
Lecture 13: NMS IoU; PoseCNN
02/24/2025

ROB 498/599: Deep Learning for Robot
Perception (DeepRob)

https://deeprob.org/w25/

https://deeprob.org/w25/

Today
• Feedback and Recap (5min)
• Canvas Quiz question (15min)

– IoU threshold and NMS
• PoseCNN (50min)
• Summary and Takeaways (5min)

Final Project Group Sign-Up (2-4 people per group):
https://docs.google.com/spreadsheets/d/1FjWAjJ8p26xZmZ
aqsW4lew8H4iKe0FA78Q30eZ38g7A/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1FjWAjJ8p26xZmZaqsW4lew8H4iKe0FA78Q30eZ38g7A/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1FjWAjJ8p26xZmZaqsW4lew8H4iKe0FA78Q30eZ38g7A/edit?usp=sharing

Recap: IoU (Intersection over Union)

Recap: Non-Max Suppression (NMS)

Example:

green_box = [x1, y1, x2, y2, ”Cat”, 0.9]

yellow_box = [x5, y5, x6, y6, ”Cat”, 0.75]

blue_box = [x3, y3, x4, y4, ”Cat”, 0.85]

Example: green_box = [x1, y1, x2, y2, ”Cat”, 0.9]
yellow_box = [x5, y5, x6, y6, ”Cat”, 0.75]
blue_box = [x3, y3, x4, y4, ”Cat”, 0.85]

NMS Algorithm

Stage 1 - initial removal of boxes

1. Sort the confidence

bbox_list = [green_box, blue_box, yellow_box]

Example: green_box = [x1, y1, x2, y2, ”Cat”, 0.9]
yellow_box = [x5, y5, x6, y6, ”Cat”, 0.75]

blue_box = [x3, y3, x4, y4, ”Cat”, 0.85]

NMS Algorithm:

Stage 1 - initial removal of boxes

1. Sort the confidence

bbox_list = [green_box, blue_box, yellow_box]

2. Set a confidence threshold

Let’s say, confidence threshold= 0.8

Any box that has a confidence below this
threshold will be removed.

 bbox_list = [green_box, blue_box]

Example: green_box = [x1, y1, x2, y2, ”Cat”, 0.9]
yellow_box = [x5, y5, x6, y6, ”Cat”, 0.75]

blue_box = [x3, y3, x4, y4, ”Cat”, 0.85]

NMS Algorithm:

Stage 2 - IoU comparison of Boxes

1. Start a new list. Start with the
highest confidence box.

bbox_list_new = [green_box]

The BEST
boxes, one
per object
(ideally)

Example: green_box = [x1, y1, x2, y2, ”Cat”, 0.9]
yellow_box = [x5, y5, x6, y6, ”Cat”, 0.75]

blue_box = [x3, y3, x4, y4, ”Cat”, 0.85]

NMS Algorithm:

Stage 2 - IoU comparison of Boxes

1. Start a new list. Start with the
highest confidence box.

bbox_list_new = [green_box]

2. Set an IoU threshold (e.g., 0.5)

*IoU threshold: determine when two boxes overlap
too much and likely represent the same object.

The BEST
boxes, one
per object
(ideally)

Example: green_box = [x1, y1, x2, y2, ”Cat”, 0.9]

yellow_box = [x5, y5, x6, y6, ”Cat”, 0.75]

blue_box = [x3, y3, x4, y4, ”Cat”, 0.85]

NMS Algorithm: Stage 2 - IoU comparison of Boxes

1. Start a new list. Start with the highest confidence box.

bbox_list_new = [green_box]

2. Set an IoU threshold (e.g., 0.5)

*IoU threshold: determine when two boxes overlap too much and likely
represent the same object.

3. Compare IoU with remaining boxes

Calculate the IoU of the green box with all remaining
boxes of the same class.

The BEST
boxes, one
per object
(ideally)

 Note: bbox_list = [green_box, blue_box] (from stage 1)

If IoU (green_box, blue_box)>0.5, means
they have significant overlap (likely detect
the same object)

Example: green_box = [x1, y1, x2, y2, ”Cat”, 0.9]

yellow_box = [x5, y5, x6, y6, ”Cat”, 0.75]

blue_box = [x3, y3, x4, y4, ”Cat”, 0.85]

NMS Algorithm: Stage 2 - IoU comparison of Boxes

1. Start a new list. Start with the highest confidence box.

bbox_list_new = [green_box]

2. Set an IoU threshold (e.g., 0.5)

*IoU threshold: determine when two boxes overlap too much and likely
represent the same object.

3. Compare IoU with remaining boxes

4. Remove the lower confidence box
Remove the blue_box

5. Repeat for all boxes

The BEST
boxes, one
per object
(ideally)

IoU (green_box, blue_box)>0.5

● Move to the next box in the list and repeat the process until all boxes have been checked.
● By the end, only unique boxes with high confidence will remain in bbox_list_new.

