Lecture 11

Training Neural Networks i
University of Michigan | Department of Robotics
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Recap: Activation Functions

Sigmoid:
1. saturated neurons “kill’ the gradients

2. hot zero centered
3. exp() computationally expensive

RelLU:
1. does not saturate (in + region)

2. not zero centered
3. computationally efficient

Leaky RelLU: solve “the dying ReLU” problem
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Recap: Data Preprocessing

original data zero-centered data normalized data
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Recap: Weight initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
s std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(1l6, dims[0])
for Din, Dout in zip(dims[:-1 dims[1l:

W = np.random.randn(Din, Dout) / np.sqrt(Din)

X = np.tanh(x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010




Recap: Reqgularization-- Dropout

Forces the network to have a redundant
representation; prevents co-adaptation
of features

Dropout Is training a large ensemble of
models (that share parameters).

Usually, dropout p=0.5




Data Augmentation

Load image “Chocolate

Pretzels"\

and label -
~ Compute
) \ loss
/
CNN

Transform image



Data Augmentation: Horizontal Flips




Data Augmentation: Random Crops and

Scales
Training: sample random crops /
scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center,

+ flips



Data Augmentation: Color Jitter

Simple: Randomize contrast and
brightness

More complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal
component directions

3. Add offset to all pixels of
a training Image

(Used in AlexNet, ResNet,
etc)



Data Augmentation: RandAugment

transforms = |

"Identity’, ’'AutoContrast’, ’'Equalize’,
Rotate’ , "Solarvaize”, "Colox', TPOBLerize’
rContrast’, "Brightness', "Sharpness”’,
ShearX’, ’"ShearY’, "TranslateX’, ’'TranslateY’]

def randaugment (N, M) :
"NPWGenerate a set of distortions.

Args:
N: Number of augmentation transformations to
apply sequentially.

M: Magnitude for all the transformations.
mmn

sampled_ops = np.random.choice(transforms, N)
return [(op, M) for op in sampled_ops]

Apply random
combinations of
transforms:

* Geometric: Rotate,
translate, shear

* Color: Sharpen, contrast,
brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurlPS 2020



Data Augmentation: RandAugment

Magnitude: 9

Apply random
combinations of
transforms:

Original ShearX

Magnitude: 17

* Geometric: Rotate,
translate, shear
_ * Color: Sharpen, contrast,
Magnitude: 28 brightness, solarize,
posterize, color

Original ShearX AutoContrast

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurlPS 2020



Data Augmentation: Get creative for your
problem!

Data augmentation encodes invariances in your model|

Think for your problem: what changes to the image should
not change the network output?

Maybe different for different tasks!



Reqgularization: A common pattern

Training: Add some randomness
Testing: Marginalize over randomness

Examples:

Dropout

Batch Normalization
Data Augmentation



Reqgularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Goal: prevent “co-adaptation” of features

Examples:
Dropout
Batch Normalization Dropout Dropconnect
Data Augmentation
DropConnect

Wan et al, “Reqgularization of Neural Networks using DropConnect”, ICML 2013



Reqgularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014



Reqgularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Fractional Max Pooling

11x11 10x10

C2| |FMP

Figure 2: Top left, ‘Kodak True Color’ parrots at a resolution of 384 x 256.
The other five images are one-eighth of the resolution as a result of 6 layers of
average pooling using disjoint random FMP+/2-pooling regions.

Graham, “Fractional Max Pooling”, arXiv 2014
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Reqgularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

E’::':S,:es' Starting to become common in

P L recent architectures:

Batch Normalization

Data Augmentation * Pham et al, “Very Deep Self-Attention Networks
DropConnect for End-to-End Speech Recognition”,

F f | M Pool; INTERSPEECH 2019
ractional Max FOOIlING « 151 and Le, “EfficientNetV2: Smaller Models and

Stochastic Depth Faster Training”, ICML 2021
* Fan et al, “Multiscale Vision Transformers”, ICCV
2021

Hy = ReLU(byfe(Hp—1) +id(Hy_1)) * Bello et al, “Revisiting ResNets: Improved
Training and Scaling Strategies”, NeurlPS 2021
* Steiner et al, “How to train your ViT? Data,
Augmentation, and Regularization in Vision
ransformers”, arXiv 2021

