ROB 498/599: Deep Learning for Robot
Perception (DeepRob)

Lecture 7: Convolutional Networks (components)
02/03/2025

https://deeprob.org/w25/

ROBOTICS

https://deeprob.org/w25/

Today

* Feedback and Recap (5min)

* Five Components of Convolutional Networks
- Fully connected Layers and Convolution Layer (15min)
- Spatial Dimensions (20min)
- Pooling Layer (15min)
- Batch Normalization (15min)
« Summary and Takeaways (5min)

ROBOTICS

Recap

Represent complex expressions
as computational graphs

s = Wx L= Z max(O,sj — s, + 1)

2 \ J#Yi

* —p Hinee __5 4 —

loss

e

R(W)

1. Forward pass: Compute outputs
>

2. Backward pass: Compute gradients

P2 released,
due Feb. 16, 2025

During the backward pass, each node in
the graph receives upstream gradients
and multiplies them by local gradients to
compute downstream gradients

X
oL _ 0z oL| 7
ox dx 0z
Y| 10 e oL
oL 0z oL 0z
dy 0y 0z

ROBOTICS

- Mug score
increases
this way

S o Mug template
Ee e on this line
-
Al

Mug Score

fx) = W2 max(O Wix+ b))+ b,

Input:
3072I Wl I W2 I
"~ Hidden Layer:

Output:10

100

Problem: So far our classifiers don’t

respect the spatial structure of images!
NN

Solution: Define new computational
nodes that operate on images!

Stretch pixels into column

l

56
02 (05| 01 2.0 el -96.8

231
1.5 13 | 21 | 0.0 + 3.2 | = 437.9

24
" 0 025 | 0.2 | -0.3 -1.2 61.95

Input |mage
(2,2) W (3,4) g b (3,
’

4l
@) (3)

ROBOTICS

Components of Fully Connected Networks

Sigmoid Tanh Step Function Softplus
Fully-Connected Layers .dﬁ/‘ ./8/ ,_H—' /
— (&
*ge” Y = o (x) 9" 4 AN %=lw(4+e")

x Wl h W2 S ReLU Softsign Log of Sigmoid

A

0, x<0 (- 1) 2<0

Activation Functions 8 9 el ‘ Pl
0 Bullst Sinc Leaky ReLU Mish
@ 4 !
Y=1." s“(’() y= rma(04% %) 7Y =X (+omin (sOFpIUS (=))

-10 v 10 “Dance Moves of Deep Learning Activation Functions”
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Components of Fully Connected Networks

Fully-Connected Layers

Convolution Layers

X w, h w, §

Activation Functions

fi—
14

ROBOTICS

Fully Connected Layer

3x32x32 image —» stretch to 3072x1

Input

3072

— Wx —.

10 x 3072
Weights

Output

10

ROBOTICS

Fully Connected Layer

3x32x32 image —» stretch to 3072x1

Input Output
1([| m—— ”’ X ——1(0 I
3072 10 x 3072 10
Weights
1 number:

The result of taking a dot product
between a row of W and the input

ROBOTICS

Convolution Layer

3x32x32 image: preserve spatial structure

3x5x5 filter
/ /7
I| Convolve the filter with
the image
, “learnable” i.e., “slide over the
iImage spatially,
% i computing dot products”

3 depth/

channels ‘ H[]B[]"[:S

Convolution Layer

3x32x32 image Filters always extend the full depth
t of the input volume

/

3x5x5 filter
/ /7
I' Convolve the filter with
the image
32 height l.e., “slide over the
iImage spatially,
A width computing dot products”

3 depth/

channels ‘ HUB[]“ES

Convolution Layer
3x32x32 image

3x5x5 filter

32 \1 number:

The result of taking a dot product between the
filter and a small 3x5x5 portion of the image
(i.e. 3"5*5=75-dimensional dot product + bias)

wlix+b

=\

x

ROBOTICS

Convolution Layer

3x32x32 image 1x28x28 activation map

3x5x5 filter /
28
0 »

convolve (slide) over all spatial locations

32
28

ROBOTICS

=\

x

3

Convolution Layer

3x32x32 image two 1x28x28 activation map

Consider repeating with a
S " second (green) filter
3x5x5 filter (9 AL
28
0 »

convolve (slide) over all spatial locations

32
i

ROBOTICS

=\

3

|
\
(WY

R

Convolution Layer

3x32x32 image six | 1x28x28 activation map

Consider 6 filters,
each 3x5x5

Convolution
Layer

32 T /
T TITY
6x3x5x5 MUUUN
y > filters
3

Stack activations to get
a 6x28x28 output image

ROBOTICS

v

v

Convolution Layer

3x32x32 image

7

Also 6-dim bias vector

l

Convolution

32

|-

v

six 1x28x28 activation map

y

Layer

(VAT
6Xx3x5x5
filters

v

//_,_/_’_/

Stack activations to get
a 6x28x28 output image

ROBOTICS

Convolution Layer

3x32x32 image

7

I

Also 6-dim bias vector

LIT T PT]

l

Convolution

v

32

Layer

(VAT
6Xx3Xx5x5
filters

28x28 grid, at each
point a 6-dim vector

%
//_/_/_/_/

Stack activations to get
a 6x28x28 output image

ROBOTICS

Convolution Layer

2x3x32x32
batch of images

AN

Also 6-dim bias vector
LI T TT

l

Convolution

32

e

w |

v

2X6x28x28
batch of outputs

%%

Layer

(VAT
6Xx3Xx5x5
filters

v

LN NN _a_/ _/_/_z_/_/._/

ROBOTICS

Convolution Layer

NXxCjpxH xW
batch of images
Also Cqyt-dim bias vector

A7 I

Convolution

NXCout XH xW’
batch of outputs

v

Layer
32 T
TG ITY
37 Cout X Cln X Kh X KW
L filters

w |

v

_’_1_’_’_1_/ | | /

ROBOTICS

Stacking Convolutions

/32

—| Conv |—
T
Wj: 6x3x5x5
32 b1: 6
3
input
N x3x32x 32

A

ROBOTICS

Stacking Convolutions

4§§é7’32

32

3

input
N x3x32x32

é§§§7,28

—»| Conv

S

T

W: 6x3x5x5

bll 6

6

 ———

Conv

e

T

W>: 10x6x3x3

28 b2: 10

First hidden layer
N x6x28 x 28

ROBOTICS

Stacking Convolutions

/32

I

3

input
N x3x32x32

—_— Conv E—

T

Wi: 6x3x5x5
bli 6

A

.

6

First hidden layer
N x6 x 28 x 28

— Conv _—

T

W5: 10x6x3x3
b): 10

v

14

0

26

e Conv

T

W3: 12x10x3x3

b32 12

Second hidden layer
N x 10 x 26 x 26

Q: What happens if we stack two convolution layers?

ROBOTICS

Stacking Convolutions

7

32

Conv 10 RelLU

%

2
3
input
N x3x32x 32

T

W: 6x3x5x5
bli 6

v

6

28

Conv [ReLU |—

6

First hidden layer
N X6 x28x28

T

W»: 10x6x3x3
b21 10

A

1<

0

26

Conv ||>ReLU —>

t

W3: 12x10x3x3
b32 12

Second hidden layer
Nx10 x 26 x 26

ROBOTICS

What do convolutions filters learn?

/32

Linear classifier: One template per class

master tomato
chef cracker sugar soup mustard

can box can bottle

box
2 ~ Sy
LI . = '
el

gelatin meat
box

MLP: Bank of whole-image templates

Conv

-|> RelLU

32

3

input
N x3x32x32

[W1: 6x3x5x5 |

bll 6

.

6

First hidden layer
N x 6 x28 x28

What do convolutions filters learn?

/32

/28

Conv -|> RelLU

32

3

input
N x3x32x32

[W;: 6x3x5x5 |
b1: 6

-

6

First hidden layer
N x 6 x28 x28

First-layer conv filters: local image templates
(often learns oriented edges, opposing colors)

AlexNet: 96 filters, each 3x11x11

ROBOTICS

What do convolutions filters learn?

3

input

32

Edges (layer conv2d0)

Conv [RelLU

32

N x 3 x32x 32

T
W: 6x3x5x5

b1: 6

A

28

6

Textures (layer mixed3a)

28

First hidden layer
N x 6 x 28 x 28

e S

Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

Feature visualization (2017)

Olah, et al., "Feature Visualization", Distill pub, 2017.

https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/

What do eervetlatiens-ftiters vision transformers learn?

