ROB 498/599: Deep Learning for Robot
Perception (DeepRob)

Lecture 9: Training Neural Networks - Part 1
02/10/2025

https://deeprob.org/w25/
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Today

* Feedback and Recap (5min)
* Training NNs
- Activation Functions (20min)
- Data Pre-Processing (20min)
- Weight Initialization (10min)
- Dropout (10min)
« Summary and Takeaways (5min)
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P2 Due Feb.16, 2025

Recap: Components of Convolutional Networks
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Overview

1. One time setup: Today

 Activation functions, data preprocessing, weight
Initialization, regularization

2. Training dynamics: Next time

* Learning rate schedules; large-batch training;
hyperparameter optimization

3. After training:
 Model ensembles, transfer learning

ROBOTICS



Activation Functions
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Activation Functions

tanh
tanh(x)

RelLU
max(0,x)

Sigmoid , 1
1+e> n

Leaky RelLU
max(0.1x, x)

ELU

X x>0
aexp*—1) x<0 -

GELU
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Activation Functions: Sigmoid

1
Il +e>*

- Squashes numbers to range [0, 1]
- Historically popular since they have
nice interpretation as a saturating

“firing rate” of a neuron

o(x) =

fal
\vJ

~10 10

Sigmoid
‘ROBOTICS



Activation Functions: Sigmoid

1
Il +e>*

- Squashes numbers to range [0, 1]
- Historically popular since they have
nice interpretation as a saturating

“firing rate” of a neuron

o(x) =

fal
\vJ

~10 10 3 problems:

Sigmoid 1. Saturated neurons “kill” the gradients
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Activation Functions: Sigmoid
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Q:_ What happens when x = -10?
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Activation Functions: Sigmoid

1
Il +e>*

- Squashes numbers to range [0, 1]
- Historically popular since they have
nice interpretation as a saturating

“firing rate” of a neuron

o(x) =

fal
\vJ

~10 10 3 problems:

Sigmoid 1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
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Activation Functions: Sigmoid

Consider what happens when
nonlinearity is always positive

(&) — @) (71 ()
WO = ) wOo(h{™") +b

J

hl.("ﬂ ) is the ith element of the hidden layer at layer £

(before activation)
w@_ b are the weights and bias of layer £

What can we say about the gradients on w9
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Activation Functions: Sigmoid

Consider what happens when Local Upstream
nonlinearity is always positive gradient gradient
h® = Z wOs(h?~1) + p© oL  oh? oL
i i i = :

F ow?  ow? on?

hl.(”” ) is the ith element of the hidden layer at layer £

(before activation)
w@, b® are the weights and bias of layer £

What can we say about the gradients on w2
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Activation Functions: Sigmoid

Consider what happens when
nonlinearity is always positive

(©) — @) 5(Hh7—1 (@)
KO = 3 wOo(h{™") + b

J

hl.(”ﬁ ) is the ith element of the hidden layer at layer £

(before activation)

w®, b©® are the weights and bias of layer £

What can we say about the gradients on w7

Gradients on all wl.(f) have the

same sign

gradient dL/ 0hl.(f)

as upstream

Local Upstream

gradient gradient

oL  oh” oL
ow?  ow? on?
_ O.(h(f —1)) oL
ah(f)
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Activation Functions: Sigmoid

Consider what happens when
nonlinearity is always positive

@) — @) 5(h 71 (@)
KO = 3 wOo(h™) + b

J

hl.(f) is the ith element of the hidden layer at layer ¢
(before activation)
w@, b are the weights and bias of layer

What can we say about the gradients on w®?
Gradients on all wl.(f) have the same sign as upstream

gradient 0L/ 0hi(f )

allowed
gradient
update
,directions
allowed
gradient
update
directions ————_
optimal w
vector

Gradients on rows of w can only point
in some directions; needs to “zigzag”
to move in other directions

ROBOTICS



Activation Functions: Sigmoid

Consider what happens when lowed
0 - . Snc aliowe
nonlinearity is always positive gradient
update
h(f) — W(K)G(hjf_l) + b(lfﬂ) ,directions
I Z I, I
j allowed
radient
hi(f )is the ith element of the hidden layer at layer £ ﬁpdate
(before activation) directions A
w b are the weights and bias of layer ¢ optimal w
vector

