ROB 498/599: Deep Learning for Robot
Perception (DeepRob)

Lecture 4: Regularization and Optimization

https://deeprob.org/w25/

ROBOTICS

https://deeprob.org/w25/

Today

* Feedback and Recap (5min)

» Regularization and Optimization
- Regularization (15min)
- Optimization (20min)
- Computing Gradients (30min)

« Summary and Takeaways (5min)

ROBOTICS

Project 1 - Dataset Deadline: Feb. 2, 2025

Progress Robot Object Perception Samples Dataset

master_chef_can [} 10 CIasses
cracker _box .
B e e S Rl e o 32x32 RGB images
sugar_box [* S e B R B - A ' 1 .
oo so0ncon R T AT TS S S 50k training images (5k per class)

10k test images (1k per class)

mug

LR
large_marker Wa

Chen et al., ProgressLabeIIer Visual Data Stream Annotation
for Training Object-Centric 3D Perception”, IROS, 2022. ‘ H []B [].” [:S

Project 1 - How was this dataset created?

ProgressLabeller: Visual Data Stream Annotation for Training
Object-Centric 3D Perception

Xiaotong Chen Huijie Zhang Zeren Yu Stanley Lewis Odest Chadwicke Jenkins

Rough Pose Estimates 6D pose annotation through Fine-tuned Pose Pose-based Robot
from Pretrained Model interactive interface Estimates Grasping

ﬁ Idea:

! 1. Record video of scene
2. Human labels object pose in selected frames
Human 3. Pose labels propagate to (large number

Annotator of) remaining frames ‘ H[]B[]“ [:S

Recap: Linear Classifier - Three Viewpoints

CD Algebraic Viewpoint

f(x,W) = Wx

Stretch pixels into column

-96.8

02 | -05 | 01 | 20 u
15 (13 | 21 | 00

437.9

61.95

0 025 02 | -03 n n

W .9

3)

@ Visual Viewpoint

One template

per class
master tomato
chef cracker sugar soup
can box box can
Lo ’
.
fish gelatin meat

can bo: can

large
marker

@ Geometric Viewpoint

Hyperplanes
cutting up space

: Mug template
Shgar Rime X on this line
Score (11, 11, 0)
&‘- J ’

+" Mug score
increases
this way

Mug Score

Cracker : ,'_— X =4
Score .

ROBOTICS

Recap: Loss Functions

We have some dataset of (x, y)

We have a score function: s=f(gW,b)=Wx+b
We have a loss function: Linaar el sesifier

Softmax: L; = — log< exp(syi)) W

Z] exp (S]) score funct;oni =l ki ;_,_
ey 1| f(zi, W) L
SVM: L; = Zjiyi max(O, Sj — Sy, T+ 1) i

ROBOTICS

Discussion on Last week's Quizzes

(refer to Canvas)
- If you have questions, please come ask!

ROBOTICS

How to find the best W
and b?

s=f(;W,b)=Wx+b
Linear classifier

Problem: Loss functions encourage good performance
on training data but we care about test data

Regularization

Overfitting

A model is when it performs too well on the training data,
and has poor performance for unseen data

Loss = 8.87e-02
Accuracy = 1.0

Example: Linear classifier with 1D 7 .
inputs, 2 classes, and softmax loss . S
N ply=1|x)
D . ;v
exp(s;) 02
Di = N

' exp(sy) + exp(sy) s T
L= - log(p,) ROBOTIS

Overfitting

A model is when it performs too well on the training data,
and has poor performance for unseen data
Loss = 8.87e-02 Loss = 7.06e-04 Loss = 6.31e-13
Accuracy = 1.0 Accuracy = 1.0 Accuracy = 1.0
10 A1 0..“//-1——07"' 10 A e A S 10 1 W P o A S
/’/. f
058 A // 08 A 08 !
el / — ply=0|x) - — ply=0|x) - — ply=0|x)
ply=1|x) ply=1|x) ply=1|x)
G4 / e xwith y=0 i ® x with y=0 | e x with y=0
/ ® xwithy=1 ® xwithy=1 ® xwithy=1
0.2 1 //‘/ 0.2 1 0.2 1 J
s \
00 = @ 00 @ 00 1 00{ —o——o-cem-o—
4 -2 0 2 3 4 -2 0 2 3 4 -2 0 2 3
X