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016



Reqgularization: CutOut

Training: Set random image regions to 0
Testing: Use the whole image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

Replace random regions with
mean value or random values

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020



Reqgularization: Mixup

Training: lrain on random blends of images
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

1.0
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CNN

=

Randomly blend the pixels
of pairs of training images,
e.g. 60% pretzels, 40%
robot

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Sample blend probability

.~ from a beta distribution

. Beta(a, b) with a=b=0 so
blend weights are close to

Target label:
Pretzels: 0.6
Robot: 0.4



Reqgularization: CutMix

Training: lrain on random blends of images Mixup Cutout CutMix
- . 1A ' Usage of full image region ¢/ X v
Testing: Use original images s e E &
Mixed image & label v X v
Examples:
Dropout

Batch Normalization
Data Augmentation

\

DropConnect Target label:
Fractional Max Pooling CNN Pretzels: 0.6
Stochastic Depth Robot: 0.4

=

Replace random crops of one
image with another, e.g. 60% of
pixels from pretzels, 40% from
robot

Cutout / Random Erasing
Mixup / CutMix

Yun et al, “CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features”, ICCV 2019



Reqgularization: Label Smoothing

6 Without IQDOI Smoommg 08 \-"‘-.llith label Smopming
Training: lrain on random blends of images *
Testing: Use original images 8 " e |
8 —0.8F SaL" il l-0.4l 2. "* |
Examples: —1'-6-1.5.;%’{—08 0. 08 16208 —04 00 04 0f

Dropout
Batch Normalization

. Standard Training Label Smoothing
Data Augmentation

ronC X Pretzels: 100% Pretzels: 90%
FrraOcF’)cioOnnaTeIV(I:ax Pooling Robot: 0% Robot: 5%
. (0 . o)

Stochastic Depth >ugar: 0% >ugar: 5%
Cutout / Random Erasing
Mixup / CutMix <tribt =i e/K

_ Set target distribution to be!-——¢ on the correct category and
Label Smoothing on all other categories, with K categories and ¢« ©.1)

Loss is cross-entropy between predicted and target distribution.

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015



Reqgularization: Summary

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout - _
3atch Normalization Use DropOut for large fully-connected layers
Data Augmentation - Data augmentation is always a good idea
- Use BatchNorm for CNNs (but not ViTs)
Stochastic Depth - Try Cutout, Mixup, CutMix, Stochastic Depth, Label

Cutout / Random Erasing
Mixup / CutMix
Label Smoothing performance

Smoothing to squeeze out a bit of extra



Recap

1. One time setup: Last time

e Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics: Today

* |earning rate schedules; large-batch training;
hyperparameter optimization

3. After training:
* Model ensembles, transfer learning



SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as hyper parameter

loss

Q: Which one of these learning rates

IS best to use?
low learning rate

high learning rate

good learning rate B —




Learning Rate Decay: Step

Training Loss

Reduce learning rate

|

20

40 60 80 100

Step: Reduce |learning rate at a few
fixed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.
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Loss

10

0.8 -

0.6 -

0.4 -

|

0.0

Learning Rate Decay: Cosine

Training Loss

Step: Reduce |learning rate at a few
fixed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

| 17
Cosine: o= an(l + 008(7))

Learning Rate
10 -
0.8 1
0.6 -
|} |}
0 50 100 150 200 250 300
0.4 1
Epoch
0.2 1
0.0 1
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 - 20 40 &0 a0 100
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 E h
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019 poc

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019
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Learning Rate Decay: Linear

Learning

rate Step: Reduce learning rate at a few
fixed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

t
Cosine: a, = an(l ;3 COS(%))

Linear: o, = oy(1 — —)

—

20

3 = I

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL 2018
Liu et al, “ROBERTa: A Robustly Optimized BERT Pretraining Approach”, 2019
Yang et al, “XLNet: Generalized Autoregressive Pretraining for Language Understanding”, NeurlPS 2019
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Learning Rate Decay: Inverse Sqrt

Learning rate

Step: Reduce |learning rate at a few
fixed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

[
Cosine: o, = 30{0(1 : COS(%))

Linear: a, = a,(1 — —
t O( T)

20

Epoch

100

Va

Inverse sqrt: a, = o/ \ﬂ

swani et al, “Attention is all you need”, NIPS 2017



Learning Rate Decay: Constant!