Input [CLS]

[regio]

-

/ 32 /28 Interpretable Attention Maps (2014)

—»| Conv [RelU >

t
W: 6x3x5x5

30 bp:6 o8 Darcet et al., Vision Transformers Need Registers (2024)
L] L https://arxiv.org/abs/2309.16588 (Accepted ICLR 2024)

3 6
input First hidden layer (more on transformers later) ‘ HUB[]'”ES
N x 3 x 32 x 32 N x 6 x 28 x 28

https://arxiv.org/abs/2309.16588

A closer look at the spatial dimensions

32 28
—»| Conv > ReLU >
T
W1: 6x3x5x5
32 Piib 28
3 6
input First hidden layer
N Xx3x32x 32 N X6 Xx28x28

ROBOTICS

A closer look at the spatial dimensions

Input: 7x7
Filter: 3x3

NN ASASAS R R QLY

A closer look at the spatial dimensions

Input: 7x7
Filter: 3x3

NN ASASAS R R QLY

A closer look at the spatial dimensions

Input: 7x7
Filter: 3x3

NN ASASAS R R QLY

A closer look at the spatial dimensions

Input: 7x7
Filter: 3x3

NN ASASAS R R QLY

A closer look at the spatial dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

N NASASASRNEYIY)

A closer look at the spatial dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

In general: Problem: Feature

Input: W maps “shrink”
Filter: K with each layer!

Output: W—-K+1

N NASASASRNEYIY)

A closer look at the spatial dimensions

o|of(o|oO0|0|O|O]|O
Input: 7x7
0 :
Filter: 3x3
0
Output: 5x5
0
In general: Problem: Feature
0 Input: W maps “shrink”
0 Filter: K with each layer!
0 Output: W-K+1
° Solution: padding
o|ofo0jO0|O0O|O0O|O0]|O Add zeros around the input

N NASASASRNEYIY)

A closer look at the spatial dimensions

. Input: 7x7
Filter: 3x3
° Output: 5x5
0
- In general: Very common:

Input: W SetP=(K-1)/2to
0 Filter: K make output have

0 Padding: P same size as input!

0 Output: W—-K+1+ 2P

N NASASASRNEYIY)

Receptive Fields

Receptive Fields

For convolution with kernel size K, each element in the

output depends on a K x K receptive field in the input . ..
2 3 g 4 Formally, it is the region in the

input space that a particular

| ===,
[y

o] - ;_[_ CNN’s feature is affected by.
Informally, it is the part of a
tensor that after convolution
results in a feature.

Input Output

ROBOTICS

Receptive Fields

Each successive convolution adds K — 1 to the receptive field size
With L layers the receptive field sizeis 1+ L * (K—1)

L= . —_-__.
Input Output

Be careful — "receptive field in the input” vs “receptive field in the previous layer”
Hopefully clear from context!

NN ASASAS R R QLY

Receptive Fields

Each successive convolution adds K — 1 to the receptive field size
With L layers the receptive field sizeis 1+ L * (K—1)

s ——— —— -ll.
Input Problem: For large images we need many layers Output

for each output to “see” the whole image image

NN ASASAS R R QLY

Receptive Fields

Each successive convolution adds K — 1 to the receptive field size
With L layers the receptive field sizeis 1+ L * (K—1)

s ——— — -ll.
Input Problem: For large images we need many layers Output

for each output to “see” the whole image image

Solution:inside the network

NN ASASAS R R QLY

Strided Convolution

https://d2l.ai/chapter convolutional-

neural-networks/padding-and-stride

s-html

Input: 7x7
Filter: 3x3
Stride: 2

NN ASASAS R R QLY

https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html
https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html
https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html

Strided Convolution

Input: 7x7
Filter: 3x3
Stride: 2

NN ASASAS R R QLY

Strided Convolution

Input: 7x7
Filter: 3x3 Output: 3x3

Stride: 2

N NASASASRNEYIY)

Strided Convolution

Input: 7x7
Filter: 3x3
Stride: 2

In general:
Input: W
Filter: K
Padding: P
Stride: S

Output: 3x3

Output: (W—K+2P) /S+1 |

NN ASASAS R R QLY

Convolution Example

/ / Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Q1: What is the output

volume size?
/ / Q2: What is the number of

learnable parameters?
Q3: What is the number of

https://ahaslides multiply-add operations?