X X
Both models have perfect accuracy on the training data! recen
Low loss, but unnatural “cliff

between the training points

ROBOTICS

Overfitting

A model is when it performs too well on the training data,
and has poor performance for unseen data

Loss = 8.87e-02 Loss = 7.06e-04 Loss = 6.31e-13

Accuracy = 1.0 Accuracy = 1.0 Accuracy = 1.0
10 1 O..ﬂr L .2 L = 10 1 SN ® 10 j 00N —00 L
0.8 038 - 0.8 -
i — ply=0|x) - — ply=0|x) . — ply=0|x)
ply=1|x) — ply=1|x) ply=1|x)
i ® x with y=0 i ® x with y=0 i ® X w?th y=0
® xwithy=1 ® xwithy=1 ® xwithy=1
02 1 02 02 J
0.0 v L N _ 1 N J 0.0 4 L 4 -0 0.0 L 4 *-0000 L
-4 -3 0 2 3 -4 -2 0 2 3 -4 -2 0 2 3

X

Overconfidence in regions with no training data could give poor generalization

ROBOTICS

Regularization: Beyond Training Error

1 N
LW) =~ 2, Li(fox, W), 3)
i=1

W= —
o

Data loss: Model predictions
should match training data

ROBOTICS

Regularization: Beyond Training Error

1 N
LW) = — D L(fx, W),) + AR(W)
i=1 -

_ Regularization:
o Prevent the model

Data loss: Model predictions from doing too well
should match training data on training data

W

ROBOTICS

Regularization: Beyond Training Error

» Hyperparameter giving
regularization strength

1 |
LOW) = = 37 Li(fts, W), 3) +AR(W)
i=1 S

Regularization: Prevent the model
from doing too well on training data

Data loss: Model predictions
should match training data

Simple examples: More complex:
L2 reqularization: R(W) = Z W,zl Dropout
k] Batch normalization
Cutout, Mixup, Stochastic depth,

L1 regularization: R(W) = Z | W,

ol efc...

ROBOTICS

Regularization: Prefer Simpler Models

Example: Linear classifier with 1D

inputs, 2 classes, and softmax loss

10

08

06

04

02

0.0

Loss = 2.05e-03
Accuracy = 1.0

BN

— ply=0|x)
ply=1|x)
® xwith y=0
® xwithy=1

10

08

06

04

02

0.0

§; = WX + bi
exp(s;)

exp(sy) + exp(s,)

Regularization term causes
loss to increase for model

L=— log(py) + Z w2 with sharp cliff

Loss = 5.96e-03
Accuracy = 1.0

. omoeew o0 o
f

— ply=0|x)
ply=1|x)
e xwith y=0
® xwithy=1

10

08

06

044

02

0.0

Loss = 5.95e-01
Accuracy = 1.0

W eew 00 o

— ply=0|x)
ply=1|x)
e xwith y=0
e xwithy=1

ROBOTICS

Aha Slides =
(In-class participation)

https://ahaslides.com/WJTNO

https://ahaslides.com/WJTNO

Regularization: Expressing Preferences

x=[1,1,1,1] L2 Regularization
wy = [1,0,0,0] R(W) = Z sz,l
w, = [0.25,0.25,0.25,0.25] Kl

1 N
L(W) = — ; L{f(x, W),) + AR(W)

N ———

Q1: Which weight would the data loss prefer?
Q2: Which weight would the L2 regularization prefer?

. . o ') II‘?
Hint: what does it mean by “prefer™ 'ROBOTICS

Optimization

Finding a good W
1 &
LW) = — 2, L, W).3) + AR(W)
=1

Loss function consists of data loss to fit the training
data and regularization to prevent overfitting

ROBOTICS

Optimization

w* = arg min L(w)

ROBOTICS

Optimization w* = ar g min L(W)
W

The valley image and the walking man image are in CCO0 1.0
public domain

ROBOTICS

https://creativecommons.org/publicdomain/zero/1.0/

Idea 1: Random Search (bad idea!)