From the original R-CNN paper

“Given all scored regions in an image, we apply a greedy
non-maximum suppression (for each class independently) that
rejects a region if it has an intersection-over-union (IoU) overlap
with a higher scoring selected region larger than a learned
threshold.”

https://arxiv.org/pdf/1311.2524

https://arxiv.org/pdf/1311.2524

Example:
Confidence 0.9 Confidence 0.7

Confidence
0.2

If IoU threshold = 0.1 (low)
reject orange and blue boxes

Final detection = red box

Precision = TP/(TP+FP) = 1/(1+0)
= 1
Recall = TP/(TP+FN) = 1/(1+0) = 1

If IoU threshold = 0.9 (high)
NOT reject orange and blue
boxes

Final detection = red, orange,
blue box

Precision = TP/(TP+FP) = 1/(1+2)
= 1/3
Recall = TP/(TP+FN) = 1/(1+0) = 1

(compare to red)

Example:
Confidence 0.2 Confidence 0.9

Confidence
0.8

If IoU threshold = 0.1 (low)
reject red and blue boxes

Final detection = orange box

Precision = TP/(TP+FP) = 0/(0+1)
= 0
Recall = TP/(TP+FN) = 0/(0+0) = 0

If IoU threshold = 0.9 (high)
NOT reject red and blue boxes

Final detection = orange, blue,
red box

Precision = TP/(TP+FP) = 1/(1+2)
= 1/3
Recall = TP/(TP+FN) = 1/(1+0) = 1

(compare to orange)

Additional Reading
● https://medium.com/@abhishekjainindore24/non-maximal-suppression-in-object-det

ection-nms-028ce2be6cdc

● https://github.com/ultralytics/ultralytics/issues/9150
● https://github.com/ultralytics/ultralytics/issues/8428

● https://docs.ultralytics.com/reference/utils/ops/#ultralytics.utils.ops.non_max_suppre
ssion “iou_thres - The IoU threshold below which boxes will be filtered out during
NMS. Valid values are between 0.0 and 1.0.”

● https://arxiv.org/pdf/1705.02950

“Lower IoU threshold means stricter
overlap criteria, potentially leading to
more aggressive suppression of
close detections.”

https://pytorch.org/vision/main/generated/torchvision.ops.nms.html

https://medium.com/@abhishekjainindore24/non-maximal-suppression-in-object-detection-nms-028ce2be6cdc
https://medium.com/@abhishekjainindore24/non-maximal-suppression-in-object-detection-nms-028ce2be6cdc
https://github.com/ultralytics/ultralytics/issues/9150
https://github.com/ultralytics/ultralytics/issues/8428
https://docs.ultralytics.com/reference/utils/ops/#ultralytics.utils.ops.non_max_suppression
https://docs.ultralytics.com/reference/utils/ops/#ultralytics.utils.ops.non_max_suppression
https://arxiv.org/pdf/1705.02950
https://pytorch.org/vision/main/generated/torchvision.ops.nms.html

PoseCNN: 6D Pose Estimation
● P3 released, Due March 9, 2025

Start NOW!!!
● PoseCNN will be part of P4.

3D Translation T
3D Rotation R

https://arxiv.org/pdf/1711.00199

Task: determining the six degree-of-freedom (6D) pose of an
object in 3D space based on RGB images

2D 3D

https://arxiv.org/pdf/1711.00199

PoseCNN: 6D Pose Estimation
https://arxiv.org/pdf/1711.00199

YCB-Video
dataset

https://www.ycbbenchmarks.com/

https://arxiv.org/pdf/1711.00199
https://www.ycbbenchmarks.com/

PoseCNN: 6D Pose Estimation
https://arxiv.org/pdf/1711.00199

LINEMOD
dataset

https://bop.felk.cvut.cz/datasets/

https://arxiv.org/pdf/1711.00199
https://bop.felk.cvut.cz/datasets/

PoseCNN: 6D Pose Estimation
https://arxiv.org/pdf/1711.00199

Dataset Examples (given in paper)

Top: RGB image.
Bottom: labels and centers.

https://arxiv.org/pdf/1711.00199

PoseCNN: 6D Pose Estimation
PROPS-POSE dataset

https://deeprob.org/w24/datasets/props-pose/

Download here:
https://drive.google.com/file/d/15rhwXhzHGKtBcxJAYMWJG7gN7BLLhyAq/view?usp=sharing

(will be provided again with P4)

https://deeprob.org/w24/datasets/props-pose/
https://drive.google.com/file/d/15rhwXhzHGKtBcxJAYMWJG7gN7BLLhyAq/view?usp=sharing

PoseCNN: 6D Pose Estimation
Useful Functions (refer back to this in P4!)

Initialize weight to kaiming_normal

Initialize bias to zero

upsample/interpolate

PoseCNN: 6D Pose Estimation
Useful Functions

*(refer back to this in P4!)

p3_helper/HoughVoting

p3_helper/loss_Rotation
p3_helper/IOUselection

(to be used as rotation loss)
PoseCNN Forward pass training

PoseCNN Forward pass inference

pred_filtered_bbxs = IOUselection(bbox, gt_bbx, threshold=0.10)
If the size of pred_filtered_bbxs is larger than 0:

quaternion = self.rotationBranch(.....)
predRot,label_pred = self.estimateRotation(quaternion, pred_filtered_bbxs)
gtRot = self.gtRotation(pred_filtered_bbxs, input_dict)
loss_dict['loss_R'] = loss_Rotation(predRot, gtRot, label_pred,
self.models_pcd)

output_dict = self.generate_pose(predRot, pred_centers, pred_depths, bboxes)

bboxes from
SegmentationBranch