What can we say about the gradients on w2 _ _
Not that bad in practice:

- Only true for a single example, mini
gradient 0L/0h® batches help Also momentum
! - BatchNorm can also avoid this

ROBOTICS

Gradients on all wl.(f ) have the same sign as upstream



Activation Functions: Sigmoid

1
Il +e>*

- Squashes numbers to range [0, 1]
- Historically popular since they have
nice interpretation as a saturating

“firing rate” of a neuron

o(x) =

fal
\vJ

~10 Worst 10 3 problems:
problem ‘ 1. Saturated neurons “kill” the gradients
n 2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

ROBOTICS

Sigmoid
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Activation Functions: tanh

- Squashes numbers to range [-1, 1]
- Zero centered (nice)
- Still kills gradients when saturated :(

tanh(x)

ROBOTICS



Activation Functions: RelLU

10 f(x) = max(O,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

-10 10
RelLU
(Rectified Linear Unit)
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Activation Functions: RelLU

10;

-10 10
RelLU
(Rectified Linear Unit)

£(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

Hint: what is the gradient when x<0?

ROBOTICS



Activation Functions: RelLU

| |Oc

| |—

0L 9o 0L
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Qate

Q. What happens when x = -10?
- What happens when x = 0?
- What happens when x = 10?

RelLU

o(x) = max(0, :1:)

OL

10,

Oo 10

https://ahaslides.com/MG2EU
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“Dead RelLU Problem”

Data

Active RelLLU

cloud

A\

Dead RelLU will never
activate
=> never update

ROBOTICS



Data cloud

Active RelLU

=> Sometimes initialize
RelLU neurons with slightly
positive biases (e.g. 0.01)

A\

Dead RelLU will never
activate
=> never update

ROBOTICS



Activation Functions: Leaky RelLU

10,

- 1 10

Leaky RelLU
f(x) = max(ax, x)
a is a hyperparameter, often a = 0.1

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”,

ICML 2013
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

Does not saturate

Computationally efficient

Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

Will not “die”

Parametric ReLU (PReLU)
f(x) = max(ax, x)
a is learned via backprop

He et al, “Delving Deep into Rectifiers: Surpassing Human- Level Performance on

https://arxiv.org/abs/1502.01852

ImageNet Classification”, ICCV 2015


https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852

Activation Functions: Exponential Linear Unit (ELU)

10,

- All benefits of ReLU

- Closer to zero means outputs

- Negative saturation regime compared
with Leaky ReLU adds some
robustness to noise

—3 10

fx ifx>0 - Computation requires exp()
S = {a(ex— 1) ifx<0

ROBOTICS



Activation Functions:
Scale Exponential Linear Unit (SELU)

10

- Scaled version of ELU that works
better for deep networks “Self-
Normalizing” property; can train deep
SELU networks without BatchNorm

-10 10

selu(x) = 3 TX>0 Derivation takes 90 f math i
— . _ +
/Ia(ex _ 1) If X S 0 erivation takes pages of math in

appendix...

a = 1.6732632423543772848170429916717
A =1.0507009873554804934193349852946

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

https://arxiv.org/abs/1706.02515 ‘ H [] B [].” [:S
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Activation Functions: Gaussian Error Linear Unit

(GELU)

- ldea: Multiply input by 0 or 1 at
random; large values more likely to be
multiplied by 1, small values more
likely to be multiplied by 0 (data-

—3

X ~NO,1)
gelu(x) = xP(X < x) = %(1 + erf(x/\/2))
~ xo0(1.702x)

3 dependent dropout)

- Take expectation over randomness

- Very common in Transformers (BERT,
GPT, ViT)

SwiGLU

https://arxiv.org/pdf/2002.05202

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

https://arxiv.org/abs/1606.08415 ‘ H [] B [].” [:S
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Activation Functions: SwiGLU

Swish :

SwWiGLU:
Swish + GLU

SwiGLU(z, W, V, b, ¢, B) = Swishg(zW +b) ® (zV + ¢)

—
, T
swishg(z) = x sigmoid(fBz) = https:/arxiv.org/pdf/2002.05202
1+e P

ROBOTICS
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Activation Functions: Leaky RelLU