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y train, W
if loss < bestloss: p trach
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

ROBOTICS

Idea 1: Random Search (bad idea!)

scores = Wbest.dot(Xte cols)

Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

~15.5 % accuracy on CIFAR-10

ROBOTICS

Idea 2: Follow the slope

w* = arg min L(w)
w

The valley image and the walking man image are in CCO0 1.0
public domain

ROBOTICS

https://creativecommons.org/publicdomain/zero/1.0/

Idea 2: Follow the slope w* = arg min L(w)

In 1-dimension, the derivative of a function gives the slope:

df Jx + h) = f(x)
h

— = lim
dx h—0

In multiple dimensions, the gradient is the vector of (partial
derivatives) along each dimension

The slope in any direction is the dot product of the direction with the
gradient. The direction of steepest descent is the n\eg_atil/e_gradient.

ROBOTICS

(example)

Current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]
loss 1.25347

Gradient d—L
dwW
[?,
?,
g
?,
?,
?,
i@
?,
?,...]

ROBOTICS

(example)

Current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]
loss 1.25347

daf

dx
W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25322

lim
h—0

J&x +h) - f(x)

§

ES

) =))))) =) D

=

~

dL

Gradient —
dw

f
)
)
N]

[]
[]
]

ROBOTICS

Aha Slides =
(In-class participation)

https://ahaslides.com/WJTNO

Q3

https://ahaslides.com/WJTNO

(example)

Current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]
loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25353

W) W) WD))) W)) D

~

-

-

-

~

[
[
[

_ dL
Gradient —
dw

ROBOTICS

(example)

Current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]
loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.35, ...]

loss 1.25353

dL
Gradient —
dw

0.6,
1,
e

(1.25353 - 1.25347)/

0.0001

= 0.6

&S =)
— = 11m

dx h-0 h

ROBOTICS

(example)

dL

Current W: W + h (third dim): Gradient 7
[0.34, [0.34,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, 0.0,
0.12 NnA19 n

’ . . O
g:f @ Numeric Gradient:
a4 - Slow: O(# dimensions)
15/ - Approximate
033, SRR A
loss 1.25347 loss 1.25347

ROBOTICS

Loss is a function of W

1 N
L=— Z L+ Z W2 Use calculus to
N 4
i=1 k compute an
L = Z max(O,sj — 5, + 1)
JFY;
s =f(x, W) = Wx

@ Analytic gradient

Want V L
ROBOTICS

(example)

dL

Current W: Gradient —
dw

[0.34, [-2.5,

-1.11, 0.6,

0.78, y 0.0,

L

0.12, —— = some function of data and W 0.2,

0.55, 20 0.7,

2.81, -0-5’

3, ’ - . dL, > 1.4,

15 In practice we will compute — 13

: 33 | using back propagation; -

T e 'see Lecture 6 2.1, ..]
loss 1.25347

ROBOTICS

Computing Gradients

Computing Gradients

@ Numeric gradient: approximate, slow, easy to write
@ Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

def grad check_sparse(f, x, analytic grad, num checks=10, h=le-7):
sample a few random elements and only return numerical
in this dimensions.

mamnn

Also check out: https://cs231n.qithub.io/optimization-1/
https://pytorch.org/docs/stable/notes/gradcheck.html ‘ H[]B[]“[:S

https://cs231n.github.io/optimization-1/
https://pytorch.org/docs/stable/notes/gradcheck.html

Computing Gradients

@ Numeric gradient: approximate, slow, easy to write
(2 Analytic gradient: exact, fast, error-prone

torch.autograd.gradcheck (func, inputs, eps=1e-06, atol=1e-05, rtol=0.001, Ty
raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0) : 16

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs
that are of floating point type and with requires_grad=True.

The check between numerical and analytical gradients uses allclose() .

ROBOTICS

Computing Gradients

@ Numeric gradient: approximate, slow, easy to write
(2 Analytic gradient: exact, fast, error-prone

torch.autograd.gradgradcheck (func, inputs, grad_outputs=None, eps=1e-06, atol=1e-

05, rtol=0.001, gen_non_contig_grad_outputs=False, raise_exception=True, [SOURCE]
nondet_tol=0.0)

Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in
inputs and grad_outputs that are of floating point type and with requires_grad=True.

This function checks that backpropagating through the gradients computed to the given grad_outputs are
correct.