.com/D5HXR

ROBOTICS

https://ahaslides.com/D5HXR
https://ahaslides.com/D5HXR

Aha Slides =
(In-class participation)

https://ahaslides.com/D5HXR

https://ahaslides.com/D5HXR

Example: 1x1 Convolution

56

64

56

1x1 Conv
with 32 filters

Each filter has size 1x1x64 and
performs a 64-dimensional dot product

Lin et al., “Network in Network”, ICLR 2014
https://arxiv.org/abs/1312.4400

56

32

ROBOTICS

56

https://arxiv.org/abs/1312.4400

Example: 1x1 Convolution

64

56

56

1x1 Conv
with 32 filters

Each filter has size 1x1x64 and
performs a 64-dimensional dot product

Stacking 1x1 conv layers gives MLP
operating on each input position

56

32

ROBOTICS

56

Convolution Summary

Input: C;; x Hx W Common settings:

Hyperparameters: Ky = Ky (Small square filters)

- Kernel size: K, x Ky P=(K-1)/2 ("Same” padding)

- Number filters: C, C.., Cout = 32, 64, 128, 256 (powers of 2)

- Padding: P K=3,P=1,S=1(3x3 conv)
- Stride: S K=5,P=2,S=1(5x5 conv)
Weight matrix: C_, x C,, x K, x Ky K=1,P=0,S=1(1x1 conv)
giving C_ filters of size C;, x Ky x Ky | K=3,P=1,S =2 (Downsample by 2)

Bias vector: C_

Output size: C_,, x H' x W’ where:
- H=H-K+2P)/S+1

Other types of convolutions

So far: 2D Convolution

Input: C,, x Hx W
Weights: C,,; x C;, x Kx K

f—o

H

Cir 'ROBOTICS

Other types of convolutions

So far: 2D Convolution

Input: C,, x Hx W
Weights: C,,; x C;, x Kx K

1D Convolution

Input: C,, x W
Weights: C . x C;, x K

I IIUIJUIIUS

Other types of convolutions

So far: 2D Convolution 3D Convolution
Input: C,, x Hx W Input: C,, x HxW x D
Weights: C,,; x C;, x Kx K Weights: C,,; X C;, x Kx Kx K
@>@ | H
H C,,-dim vector
at each point
in the volume
W D
G W

I IIUIJUIIUS

PyTorch Convolution Layer

Conv2d

CLASS toxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, [SOURCE]
dilation=1, groups=1, bias=True, padding_mode="'zeros") :

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Cau; H, W) and output
(N, Couty Hout s Wout) can be precisely described as:

Cin—1
Out(Ni, Coutj) — biaS(Coutj) + Z Weight(Cout]- ’ k) * input(Nz, k)
k=0

I1TUduliuy

PyTorch Convolution Layer

Conv2d

CLASS toxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, [SOURCE]
dilation=1, groups=1, bias=True, padding_mode="'zeros") :

Convid

CLASS toxch.nn.Convld(in_channels, out_channels, kernel_size, stride=1, padding=0,

s . . [SOURCE] (&
dilation=1, groups=1, bias=True, padding_mode="'zeros")

Conv3d

CLASS toxch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0,

T ; . [SOURCE]
dilation=1, groups=1, bias=True, padding_mode='zeros")

I1TUduliuy

Components of Convolutional Neural Networks

Pooling Layers

224x224x64

112x112x64
pool 2

E—

l

. 112
224 downsampling
112

224

I IV WVIIVVY

Pooling Layer DOLIEELE

224x224x64
112x112x64
pool
Hyperparameters:
Kernel size
l Stride
Pooling function
> S 112
224 downsampling
112
224

ROBOTICS

Max Pooling

Single depth slice

1 1 2 4 Max pooling with
2x2 kernel size
> 6 7 8 stride of 2
3 2 1 0
1 2 3 4
Y

ROBOTICS

Max Pooling

Single depth slice

1 1 2 4 Max pooling with
2x2 kernel size
5 6 7 8 stride of 2 6 3
>
3 2 1 0 3 4
1 2 3 4
y : Introduces invariance to

small spatial shifts
No learnable parameters! ‘ HUB[]"ES

Pooling Summary

Input: Cx Hx W

Hyperparameters: Common settings:

- Kernel size: K max, K=2,S=2

- Stride: S max, K= 3' S=2 (AlexNet)

- Pooling function (max, avg)
Output: C x H' x W’ where
- H=(H-K)/S+1
- W=(W-K)/S+1
| Learnable parameters: None! | ROROTIES

Components of Convolutional Neural Networks

Fully-Connected Layers Activation Functions

10

X w, h w, §

-10 10

Convolution Layers Pooling Layers Normalization

224x224x64
/ o 4 X i — u .
@>@ Il"’ X ij =) /
: | o +¢

112
224 downsam pling 5

TUBUTIGY

Batch Normalization

Consider a single layer y = Wx

The following could lead to tough optimization:
 Inputs x are not centered around zero (need large bias)

 Inputs x have different scaling per-element
(entries in W will need to vary a lot)

ldea: force inputs to be “nicely scaled” at each layer!
~ T —

ROBOTICS

Batch Normalization

ldea: “Normalize” the inputs of a layer so they have zero mean and unit
variance

We can normalize a batch of activations like this:

A AT Elx This is a differentiable function, so
A = — we can use it as an operator in our
\/ Var (X | networks and backprop through it!

ROBOTICS

Aha Slides =
(In-class participation)

https://ahaslides.com/D5HXR

https://ahaslides.com/D5HXR

Batch Normalization

N
Input: x € RNV*D 4= 1 Z . Per-channel mean,
7N _— w shape is D
A A A .
1 Per-channel std
2 —_—— o . — c 2 ’
0 = N Zl (xl’J 'MJ) shape is D
=
N X R A = 1Y .
X; ;= Normalized x,
‘/0-1.2+€ shapeis N X D
vVYY

D Problem: What if zero-mean, unit variance is too hard
of a constraint?

loffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate
shift,” ICML 2015 ‘ HUB[].”ES

Batch Normalization

Input: x € RVXP _
5 K= Z Yij
i=1
Learnable scale and shift v
. D 1
parameters: 7, f € R o? = ~ Z (5, —)?
i=1
Learning y = o, f = u will A X = W
recover the identity Yij =
I - \Jo?+€
function (in expection) J

Per-channel mean,
shape is D

Per-channel std,
shape is D

Normalized x,
shapeis N X D

Output, shape is
NXxXD

ROBOTICS

Batch Normalization

Problem: Estimates depend on minibatch; can’t do this at test-time

Input: x € RY*D Per-channel mean,
shape is D
Learnable scale and shift
parameters: 7, f € R” Per-channel std,
shape is D
Learning y = o, f = p will TR, N
recover the identity 08 = T horm? '?3 xb
function (in expection) \/ o T€ shape is [V X

Output, shape is
NXxXD

ROBOTICS

Batch Normalization: Test-Time

Input: x € IRN XD (Running) average of

Hj = values seen during
training

Learnable scale and shift
parameters: y, ﬂ - [RD 52 — (Running) average of

J — values seen during training

Learning y = o, f = u will R
recover the identity Xij = -
function (in expection) \/O T€

Yij = V%t h

A

Per-channel mean,
shape is D

Per-channel std,
shape is D

Normalized x,
shapeis N X D

Output, shape is
NXxD

ROBOTICS

Batch Normalization: Test-Time

Input: x € RYXP

Learnable scale and shift
parameters: y, f € R?

Learning y = o, f = u will
recover the identity
function (in expection)

_ [Bunningligvcrdacios Per-channel mean,
H; = values seen during

training shape is D

thest - O
For each training iteration:
=1

N

test test
u = 0.99u" + 0.01y,

Hi =

(Similar for o)

ROBOTICS

Batch Normalization: Test-Time

. NXD (Running) average of
InpUt' X € R H; = values seen during

training

Learnable scale and shift
parameters: y, € RP 52 — (Running) average of

J — values seen during training

Learning y = o, f = u will A -
recover the identity 2 = -
function (in expection) \/O T €

Yij = Yi%ijt b

Per-channel mean,
shape is D

Per-channel std,
shape is D

Normalized x,
shapeis N X D

Output, shape is
NXxXD

ROBOTICS

Batch Batch Normalization: Test-Time

. NXD (Running) average of
Input: x € R 14; = | “values seen during Per—channgl mean,
training shape is D
Learnable scale and shift
parameters: v, ﬁ c RD 2 _ (Running) average of Per-channel std,
0 = values seen during training shape is D
- . X; : — Ui
During testing batchnorm %= i~ F ez o
becomes a I|nea}r operator!. / o2+ e shape is N X D
Can be fused with the previous
_ —_ R Output, shape is
fully-connected or conv layer Yij = VXt ,B] NxD