Learning Rate Step: Reduce learning rate at a few

— fixed points. E.g. for ResNets, multiply
| LR by 0.1 after epochs 30, 60, and 90.
102 -
) Cosline: i, = — a0l el
R T

0.98 -
—_— Linear: o, = ay(1 — =)

i3

0 20 40 60 80 100

Epoch Inverse sqrt: a, = a /\/}

Constant: o, = q

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019
Donahue and Simonyan, “Large Scale Adversarial Representation Learning”, NeurlPS 2019



How long to train? Early Stopping

Train

L 0SS Accuracy

|

Stop training here

Iteration Iteration

Stop training the model when accuracy on the validation set
decreases Or train for a long time, but always keep track of the
model snapshot that worked best on val. Always a good idea to
do this!



Choosing Hyperparameters: Grid
Search

Choose several values for each hyper parameter
(Often space choices log-linearly)

Example:
Weight decay: [1x10+, 1x10-3, 1x10, 1x10]
Learning rate: [1x10+, 1x10-, 1x10-, 1x10]

Evaluate all possible choices on this hyperparameter grid



Choosing Hyperparameters: Random
Search

Choose several values for each hyper parameter
(Often space choices log-linearly)

Example:
Weight decay: log-uniform on [1x10*, 1x10-?]
Learning rate: log-uniform on [1x10+#, 1x10-!]

Run many different trials



Hyperparameters: Random vs Grid
Search

Grid Layout Random Layout

¢ o
________________ “‘ ~= ~—
S B e § 5B
5o || ® 50
................ “‘ S g . S g
S = o g o
~ o =l
................ ..‘ D . D
: 5 o

Important Important
Parameter Parameter

Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”, JMLR 2012



weight decay (log10)

Choosing Hyperparameters: Random
Search

learning rate (log10) learning rate (log10) learning rate (log10)

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019



Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes



Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data
(~5-10 mini batches); fiddle with architecture, learning rate, weight
Initialization. Turn off regularization.

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization



Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on
small weight decay, find a learning rate that makes the loss drop

significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1le-3, 1le-4



Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what
worked from Step 3, train a few models for ~1-5 epochs

Good learning rates to try: 1e-4, 1e-5, 0



Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs)
without learning rate decay



Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at learning curves



Training loss

Look at Learning Curves!

0.00 +—

| T T T T T
0 100000 200000 300000400000 500000600000

iteration,
Losses may be noisy, use a

scatter plot and also plot
moving average to see trends
better

g8 {1 —@— frain

- val

0

100000 200000 300000 400000 500000 600000
lteration




Loss
Bad initialization a prime suspect

‘///////

time



Loss

Loss plateaus: Try learning
rate decay

time



LosS

Learning rate step decay Loss was still going down when
learning rate dropped, you
decayed too early!

time



Accuracy still going up, you

Accuracy
need to train longer

Train

time



Huge train / val gap means
overfitting! Increase regularization,
get more data

Accuracy

Train

time



No or small gap between train / val
means underfitting: train longer, use
a bigger model, maybe higher LR

Accuracy

Traln

time



Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at tearning-edrves loss curves
Step 7: GOTO step 5



Hyperparameters to play with:

* Network architecture
* | earning rate, its decay schedule, update type
e Regularization (L2/ Dropout strength)

Neural networks practitioner
Music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0



https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/

Cross-validation “command center”

https://wandb.al/

Save all losses and plot W T O | S O U U O Uy S

Tensorboard
(tensorflow)



https://wandb.ai/

Track ratio of weight update / weight
magnitude

# assume parameter vector W and 1ts gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

Ratio between the updates and values: ~0.0002 / 0.02 = 0.01
(about okay) want this to be somewhere around 0.001 or so



Overview

1. One time setup:

e Activation functions, data preprocessing, weight
Initialization, regularization

