOTICS

Single-Layer RNN

$$h_t = \tanh\left(W\binom{h_{t-1}}{x_t} + b_h\right)$$

LSTM:

$$\begin{bmatrix}
\begin{pmatrix}
i_t \\
f_t \\
o_t \\
g_t
\end{pmatrix} =
\begin{pmatrix}
\sigma \\
\sigma \\
tanh
\end{pmatrix}
\begin{pmatrix}
W \begin{pmatrix}
h_{t-1} \\
x_t
\end{pmatrix} + b_h
\end{pmatrix}$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot \tanh(c_t)$$

Multi-Layer RNN

depth

$$h_t^{\boldsymbol{\ell}} = \tanh\left(W\begin{pmatrix}h_{t-1}^{\boldsymbol{\ell}}\\h_t^{\boldsymbol{\ell}-1}\end{pmatrix} + b_h^{\boldsymbol{\ell}}\right)$$

LSTM:

Two-layer RNN: Pass hidden states from one RNN as inputs to another RNN

Vanilla RNN - 112 Lines of Python Code

Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy

🖸 min-char-rnn.py	
1	nnn
2	Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
3	BSD License
4	
5	import numpy as np
6	
7	# data I/O
8	<pre>data = open('input.txt', 'r').read() # should be simple plain text file</pre>
9	<pre>chars = list(set(data))</pre>
10	data_size, vocab_size = len(data), len(chars)
11	<pre>print 'data has %d characters, %d unique.' % (data_size, vocab_size)</pre>
12	<pre>char_to_ix = { ch:i for i,ch in enumerate(chars) }</pre>
13	<pre>ix_to_char = { i:ch for i,ch in enumerate(chars) }</pre>
14	
15	# hyperparameters
16	hidden_size = 100 # size of hidden layer of neurons
17	<pre>seq_length = 25 # number of steps to unroll the RNN for</pre>
18	learning_rate = 1e-1
19	
20	# model parameters
21	<pre>Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden</pre>
22	<pre>Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden</pre>
23	<pre>Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output</pre>
24	<pre>bh = np.zeros((hidden_size, 1)) # hidden bias</pre>
25	<pre>by = np.zeros((vocab_size, 1)) # output bias</pre>
26	
27	<pre>def lossFun(inputs, targets, hprev):</pre>
28	000
29	inputs,targets are both list of integers.
30	hprev is Hx1 array of initial hidden state
31	returns the loss, gradients on model parameters, and last hidden state
32	000
33	xs, hs, ys, ps = {}, {}, {}, {}
34	hs[-1] = np.copy(hprev)
35	loss = 0

https://gist.github.com/ karpathy/d4dee56686 7f8291f086

Gated Recurrent Unit (GRU)

$$r_{t} = \sigma(W_{xr}x_{t} + W_{hr}h_{t-1} + b_{r})$$

$$z_{t} = \sigma(W_{xz}x_{t} + W_{hz}h_{t-1} + b_{z})$$

$$\tilde{h}_{t} = \tanh(W_{xh}x_{t} + W_{hh}(r_{T} \odot h_{t-1}) + b_{h})$$

$$h_{t} = z_{t} \odot h_{t-1} + (1 - z_{t}) \odot \tilde{h}_{t}$$
E.g., CVPR 2024
Spiking Neural Networks + GRU
for speech recognition/lip reading $\tilde{g}_{n_{e}(s)}^{r_{e}(s)} = \frac{1}{2}$

Cho et al "Learning phrase representations using RNN encoder-decoder for statistical machine translation", 2014 https://arxiv.org/abs/1406.1078

https://openaccess.thecvf.com/content/CVPR2024W/EVW/papers/Dampfhoffer_Neuromorphic_Lip-Reading_with_Signed_Spiking_Gated_Recurrent_Units_ CVPRW_2024_paper.pdf Spike GPT https://arxiv.org/pdf/2302.13939