ROBOTICS

Batch Normalization for ConvNets

Batch Normalization for Batch Normalization for
fully-connected networks convolutional networks
(Spatial Batchnorm, BatchNorm2D)
x:NXD X: NXCXHXW

Normalize l Normalize l l j

u,0:.1xD u,0: 1 xXCx1xl1

v, :1XD v,f:1xCx1x1

(x — p) (x — p)
y=—" y+p y=— y+p

ROBOTICS

Batch Normalization

l

FC

|

BN

}

tanh

l

FC

!

BN

I

tanh

l

Usually inserted after Fully Connected or
/ Convolutional layers, and before nonlinearity.

 x—El|x]
£ =

- \/ Var|x]

ROBOTICS

Batch Normalization

FC

BN

tanh

FC

BN

tanh

- Makes deep networks much easier to train!

- Acts as regularization during training.

ImageNet
accuracy

0.8

= = = Inception

== BN-Baseline

------ BN-x5

BN-x30

+ ' BN-x5-Sigmoid

4 Steps to match Inception

1
5M

15M

20M 25M

Allows higher learning rates, faster convergence
Networks become more robust to initialization

Zero overhead at test-time: can be fused with conv!

Training iterations

ROBOTICS

Batch Normalization

|

FC

!

BN

|

tanh

FC

BN

tanh

Makes deep networks much easier to train!

Allows higher learning rates, faster convergence
Networks become more robust to initialization

Acts as regularization during training.

Zero overhead at test-time: can be fused with conv!
Not well-understood theoretically (yet)

Behaves differently during training and testing: this is
very common source of bugs!

ROBOTICS

Layer Normalization

Batch Normalization for Layer Normalization for fully-

connected networks
fully-connect : :
LA 20 MEReis Same behavior at train and test!

Used in RNNs, Transformers

x:NxXD x:NxD

| |

Normalize ! Normalize b

u,0:.1xD u,0: Nx1

v,f:1XD v, :1XD

(x — p) (x — p)
y=— y+p y = y+p

ROBOTICS

Instance Normalization

Batch Normalization for
convolutional networks

e

X NXCXHXW

Normalize 1 l j
u,6: 1 xXCx1xl1

Instance Normalization for
convolutional networks
Same behavior at train / test!

7

_ J

v, f:1XCX1Xx1

_ -
(0]

y y+p

.

X NXCXHXW

Normalize l »[
U, 6 :NxXCx1xl1

7

v, f:1XCX1Xx1

_ -
(0]

y+p

ROBOTICS

Y

Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H,W
V0 T
VT A T

) LB

H, W
VT
L

NN
L RS
LY

R

N

A A\
V.

RN
Z
R
Z AR
VR
Z

Wu and He, “Group Normalization,” ECCV 2018
https://openaccess.thecvf.com/content ECCV_2018/papers/Yuxin_Wu_Group_Normalization ECCV_2018

paper.pdf

ROBOTICS

https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf

Summary: Components of Convolutional Networks

Convolution Layers Pooling Layers Fully-Connected Layers
X W W, '§
\- downsam pling’ﬂz : h 2
Activation Function Normalization NexF Up
10 Question: How
n Xij — H should we put them
X: . =

LJ together?
A /0'1-2 +€ 9

ROBOTICS

-10 v 10

Due dates

Canvas Assignment: (reminder)
Scored - individual (as part of in-class activity points)

20250129 BackProp quiz - Due Feb. 3, 2025 (tonight)
20250203 Conv layer quiz - Due Feb. 5, 2025 (Wednesday)

P2 (ConvNet)

5 submissions per day - Start today!!!

Due Feb. 16, 2025

Due dates

Reminder: For tomorrow (Tuesday, Feb.4) discussion
section, in Visualization Studio in Duderstadt Center
https://xr.engin.umich.edu/visualization-studio/

NOT in CSRB!!

Capacity - 30
Zoom link will be available

ROBOTICS

https://xr.engin.umich.edu/visualization-studio/