2. Training dynamics:
* [earning rate schedules; hyperparameter optimization
3. After training:

* Model ensembles, transfer learning, large-batch training




Model Ensembles

1. Train multiple independent models

2. At test time average their results:

(Take average of predicted probability distributions, then choose
argmax)

Enjoy 2% extra performance



Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05+ Single Model m ®°7 Snapshot Ensemble m

04| Standard LR Schedule /) 04 Cyclic LR Schedule - //\/\

0.3 4 N ./ : | 0.3 IR\ /

0.2 5 0.2

0.1 3 0.1 ~

ON ON
B4 &y, iy 0.1 &)
= I 02 -
08 e = K 8
0450 —— ==X |

50 ——= gs=>» Z N

0 it 0 40
% 30 30
20 20 i

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

1o Cifar10 (L=100,k=24, B=300 epochs)

- Standard Ir scheduling
- (Cosine annealing with restart Ir 0.1

—
<

Training loss
pand
<

1073 |
| |
Model ' Model | Model ' Model | Model I Model
1 2 3 4 5 6
1074 | ] | | |
0 50 100 150 200 250 300

Epochs

Cyclic learning rate schedules
can make this work even
better!



Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

True:

data batch = dataset.sample data batch()
Lloss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X EEeS5t = 8.995*X eSSt + H.005*X

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 201



Transfer Learning

“You need a lot of data If you want
to train / use CNNs”

What if data i1s limited?



Transfer Learning with CNNs

. Train on ImageNet 2. Use CNNas a

SR feature extractor

FC-4096 FC-4096 \ R

FC-4096 FC-4096 emove
MaxPool MaxPool last layer
Conv-512 Conv-512
Conv-512 Conv-512

MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512

MaxPool MaxPool > F r. e e Z e
Conv-256 Conv-256
Conv-256 Conv-256 t h e S e
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128

MaxPool MaxPool

Conv-64 Conv-64

Conv-64 Conv-64 j

Image Image

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014



FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

Transfer Learning with CNNs

. Train on ImageNet

Donahue et al, “

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

\

2. Use CNN as a
feature extractor

Remove
last layer

> Freeze
these

J

Mean Accuracy per Category

= = =
- » (00

=
N

Classification on Caltech-101

—— SVM DeCAF6 w/ Dropout
— Yang et al. (2009)

—— LogReg DeCAF6 w/ Dropout

5 10 15 20 25 30
Num Train per Category

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

39



FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

Transfer Learning with CNNs

. Train on ImageNet

Donahue et al,

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

\

2. Use CNN as a
feature extractor

Remove
last layer

> Freeze
these

70
65
60
55
50
45
40

“DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition’

Bird Classification on Caltech-UCSD

64.96
5678  28.75

= . . l

DPD (Zhang et POOF (Berg & AlexNet FC6 + AlexNet FC6 +

al, 2013) Belhumeur, logistic DPD
2013) regression
', ICML 2014



Transfer Learning with CNNs

.Train on ImageNet 2. Use CNN as a

e feature extractor

FC-4096 FC-4096 | L .

= a0t Image Classification

MaxPool MaxPool 95

Conv-512 Conv-512 89.5 89 1.4

Conv-512 Conv-512 90

MaxPool MaxPool 85

Conv-512 Conv-512 80

Conv-512 Conv-512 75

MaxPool MaxPool 69.970 8

Conv-256 Conv-256 /0

Conv-256 Conv-256 65

MaxPool MaxPool 60 58 4 56.8

Conv-128 Conv-128 55 53 3

Conv-128 Conv-128

MaxPool MaxPool >0

Conv-64 Gonvie Objects Scenes Birds Flowers Human Object
Conv-64 Conv-64 . .
- ™ Attriburtes Attributes
Image Image

Razavian et al,

B Prior State of the art m CNN + SVM m CNN + Augmentation + SVM

“CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014



Transfer Learning with CNNs

. Train on ImageNet 2. Use CNN as a

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

feature extractor
re4096 Image Retrieval: Nearest-Neighbor

FC-4096

MaxPool
Conv-512
Conv-512 90

100

MaxPool 80

Conv-512

Conv-512 70

MaxPool 60

Conv-256 4 8 5

Conv-256 50 45 4 42 3
MaxPool 40

Conv-128

Conv-128 30

MaxPool Paris Oxford Scupltures Scenes Object

Con Buildings Buildings Instance
Conv-64

Image M Prior State of the art m CNN + SVM m CNN + Augmentation + SVM

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014



Transfer Learning with CNNs

. Train on ImageNet 2. Use CNN as a 3. Bigger dataset:

—— feature extractor Fine-Tuning

EG1095 4% |\ Remove Continue training
FC-4096 FC-4096 e FC-4096 |
Y VI | 35t | ayer FC-4096 CNN fO r new tas k!
Conv-512 Conv-512 MaxPool
Conv-512 Conv-512 Conv-512

MaxPool MaxPool Conv-512
Conv-512 Conv-512 MaxPool
Conv-512 Conv-512 Conv-512
Conv-512

MaxPool MaxPool > F r e e Z e
Conv-256 Conv-256 MaxPool
Conv-256 Conv-256 these Conv-256

MaxPool MaxPool Conv-256
Conv-128 Conv-128 MaxPool
Conv-128 Conv-128 Conv-128

MaxPool MaxPool Conv-128

Conv-64 Conv-64 MaxPool

Conv-64 Conv-64 j Conv-64

Image Image Conv-64
Image




Transfer Learning with CNNs

. Train on ImageNet 2. Use CNN as a 3. Bigger dataset:

T feature extractor Fine-Tuning
FC-4096 FC-4096 . ..
FC-4096 FC-4096 \ Remove FC-4096 Continue traini ng
pr—— N last |aye r FC-4096 CNN for new task!
Conv-512 Conv-512 MaxPool
Conv-512 Conv-512 Conv-512 _
T MPool Conv-512 Some tricks:
Conv-512 Conv-512 MaxPool * Train with feature extraction
Conv-512 Conv-512 E:ii first before fine-tuning
— e > Freeze — * Lower the learning rate: use
Conv-256 Conv-256 these Conv-256 ~1/10 Of LR USEd |n Orlglnal
MaxPool MaxPool Conv-256 t I'a | N | N g
Cony-128 Cony 128 MaxPoo * Sometimes freeze lower
Conv-128 Conv-128 Conv-128 .
— layers to save computation
MaxPool MaxPool 2 . . . “ "
Conv-64 Conv-64 YR ®* Train with BatchNorm in “test
Conv-64 Conv-64 j Conv-64 Mo d e
Image Image Conv-64
Image




Transfer Learning with CNNs

2. Use CNN as a

. Train on ImageNet 3. Bigger dataset:

GG RO Continue trainin
FC-4096 FC-4096 \ Remove I O g
Y VI last |ayer FC-4096 CNN for new task!
Conv-512 Conv-512 MaxPool
Conv-512 Conv-512 Conv-512
MaxPool MaxPool oot O bJ e Ct D ete Ct | on
Conv-512 Conv-512 MaxPool
Conv-512 Conv-512 Conv-512 60 5 4 . 2
MaxPool MaxPool Conv-512 50 44.7
Conv-256 Conv-256 > F re eze MaxPool 40
Conv-256 Conv-256 these Conv-256 29 7
MaxPool MaxPool Conv-256 30 24.1
Conv-128 Conv-128 MaxPool 20
Conv-128 Conv-128 Conv-128 10
MaxPool MaxPool Conv-128
Conv-64 Conv-64 MaxPool 0
Conv-64 Conv-64 j Conv-64 VOC 2007 ILSVRC 2013
Image Image Conv-64 B Feature extraction M Fine Tuning
Image




Transfer Learning with CNNs: Architecture
Matters!

ImageNet Classification Challenge

30 28.2 152 152 152
25.8 layers | | layers || layers

25

N
)

16.4

Improvements in CNN
11.7 | P e architectures lead to
Iayers Iayers : :
Improvements in many
downstream tasks thanks to
=

transfer learning!
. . I
-

0
2010 2011 2012 2013 2014 2014 2015 2016 2017

Sanchez &  krizhevsky etal  Zeiler &  Simonyan &  Szegedy et al He et al e Hu et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet)  (ResNet) (SENet)

Error Rate
=

=
o

8 layers || 8 layers

Lin et al
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Transfer Learning with CNNs: Architecture
Matters!