Seq2Seq: Sequence to Sequence

Many to one: Encode input sequence in a single vector

https://proceedings.neurips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Seq2Seq: Sequence to Sequence

One to many: Produce output sequence from single input vector

https://proceedings.neurips.cc/paper_files/paper/2014/file/5a18e133cbf9f257297f410bb7eca942-Paper.pdf

Given characters 1, 2, ..., t-1, model predicts character t

Training sequence: "hello" Vocabulary: [h, e, l, o]

Given characters 1, 2, ..., t-1, model predicts character t

$$h_t = anh(W_{hh}h_{t-1}+W_{xh}x_t)$$

Training sequence: "hello" Vocabulary: [h, e, l, o]

Given characters 1, 2, ..., t-1, model predicts character t

$$h_t = anh(W_{hh}h_{t-1}+W_{xh}x_t)$$

Training sequence: "hello"

Given characters 1, 2, ..., t-1, model predicts character t

$$h_t = anh(W_{hh}h_{t-1}+W_{xh}x_t)$$

Training sequence: "hello"

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Training sequence: "hello"

Given characters 1, 2, ..., t-1, model predicts character t

$$h_t = anh(W_{hh}h_{t-1}+W_{xh}x_t)$$

Training sequence: "hello"

Given characters 1, 2, ..., t-1, model predicts character t

$$h_t = anh(W_{hh}h_{t-1}+W_{xh}x_t)$$

Training sequence: "hello"

At test-time, generate new text: sample characters one at a time, feed back to model

Training sequence: "hello"

Example: Language Modeling At test-time, generate new text: sample characters one at a time, feed back to model Training sequence: "hello"

At test-time, **generate** new text: sample characters one at a time, feed back to model

Training sequence: "hello"

*NN likes dense real-valued vectors So far: encode inputs as one-hot-vector $[W_{11}]$ $[W_{11} W_{12} W_{13} W_{14}] [1]$ $[W_{21} W_{22} W_{23} W_{14}] [0] = [W_{21}]$ $[W_{31} W_{32} W_{33} W_{14}] [0]$ $[W_{31}]$

Matrix multiply with a one-hot vector just extracts a column from the weight matrix. Often extract this into a separate embedding layer

0

Example: Language Modeling (Backprop)

Example: Language Modeling (Backprop)

- Run forward and backward through chunks of the sequence instead of whole sequence
- Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

MidTerm, P4, Final Project

https://deeprob.org/w25/projects/project4/ Due March 30, 2025

Two parts:

- 1. PoseCNN (see Lecture 13 for more hints)
- 2. Vision Transformer (this week)

Start NOW!!!

Final Project Teams Assigned

https://docs.google.com/spreadsheets/d/1FjWAjJ8p26xZmZ aqsW4lew8H4iKe0FA78Q30eZ38g7A/edit?usp=sharing

Next TO-DOs: (final project total - 23% grade) April 1st, 5-min poster "lightning talk", 5% grade 18% grade April 22nd, final project showcase @FRB atrium April 28th, final project (report, code, video/website) DUE

Final Project Teams Assigned

Reminder: Group Collaboration Policy (refer to Course Information Document)

- "I participated and contributed to team discussions on each problem, and I attest to the integrity of each solution. Our team met as a group on [DATE(S)]. "
- "Contribution of Authors: [Team member A] did [Task XXX]; [Team members B and C] did [Task YYY]; [Team members A, B and C] did [ZZZ]. [All authors] [gave feedback on the software development, contributed to writing the report/making the demo presentation, and approved the final version for submission.]" (*Modify the texts in brackets according to your specific team situation and member contribution. Ideally, each member/subset of members contributed to something unique, and all authors contributed to giving feedback and writing/making the final report/demo/presentations and approving the final version for submission.)

Set and <u>assign smaller goals to each person</u> early!!!

GenAI: Permitted with disclosure (specify prompt, platform, results). Suggest <u>verify</u> and <u>edit</u> on top of GenAI results (if using).