B RelLU m Leaky ReLU m Parametric RelLU

942941

ResNet

95:5 95:5

Wide ResNet

Ramachandran et al, “Searching for activation functions”, ICLR Workshop 2018
https://arxiv.org/abs/1710.05941

Softplus mELU = SELU m GELU m Swish

94.8 94.8

I|I || 94894 7

DenseNet
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Activation Functions: Summary
- Don’t think too hard. Just use RelLU

- Try out Leaky ReLU / ELU / SELU / GELU if you
need to squeeze that last 0.1%

- Don’t use sigmoid or tanh

Some (very) recent architectures use GelLU instead of Rel U,
but the gains are minimal

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Liu et al, “A ConvNet for the 2020s”, arXiv 2022 ‘ H UB [].” ES
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Data Preprocessing

original data zero-centered data normalized data
10 10 10
A
S 5 S
0 - 0 - 0
=5 -5 -5
\/
BT 5 1g 155 -5 0 5 19 en) -5 0 5 10
X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X[NxD] is data matrix, each example in a row)

ROBOTICS



Data Preprocessing

In practice, you may also see PCA and Whitening of the data

10

original data

19

10

decorrelated data

(Data has diagonal
covariance matrix)

10

whitened data

-10 -5 0 5 10

(Covariance matrix

is the identity mRMHAT| (S



Data Preprocessing

Before normalization: Classification
loss very sensitive to changes in
weight matrix; hard to optimize

"\a
®
QQAA
A
® A

After normalization: less sensitive to
small changes in weights; easier to
optimize

. :
® |\
|
A
e \ a
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Data Preprocessing for Images

e.g. consider CIFAR-10 example with [32, 32, 3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32, 32, 3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and Divide by per-
channel std (e.g. ResNet)
(mean along each channel = 3 numbers) Not common to do

PCAor vmmeg



Data Augmentation

Load image “Chocolate

Pretzels”
/

| J‘ _ ’ CNN

Compute
loss
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Data Augmentation

Load image “Chocolate

Pretzels”
ki

Transform image

CNN

Compute
loss

ROBOTICS



Data Augmentation: Horizontal Flips




Data Augmentation: Random Crops and Scales

Training: sample random crops / scales

ResNet:

1. Pick random L in range [256, 480] ,
2. Resize training image, short side = L 1||NW‘
3. Sample random 224 x 224 patch ‘&%‘.s.

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

ROBOTICS



Data Augmentation: Color Jitter

Simple: Randomize contrast and brightness

More complex:

1. Apply PCAto all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(Used in AlexNet, ResNet, etc)

ROBOTICS



Data Augmentation: RandAugment

transforms = [
"Identity’, ’AutoContrast’, ’'Equalize’,
"Rotate’, ’'Solarize’, ’'Color’, ’'Posterize’,

'Contrast’, ’Brightness’, ’Sharpness’, Apply random combinations
ShearX’, ’ShearY’, ’'TranslateX’, ’'TranslateY’] Of tranSfOrms:

def randaugment (N, M) :
"""Generate a set of distortions.

 Geometric: Rotate,

Args: tranSIate, shear
N: Number of augmentation transformations to .
U0 e 1 T  Color: Sharpen, contrast,
M: Magnitude for all the transformations. brightneSS’ SOIarize,

posterize, color

sampled_ops = np.random.choice(transforms, N)
return [(op, M) for op in sampled_ops]

https://arxiv.org/abs/1909.13719

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurlPS 2020 ‘ H[]B[]'” ES


https://arxiv.org/abs/1909.13719

Data Augmentation: RandAugment

Magnitude: 9

Shoarx AotoContract of transforms:
Magnitude: 17
 Geometric: Rotate,
-~-—-
e Color: Sharpen, contrast,

ShearX AutoContrast brightneSS, SO|aI’iZG,
Magnitude: 28

posterize, color

ROBOTICS



Data Augmentation: Get creative!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should not
change the network output?

Maybe different for different tasks!

ROBOTICS
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Weight Initialization

Q: What happens if we
initialize all W=0, b=07?