ROBOTICS

Gradient Descent

« lteratively step in the direction of the negative gradient (direction of local

steepest descent) Negative gradient

direction
Vanilla gradient descent

w = initialize_weights() y W_2 Original W
for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps

- Learning rate

Q4: guarantee? https:/ahaslides.com/WJTNO

w1 0BOMICS

https://ahaslides.com/WJTNO

Gradient Descent

* lteratively step in the direction of the negative gradient (direction of local
steepest descent)

Vanilla gradient descent

w = initialize_weights()

for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps

- Learning rate

https://docs.google.com/file/d/1hXNxucnkvPhUxZb_cve4ZY61lWDjEQBN/preview

Batch Gradient Descent

1 N
L(W)=— Y L(x,y, W)+ AR(W
W) =— z, %Y W) + AR(W)
1 N
Vi L(W) = — ' Vi L(x,y, W) + AV R(W)
N i=1
Full sum expensive when N is large!

ROBOTICS

Stochastic Gradient Descent (SGD)

1 & Full sum expensive
L(W) = N Z L(x;,y;; W) + AR(W) when N is large!
=
l | N Approximate sum using
_ minibatch|of examples
ViD= o 2. VwLi®, s W) + 2V R(W) 32/64/128 common
i=1
Stochastic gradient descent Hyperparameters:
w = initialize_weights() - Weight initialization
for t in range(num_steps): - Number of steps

minibatch = sample_data(data, batch_size)
dw = compute_gradient(loss_fn, minibatch, w)
w —= learning_rate * dw

- Learning rate
- Batch size
- Data sampling

Stochastic Gradient Descent (SGD)

LW)=L (ty)~p [L(x,y, W)] + AR(W) Think of loss as an expectation
7/ Fdata over the full data distribution

Pdata

1 N
N Y L(x,y, W) + AR(W)
i=1

Approximate expectation

via sampling
S —

Vi L(W) = ViE (o, LGy, W)] + AR(W)

N
~) V,L(x,y, W)+ V,,AR(W)
i=1

For reference: an interactive web demo:
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/ \ H[]B[]“ES

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Aha Slides =
(In-class participation)

https://ahaslides.com/WJTNO

Q5: drawbacks/problem w/ SGD

https://ahaslides.com/WJTNO

Problem with SGD 9,

What if loss changes quickly in one direction and slowly in another?
What does gradient decent do?

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

Problem with SGD 9,

What if loss changes quickly in one direction and slowly in another?
What does gradient decent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

Problem with SGD 2

Local
Minimum

What if the loss function
saddle - has a local minimum or
i £ e saddle point?

ROBOTICS

Problem with SGD 2

Local
Minimum

What if the loss function
has a local minimum or
saddle point?

Saddle

Zero gradient, gradient
descent gets stuck

ROBOTICS

ProblemwithSGD @

Our gradients come from mini batches so
they can be noisy!

1 N
LW) = — Z:, L%,y W) + AR(W)

1 N
Vi L(W) = =Y Vi Lx, 5, W) + AV R(W)
N i=1

ROBOTICS

https://docs.google.com/file/d/18tVcFUhO8xuUGSwyyHp-RhJ1dnKS5qMw/preview

Problem with SGD

Local What if the loss function

Minimum

has a local minimum or
saddle point?

Saddle :
Batched gradient descent always

computes same gradients

SGD computesradients,
may help to escape saddle points

ROBOTICS

More than SGD...

SGD + Momentum

“Ball running downhill”

SGD SGD + Momentum
Wil = W — AV

for t in range(num_steps): v =0
dw = compute_gradient(w) for t in range(num_steps):

w —= learning_rate * dw dw = compute_gradient(w)

v = rho x v + dw
w —= learning_rate * v

Wi =w,—aV.L(w,)

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho = 0.9 or 0.99

ROBOTICS

SGD + Momentum

Momentum update: SGD + Momentum

Wir1 = W — OV
v=20
» Gradient for t in range(num_steps):

Combine gradient at current point dw = compute_gradient(w)

with velocity to get step used to v =_rT° X th
update weights w —= learning_rate * v

Velocity
Actual step

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho = 0.9 or 0.99

ROBOTICS

SGD + Momentum

SGD + Momentum SGD + Momentum
Vip1 = PV, —aVL(w) Vi1 = pv;+ VL(w,)
Wip1 = Wt Vi W1 = W — GV
V=0 v=2~0

for t in range(num_steps):
dw = compute_gradient(w)
vV =rho *x v + dw
w —= learning_rate *x v

for t in range(num_steps):
dw = compute_gradient(w)
v = rho x v — learning_rate * dw
W 4=V