Object Detection on COCO

36
29
15 19
2 N
I

DPM Fast R-CNN Fast R-CNN Faster R-CNN Faster R-CNN Faster R-CNN Mask R-CNN
(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) FPN (ResNet- FPN (ResNeXt-
101) 152)

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition
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Transfer Learning with CNNs

FC-1000

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

More specific

More generic

~

Use Linear Classifier
on top layer

You're in trouble...
Try linear classifier
from different stages

Finetune a few
layers

Finetune a larger
number of layers




Transfer Learning Is pervasive!
lts the norm, not the exception

Object

Detection CNN pretrained
(FaSt R—CNN) Log loss + smooth L1 loss on ImageNet

Proposal Linear +
classifier | softmax Linear

Bounding box
regressors

“straw” “hat” END

Rol pooling

External proposal
algorithm
e.g. selective search

ConvNet = A
(applied to entire

image)

START “Straw" “hat"

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced

with permission.
Karpathy and Fei-Fei, “Deep Visual-Semantic

Alignments for Generating Image Descriptions”,
CVPR 2015



Transfer Learning Is pervasive!
lts the norm, not the exception

Object
Detection CNN pretrained
(FaSt R—CNN) Log loss + smooth L1 loss on ImageNet

Proposal | [inear +
classifier | softmax

Bounding box
regressors

“straw” “hat” END

External proposal
algorithm
e.g. selective search

ConvNet = ]
(applied to entire

image)

START “Straw" “hat"

Girshick, “Fast R-CNN”, ICCV 2015 WO rd \_/ec OrS_ f

Figure copyright Ross Girshick, 2015. Reproduced pretra | ned W|th

with permission. S , ,
WO rd2vec Karpathy and Fei-Fei, “Deep Visual-Semantic

Alignments for Generating Image Descriptions”,
CVPR 2015



Transfer Learning iIs pervasive!
lts the norm, not the exception

seq2seq bidirectional

Unified Vision-Language Pre-training o S
objective objective

1. Train CNN on ImageNet
2. Fine-Tune (1) for object detection on

mountain

Unified Encoder-Decoder

E PR . ) e g (e s b o Visual Genome

e 3. Train BERT language model on lots of
E text

| mscrions veslusiormmerng 4.Combine (2) and (3), train for joint

E A girl with an upside-down umbrella. A: Yes |mage / Ianguage mOde“ng

5. Fine-tune (5) for image captioning,

W visual question answering, etc.

Q: Is the umbrella upside down?

Zhou et al, “Unified Vision-Language Pre-Training for
Image Captioning and VQA”, arXiv 2019



Transfer Learning Is pervasive!
Some very recent results have questioned it

COCO object detection

45

40 |

35

30 |

151

25/
!

20

[

pertaining on ImageNet!
typical
fine-tuning
schedule
... If you train for 3x as long
—random init
w/ pre-train
4 5

Training from scratch can work as well as

He et al, "Rethinking ImageNet Pre-Training”, ICCV
2019
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Transfer Learning Is pervasive!
Some very recent results have questioned it

COCO object detection

118K 35K 10K 1K

®-Pretrain + Fine Tune <BTrain From Scratch

Pretraining + Finetuning beats training
from scratch when dataset size is very
small

Collecting more data Is more effective
than pretraining

He et al, "Rethinking ImageNet Pre-Training”, ICCV
2019



Transfer Learning Is pervasive!
Some very recent results have guestioned it

COCO object detection

45.0

:(5)2 My current view on transfer learning:

30.0

25.0 * Pretrain + finetune makes your training
20.0 faster, so practically very useful

1:0 * Training from scratch works well once
12;3 you have enough data

0.0 * Lots of work left to be done

118K 35K 10K 1K

®-Pretrain + Fine Tune <BTrain From Scratch

He et al, "Rethinking ImageNet Pre-Training”, ICCV
2019



Summary

1. One time setup:

e Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:

* |earning rate schedules; hyperparameter optimization
3. After training:

* Model ensembles, transfer learning



Next Time: Deep Learning Software



Lecture 11

Training Neural Networks i
University of Michigan | Department of Robotics
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