A: All outputs are 0, all
gradients are the same!
No “symmetry breaking”

Input layer

Hidden layer

ROBOTICS



Weight Initialization

Next idea: small random numbers (Gaussian with zero
mean, std=0.01)

W= 0.0l * np.random.randn(Din, Dout)

Works ~okay for small networks, but problems with deeper networks.

ROBOTICS



Weight Initialization: Activation Statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero for

hs = [] net with hidden size 4096 deeper network IayerS
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):

= * i =
W 0.01 np.random.randn(Din, Dout) Q: What do the gradlents
X = np.tanh(x.dot(W)) )
hs.append(x) IOOk Ilke?
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

~ I RUBUIILS



Weight Initialization: Activation Statistics

dims = [4096] * 7 Increase std of initial weights
hs = [] from 0.01 to 0.05
X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]):

All activations saturate

W= 0.05 * - dom. dn(Din, Dout ) .
— Dp.rencon-rancatbin,bout) Q: What do the gradients
X = np.tanh(x.dot(W)) )
hs.append (x) look like?
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

I O

RO



Weight Initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization: “dust right”: Activations are
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din) For conv Iayers, Din is

.tanh(x.dot (W i '
X =np.tanh{(x-dot(W)) kernel_size2 x input_channels

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-3 0 1 o | 0 1 =3 0 1 o | 0 1 =3 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010 ‘ H[]B[]'” [:S

0 | 0 1




Weight Initialization: Xavier Initialization

Derivation: Variance of output = Variance of input

Din
y = Wx Fi = Z XjWj
j=1
Var(y;) = Din * Var(x,w;) [Assume x, w are iid]
= Din * (E[x?]E[w;?] - E[x;]? E[w,]?) [Assume x, w independent]
= Din * Var(x;) * Var(w,) [Assume x, w are zero-mean|]

If Var(w,) = 1/Din then Var(y,) = Var(x;)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010 ‘ H[]B[]'” [:S



Weight Initialization: Xavier Initialization

dims = [4096] * 7 Change from tanh to RelU Xavier assumes zero centered

hs = [] . . ’
X = np.random.randn(1l6, dims[0]) activation function

for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqgrt(Din) Activations Collapse to zero

X = np.maximum(0, x.dot(W)) . - .
R —Soeond (e again, no learning :(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10

ROBOTICS



Weight Initialization: Kaiming/MSRA initialization

dims = [4096] * 7 e|U correction: std = sqrt(2 / Din) “Just right” - activations nicely

hs = []

for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqgrt(Din)
X = np.maximum(0, x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

| 0 1 | 0 1 o | 0 1 -1 0 1 o | 0 1 1

-1 0
He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015 ‘ H[]B[].” [:S



Weight Initialization: Residual Networks

T relu If we initialize with MSRA: then
F(x)+ x Var(F(x)) = Var(x)

But then Var(F(x) + x) > Var(x)
F(x) I relu variance grows with each block!

Solution: Initialize first conv with MSRA,

X Var(F(x) + x) = Var(x)
Residual Block

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019
https://arxiv.org/abs/1901.09321



https://arxiv.org/abs/1901.09321

Proper Initialization: Active area of research

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al,
2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

ROBOTICS



Now your model is training... but it overfits!

17.5

15.0

125

10.0

75

50

25

0.0

Train Loss

Accuracy

0.9 1

0.8 1

0.7 4

0.6 1

0.5 1

0 2500

—e— train
+— val

5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

Regularization
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Recap: Regularization

1 N
L= Z Z max(0, f(x; W); — f(x; W), + 1) + AR(W)

In common use:

L2 regularization R(W) = Z 2 W,?’ ; (Weight decay)
ko1

L1 regularization R(W) = Z | Wil
ko1

Elastic net (L1 + L2) R(W) = Z ZﬁW;f,l + | Wil
el ROBOTICS



Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014 ‘ HUB[].” ES
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf



https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Regularization: Dropout

p=0.5

def train_step(X):
"" X contains the data """

H1
Ul
H1
H2
U2
H2

np.maximum(®, np.dot(Wl, X) + bl)
np.random.rand(*Hl.shape) < p

*= Ul

np.maximum(©, np.dot(W2, Hl) + b2)
np.random.rand(*H2.shape) < p

*= U2

out = np.dot(W3, H2) + b3

Example forward pass
with a 3-layer network
using dropout

| ROBOTIES



Regularization: Dropout

Forces the network to have a redundant
representation; prevents co-adaptation of features

!

has legs "
is teal color

O

is furry — X
hasmotors — — _ score

has a velodyne+/

117

ROBOTICS



Regularization: Dropout

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
2409 ~ 101233 possible masks!
Only ~1082 atoms in the universe...

