
10

Lecture 11
Training Neural Networks II
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

Recap: Activation Functions

Sigmoid:
1. saturated neurons “kill” the gradients
2. not zero centered
3. exp() computationally expensive

ReLU:
1. does not saturate (in + region)
2. not zero centered
3. computationally efficient

Leaky ReLU: solve “the dying ReLU” problem

Recap: Data Preprocessing

Recap: Weight initialization
“Just right”: Activations are
nicely scaled for all layers!

Glorot and Bengio, “Understanding the di'culty of training deep feedforward neural networks”, AISTAT 2010

Recap: Regularization-- Dropout

Forces the network to have a redundant
representation; prevents co-adaptation
of features

Dropout is training a large ensemble of
models (that share parameters).

Usually, dropout p=0.5

Data Augmentation

“Chocolate
Pretzels”

Data Augmentation: Horizontal Flips

Data Augmentation: Random Crops and
Scales

Training: sample random crops /
scales

ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a Axed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center,

+ Eips

Data Augmentation: Color Jitter

Simple: Randomize contrast and
brightness More complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color oFset”
along principal
component directions

3. Add oFset to all pixels of
a training image

(Used in AlexNet, ResNet,
etc)

Data Augmentation: RandAugment

Apply random
combinations of
transforms:

• Geometric: Rotate,
translate, shear

• Color: Sharpen, contrast,
brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020

Data Augmentation: RandAugment

Apply random
combinations of
transforms:

• Geometric: Rotate,
translate, shear

• Color: Sharpen, contrast,
brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020

Data Augmentation: Get creative for your
problem!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should
not change the network output?

Maybe diFerent for diFerent tasks!

Regularization: A common pattern

Training: Add some randomness
Testing: Marginalize over randomness

Examples:
Dropout
Batch Normalization
Data Augmentation

Regularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections
Goal: prevent “co-adaptation” of features

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Dropout Dropconnect

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over diFerent samples

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over diFerent samples

Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

Regularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Starting to become common in
recent architectures:

• Pham et al, “Very Deep Self-Attention Networks
for End-to-End Speech Recognition”,
INTERSPEECH 2019

• Tan and Le, “E'cientNetV2: Smaller Models and
Faster Training”, ICML 2021

• Fan et al, “Multiscale Vision Transformers”, ICCV
2021

• Bello et al, “Revisiting ResNets: Improved
Training and Scaling Strategies”, NeurIPS 2021

• Steiner et al, “How to train your ViT? Data,
Augmentation, and Regularization in Vision
Transformers”, arXiv 2021

Training: Set random image regions to 0
Testing: Use the whole image

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

Regularization: CutOut

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020

Regularization: Mixup

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Sample blend probability
from a beta distribution
Beta(a, b) with a=b=0 so
blend weights are close to
0/1

Randomly blend the pixels
of pairs of training images,
e.g. 60% pretzels, 40%
robot

Target label:
Pretzels: 0.6
Robot: 0.4

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix

Replace random crops of one
image with another, e.g. 60% of
pixels from pretzels, 40% from
robot

Target label:
Pretzels: 0.6
Robot: 0.4

Regularization: CutMix

Yun et al, “CutMix: Regularization Strategies to Train Strong ClassiAers with Localizable Features”, ICCV 2019

Regularization: Label Smoothing

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015

Set target distribution to be on the correct category and
on all other categories, with K categories and

Loss is cross-entropy between predicted and target distribution.

Standard Training
Pretzels: 100%
Robot: 0%
Sugar: 0%

Label Smoothing
Pretzels: 90%
Robot: 5%
Sugar: 5%

Regularization: Summary

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing

- Use DropOut for large fully-connected layers

- Data augmentation is always a good idea

- Use BatchNorm for CNNs (but not ViTs)

- Try Cutout, Mixup, CutMix, Stochastic Depth, Label

Smoothing to squeeze out a bit of extra

performance

Recap

1. One �me setup:

• Ac�va�on func�ons, data preprocessing, weight

ini�aliza�on, regulariza�on

2. Training dynamics:

• Learning rate schedules; large-batch training;

hyperparameter op�miza�on

3. A�er training:

• Model ensembles, transfer learning

Last time

Today

SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as hyper parameter

Q: Which one of these learning rates
is best to use?

Learning Rate Decay: Step

Step: Reduce learning rate at a few
Axed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

Learning Rate Decay: Cosine

Step: Reduce learning rate at a few
Axed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

Cosine:

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Learning Rate Decay: Linear

Step: Reduce learning rate at a few
Axed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL 2018
Liu et al, “RoBERTa: A Robustly Optimized BERT Pretraining Approach”, 2019

Yang et al, “XLNet: Generalized Autoregressive Pretraining for Language Understanding”, NeurIPS 2019

Learning Rate Decay: Inverse Sqrt

Step: Reduce learning rate at a few
Axed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

Vaswani et al, “Attention is all you need”, NIPS 2017

Learning Rate Decay: Constant!