ROBOTICS




Dropout: Test Time

Dropout makes our output random! Random mask

y =1,&,2)

Output label Input image

Want to “average out” the randomness at test-time

y=fx,2) = E[f(x,2)] = Jp(z)f(x, 2)dz

But this integral seems hard...

ROBOTICS



Dropout: Test Time

Want to approximate

the integral y =f(x, Z) — Ez[f(x’ Z)] = [p(Z)f(X, Z)dZ

° Consider a single neuron:

At test time we have: E[a] = wix + w,y

. L 1 1
Wy Wi During training time  [E[4] = —(wx + wyy) + —(wix + 0y)
° o we have: 4 4
1 1
+Z(Ox + 0y) + Z(Ox + wyy)
At test time, drop nothing and 1
multiply by dropout probability = E(Wlx + w,y)

ROBOTICS



Dropout: Test Time

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, Hl) + b2) * p # NOTE: scale the acti

out = np.dot(W3, H2) + b3

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

Output at test time = Expected output at training time

ROBOTICS



Dropout: Summary

""" Vanilla Dropout: Not recommended implementation (see notes below) """
P = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
""" X contains the data """

H1 = np.maximum(0, np.dbt(Wl,‘X)r+ bl) | N
Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask
| H1 *= Ul # drop! |

H2 = np.maximum(©, np.dot(W2, HI) + b2) 1

U2 = np.random.rand(*H2.shape) < p # second dropout mask Drop In forward paSS
| H2 *= U2 # drop! |

out = np.dot(W3, H2) + b3

# Torward pass

def predict(X):

DASSs

H1 = np.maximum(@, np.dot(Wl, X) + bl) * p # NOTE: scale the activations

H2 = np.maximum(@, np.dot(W2, H1l) + b2) * p # NOTE: scale the ;(\ Scale at teSt tlme

out = np.dot(W3, HZ] + b3 ‘ H[]B[]“[:S




More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

# forward pass for example 3-layer neural network

H1 np.maximum(®, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H *= U1 # drop! Drop and scale
H2 = np.maximum(®, np.dot(W2, H1l) + b2) : -
u2 (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p! dunng tra|n|ng
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

/ test time is unchanged!
def predict(X):
# ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(®, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3

NN ASASAS R RRVLY)



Dropout architectures

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

AlexNet vs VGG-16

(Params, M) Dropout here!
/ Later architectures (GooglLeNet, ResNet, etc) use
80000 global average pooling instead of fully-connected
layers: they don’t use dropout at all!

40000

20000 I
O . L

convl conv2 conv3 conv4 convs fc6 fc7  fc8

m AlexNet VGG-16
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Regularization: A common pattern

Training: Add some kind of

randomness
For ResNet and later,

often L2 and Batch
Normalization are the

y — fw(x, Z) only regularizers!

Testing: Average out randomness
(sometimes approximate)

y = fx,2) = E[fix, )] = [p<z>f<x, dz

Example: Batch Normalization

Training: Normalize using stats
from random mini batches

Testing: Use fixed stats to
normalize

ROBOTICS



Regularization: A common pattern

Training:
Testing:

Examples:
e Dropout
e Batch Normalization
e Data Augmentation

ROBOTICS



Regularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

https://proceedings.mir.press/v28/wan13.html ‘ H [] B [].” ES



https://proceedings.mlr.press/v28/wan13.html

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

https://arxiv.org/abs/1412.6071 ‘ H [] B []'” [:S



https://arxiv.org/abs/1412.6071

Regularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Sf:;;ﬂes' Starting to become common in recent
L architectures:

Batch Normalization

Data Augmentation « Pham et al, “Very Deep Self-Attention Networks for

DropConnect 531déto-End Speech Recognition”, INTERSPEECH

FraCt'ona_l Max POOImg ¢ Tan and Le, “EfficientNetV2: Smaller Models and

Stochastic Depth Faster Training”, ICML 2021

e Fan et al, “Multiscale Vision Transformers”, ICCV 2021

* Bello et al, “Revisiting ResNets: Improved Training and
Scaling Strategies”, NeurlPS 2021

» Steiner et al, “How to train your ViT? Data,
Augmentation, and Regularization in Vision
Transformers”, arXiv 2021

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
https://arxiv.org/abs/1603.09382

ROBOTICS


https://arxiv.org/abs/1603.09382

Regularization: CutOut

Training: Set random image regions to 0
Testing: Use the whole image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth

Cutout / Random Erasing

Replace random regions with
mean value or random values

ROBOTICS

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020



Regularization: Mixup

Training: Train on random blends of images

Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

g

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Sample blend probability from a
beta distribution Beta(a, b) with
a=b=0 so blend weights are
close to 0/1

Target label:
CNN Pretzels: 0.6
Robot: 0.4

Randomly blend the pixels of
pairs of training images, e.g.
60% pretzels, 40% robot

ROBOTICS



Regularization: CutMix

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization

Data Augmentation

DropConnect Target label:
Fractional Max Pooling CNN Pretzels: 0.6
Stochastic Depth Robot: 0.4
Cutout / Random Erasing

Mixup / CutMix

Replace random crops of one image
with another, e.g. 60% of pixels
from pretzels, 40% from robot

Yun et al, “CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features”, ICCV 2019

ROBOTICS



Regularization: Label Smoothing

Training: Train on smooth labels
Testing: Use original images

Examples:
Dropout
Batch Normalization Standard Training  Label Smoothing
Data Augmentation Pretzels: 100% Pretzels: 90%
E::gc%%g?:/cl:;x Pooling Robot: 0% Robot: 5%

- NO, - 50,
Stochastic Depth =3 Sugar: 0% Sugar: 5%
Cutout / Random Erasing - K-1
Mixup / CutMix Set target distribution to be 1 — € on the correct category and ¢/K

Label Smoothing on all other categories, with K categories and € € (0,1).

Loss is cross-entropy between predicted and target distribution.

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015

ROBOTICS



Data Augmentation

(example)

Source (S) CutMix (S+T) Mixup (S+T) GridMix (S+T) ResizeMix (S+T) PuzzleMix (S+T) SmoothMix (S+T) AdaAutoMix (S+T)
" . —~— e 1 T N 7 e X

IPMix (T) DiffuseMix (S)

Figure 1. Top row: existing mixup methods interpolate two different training images [22, 48].
For each input image, DIFFUSEMIX employs conditional prompts to obtain generated images. The input image is then concatenated with
a generated image to obtain a hybrid image. Each hybrid image is blended with a random fractal to obtain the final training image.

https://openaccess.thecvf.com/content/CVPR2024/papers/Islam_DiffuseMix_Label-Preserving_Data_Augmentation_with_Diffu
sion_Models CVPR_2024 paper.pdf

ROBOTICS


https://openaccess.thecvf.com/content/CVPR2024/papers/Islam_DiffuseMix_Label-Preserving_Data_Augmentation_with_Diffusion_Models_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Islam_DiffuseMix_Label-Preserving_Data_Augmentation_with_Diffusion_Models_CVPR_2024_paper.pdf

Regularization: Summary

Training:
Testing:

Examples:

Dropout

Batch Normalization
Data Augmentation

Use DropOut for large fully-connected layers

Data augmentation is always a good idea
Use BatchNorm for CNNs (but not ViTs)
Try Cutout, Mixup, CutMix, Stochastic Depth, Label

Stochastic Depth

Cutout / Random Erasing
Mixup / CutMix

Label Smoothing

Smoothing to squeeze out a bit of extra performance

ROBOTICS



Summary

1. One time setup: Today

 Activation functions, data preprocessing, weight
Initialization, regularization

2. Training dynamics: Next time

* Learning rate schedules; large-batch training;
hyperparameter optimization

3. After training:
 Model ensembles, transfer learning

ROBOTICS