Step: Reduce learning rate at a few
Axed points. E.g. for ResNets, multiply
LR by 0.1 after epochs 30, 60, and 90.

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019
Donahue and Simonyan, “Large Scale Adversarial Representation Learning”, NeurIPS 2019

How long to train? Early Stopping

Stop training the model when accuracy on the validation set
decreases Or train for a long time, but always keep track of the
model snapshot that worked best on val. Always a good idea to
do this!

Choosing Hyperparameters: Grid
Search

Choose several values for each hyper parameter
(Often space choices log-linearly)

Example:
Weight decay: [1x10-4, 1x10-3, 1x10-2, 1x10-1]
Learning rate: [1x10-4, 1x10-3, 1x10-2, 1x10-1]

Evaluate all possible choices on this hyperparameter grid

Choosing Hyperparameters: Random
Search

Choose several values for each hyper parameter
(Often space choices log-linearly)

Example:
Weight decay: log-uniform on [1x10-4, 1x10-1]
Learning rate: log-uniform on [1x10-4, 1x10-1]

Run many diFerent trials

Hyperparameters: Random vs Grid
Search

Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”, JMLR 2012

Choosing Hyperparameters: Random
Search

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019

Step 1: Check ini�al loss

Choosing Hyperparameters

Turn oF weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes

Step 1: Check ini�al loss

Step 2: Over"t a small sample

Choosing Hyperparameters

Try to train to 100% training accuracy on a small sample of training data
(~5-10 mini batches); Addle with architecture, learning rate, weight
initialization. Turn oF regularization.

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization

Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Choosing Hyperparameters

Use the architecture from the previous step, use all training data, turn on
small weight decay, And a learning rate that makes the loss drop
signiAcantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choosing Hyperparameters

Choose a few values of learning rate and weight decay around what
worked from Step 3, train a few models for ~1-5 epochs

Good learning rates to try: 1e-4, 1e-5, 0

Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Re"ne grid, train longer

Choosing Hyperparameters

Pick best models from Step 4, train them for longer (~10-20 epochs)
without learning rate decay

Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Re"ne grid, train longer

Step 6: Look at learning curves

Choosing Hyperparameters

Look at Learning Curves!

Losses may be noisy, use a
scatter plot and also plot
moving average to see trends
better

Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Re"ne grid, train longer

Step 6: Look at learning curves loss curves

Step 7: GOTO step 5

Choosing Hyperparameters

• Network architecture

• Learning rate, its decay schedule, update type

• Regulariza�on (L2/ Dropout strength)

Hyperparameters to play with:

Neural networks practitioner
Music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/

Cross-validation “command center”

https://wandb.ai/

Save all losses and plot

Tensorboard
(tensorflow)

https://wandb.ai/

Track ratio of weight update / weight
magnitude

Ratio between the updates and values: ~0.0002 / 0.02 = 0.01
(about okay) want this to be somewhere around 0.001 or so

Overview

1. One �me setup:

• Ac�va�on func�ons, data preprocessing, weight

ini�aliza�on, regulariza�on

2. Training dynamics:

• Learning rate schedules; hyperparameter op�miza�on

3. A�er training:

• Model ensembles, transfer learning, large-batch training

Model Ensembles

1. Train mul�ple independent models

2. At test �me average their results:

(Take average of predicted probability distribu�ons, then choose

argmax)

Enjoy 2% extra performance

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Cyclic learning rate schedules
can make this work even
better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and GeoF Pleiss, 2017. Reproduced with permission.

Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 201

Transfer Learning

“You need a lot of data if you want
to train / use CNNs”

What if data is limited?

Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

Razavian et al, “CNN Features OF-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Transfer Learning with CNNs

Razavian et al, “CNN Features OF-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Transfer Learning with CNNs

Transfer Learning with CNNs

Some tricks:
• Train with feature extraction

Arst before Ane-tuning
• Lower the learning rate: use

~1/10 of LR used in original
training

• Sometimes freeze lower
layers to save computation

• Train with BatchNorm in “test”
mode

Transfer Learning with CNNs

Transfer Learning with CNNs: Architecture
Matters!

Improvements in CNN
architectures lead to
improvements in many
downstream tasks thanks to
transfer learning!

Transfer Learning with CNNs: Architecture
Matters!

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition

Transfer Learning with CNNs

Dataset similar to
ImageNet

Dataset very
diFerent from

ImageNet

Very little data (10s
to 100s)

? ?

Quite a lot of data
(100s to 1000s)

? ?

Transfer Learning with CNNs

Dataset similar to
ImageNet

Dataset very
diFerent from

ImageNet

Very little data (10s
to 100s)

Use Linear ClassiAer
on top layer

?

Quite a lot of data
(100s to 1000s)

Finetune a few
layers

?

Transfer Learning with CNNs

Dataset similar to
ImageNet

Dataset very
diFerent from

ImageNet

Very little data (10s
to 100s)

Use Linear ClassiAer
on top layer

?

Quite a lot of data
(100s to 1000s)

Finetune a few
layers

Finetune a larger
number of layers

Transfer Learning with CNNs

Dataset similar to
ImageNet

Dataset very
diFerent from

ImageNet

Very little data (10s
to 100s)

Use Linear ClassiAer
on top layer

You’re in trouble…
Try linear classiAer

from diFerent stages

Quite a lot of data
(100s to 1000s)

Finetune a few
layers

Finetune a larger
number of layers

Transfer Learning is pervasive!
Its the norm, not the exception

Karpathy and Fei-Fei, “Deep Visual-Semantic
Alignments for Generating Image Descriptions”,
CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced
with permission.

Transfer Learning is pervasive!
Its the norm, not the exception

Word vectors
pretrained with
word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic

Alignments for Generating Image Descriptions”,
CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced
with permission.

Transfer Learning is pervasive!
Its the norm, not the exception

Zhou et al, “UniAed Vision-Language Pre-Training for
Image Captioning and VQA”, arXiv 2019

1. Train CNN on ImageNet

2. Fine-Tune (1) for object detection on

Visual Genome

3. Train BERT language model on lots of

text

4. Combine (2) and (3), train for joint

image / language modeling

5. Fine-tune (5) for image captioning,

visual question answering, etc.

Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV
2019

Training from scratch can work as well as

pertaining on ImageNet!

… if you train for 3x as long

Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV
2019

Pretraining + Finetuning beats training
from scratch when dataset size is very
small

Collecting more data is more eFective
than pretraining

Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV
2019

My current view on transfer learning:

• Pretrain + Anetune makes your training
faster, so practically very useful

• Training from scratch works well once
you have enough data

• Lots of work left to be done

Summary

1. One �me setup:

• Ac�va�on func�ons, data preprocessing, weight

ini�aliza�on, regulariza�on

2. Training dynamics:

• Learning rate schedules; hyperparameter op�miza�on

3. A�er training:

• Model ensembles, transfer learning

Next Time: Deep Learning Software

10

Lecture 11
Training Neural Networks II
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

	Slide 1
	Slide 2
	Last time: Data Preprocessing
	Last time: Weight initialization
	Regularization: Dropout
	Data Augmentation
	Data Augmentation: Horizontal Flips
	Data Augmentation: Random Crops and Scales
	Data Augmentation: Color Jitter
	Data Augmentation: RandAugment_clipboard11
	Data Augmentation: RandAugment
	Data Augmentation: Get creative for your problem!
	Regularization: A common pattern
	Regularization: DropConnect
	Regularization: Fractional Pooling
	Slide 16
	Regularization: Stochastic Depth
	Regularization: CutOut
	Regularization: Mixup
	Regularization: CutMix
	Regularization: Label Smoothing
	Regularization: Summary
	Recap_clipboard1
	Slide 24
	Learning Rate Decay: Step
	Learning Rate Decay: Cosine
	Learning Rate Decay: Linear
	Learning Rate Decay: Inverse Sqrt
	Learning Rate Decay: Constant!
	How long to train? Early Stopping
	Choosing Hyperparameters: Grid Search
	Choosing Hyperparameters: Random Search_clipboard12
	Hyperparameters: Random vs Grid Search
	Choosing Hyperparameters: Random Search
	Choosing Hyperparameters_clipboard13
	Choosing Hyperparameters_clipboard14
	Choosing Hyperparameters_clipboard15
	Choosing Hyperparameters_clipboard16
	Choosing Hyperparameters_clipboard17
	Choosing Hyperparameters_clipboard18
	Look at Learning Curves!
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Choosing Hyperparameters
	Hyperparameters to play with:
	Cross-validation “command center”
	Track ratio of weight update / weight magnitude
	Overview
	Model Ensembles
	Model Ensembles: Tips and Tricks_clipboard19
	Model Ensembles: Tips and Tricks
	Transfer Learning_clipboard20
	Transfer Learning with CNNs_clipboard21
	Transfer Learning with CNNs_clipboard22
	Transfer Learning with CNNs_clipboard24
	Transfer Learning with CNNs_clipboard25
	Transfer Learning with CNNs_clipboard26
	Transfer Learning with CNNs_clipboard27
	Transfer Learning with CNNs_clipboard28
	Transfer Learning with CNNs_clipboard29
	Transfer Learning with CNNs: Architecture Matters!_clipboard30
	Transfer Learning with CNNs: Architecture Matters!
	Transfer Learning with CNNs_clipboard31
	Transfer Learning with CNNs_clipboard32
	Transfer Learning with CNNs_clipboard33
	Transfer Learning with CNNs
	Transfer Learning is pervasive! Its the norm, not the exception_clipboard34
	Transfer Learning is pervasive! Its the norm, not the exception_clipboard35
	Transfer Learning is pervasive! Its the norm, not the exception
	Slide 74
	Slide 75
	Slide 76
	Summary
	Slide 78