You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of w

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013 ‘ H UB[]'” ES

SGD + Momentum

Local Minima Saddle Points 0
%\ R

Poor Conditioning

l ||7ﬂ e > >>

»

| m—GD === SGD+Momentum

[N RASASAS R RRvLY)

https://docs.google.com/file/d/1nzP2EVBHDQKDtJd-QXGVrtoGWIyxqXwE/preview

SGD + Momentum

Momentum update:

Velocity
Actual step

Gradient

Combine gradient at current point
with velocity to get step used to
update weights

Nesterov, “A method of solving a convex programming
problem with convergence rate O(1/k*2),”, 1983”
Nesterov, “Introductory lectures on convex optimization: a
basic course,” 2004

Sutskever et al, “On the importance of initialization and
momentum in deep learning,” ICML 2013

ROBOTICS

Nesterov Momentum

Momentum update:

Velocity
Actual step

» Gradient

Combine gradient at current point
with velocity to get step used to

Nesterov Momentum

Gradient

Velocity

Actual step

update weights “Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction
Nesterov, “A method of solving a convex progr_ammiljg Probler_n with con”vergence rate O(1/k*2),”, 1983”
i i conE s Cules el s ol e L NN ROBOTICS

Nesterov Momentum

Annoying, usually we
want to update in terms of w,, VL(w,)

Gradient

Velocity Vigp=pV,— VL(W,,« + PV;;)

Actual step Wipl = Wit Vg

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction
P ‘ROBOTICS

Nesterov Momentum

Annoying, usually we
want to update in terms of w,, VL(w,)

Gradient

Velocity

Actual step

v=20
for t in range(num_steps):
dw = compute_gradient(w)

old_v = v
v = rho * v — learning_rate * dw
w —= rho *x old_v - (1 + rho) x v

Vi1 = pv,— aV.L(w, + pv)
Wir1 = W T Ve

Change of variables ~
w,=Ww \%
and rearrange: ¢ TPV

Vi1 = pv,—aVL(W,)

pv,+ (1 +p)v,
—)
ROBOTICS

Wi =W, —

=W, + v+ o0y

Nesterov Momentum

— SGD+MoOmentum

=== Nesterov

Pl

ROBOTICS

https://docs.google.com/file/d/1A3SIInX_-FdlUIQGY0WN9lIfibiGTK8a/preview

AdaGrad

grad_squared = 0

for t in range(num_steps):
dw = compute_gradient(w)
grad_squared += dw * dw
w —= learning_rate * dw / (grad_squared.sqrt() + 1le-7)

e Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension
e “Per-parameter learning rates” or “adaptive learning rates”

ROBOTICS

AdaGrad

grad_squared = 0 Problem: AdaGrad will

for t in range(num_steps): slow over many iterations
dw = compute_gradient(w)

grad_squared += dw * dw
w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

Progress along “steep” directions is damped;

. i 2
Q: What happens with AdaGrad? progress along “flat” directions is accelerated

Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011 ‘ H[]B[]'” [:S

RMSProp: “Leaky AdaGrad”

grad_squared = 0
for t in range(num_steps):

dw = compute_gradient(w) AdaGrad
grad_squared += dw * dw
w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

grad_squared = 0 RMSProp

for t in range(num_steps):
dw = compute_gradient(w)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw

w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

ROBOTICS

RMSProp: “Leaky AdaGrad”

— SGD+Momentum

s RMSProp

>

ROBOTICS

https://docs.google.com/file/d/1UzESL-BEWCd1orH-6h3nIPqXuyrJk3ml/preview

RMSProp + Momentum (“Almost” Adam)

momentl = @
moment2 = 0
for t in range(1l, num_steps + 1): # Start at t =1
dw = compute_gradient(w)
momentl = betal x momentl + (1 - betal) * dw
moment2 = beta2 x moment2 + (1 - beta2) * dw * dw
w —= learning_rate * momentl / (moment2.sqrt() + le-7)

ROBOTICS

RMSProp + Momentum (“Almost” Adam)

momentl = 0

moment2 = 0 Adam
for t in range(1, num_steps + 1): # Start at t =1

dw = compute_gradient(w)

Momentum
momentl = betal * momentl + (1 - betal) * dw
moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
w —= |learning_rate * momentl|/ (moment2.sqrt() + le-7)
v=2=0
for t in range(num_steps):
dw = compute_gradient(w)
T TR SGD+Momentum

w —= learning_rate x v

ROBOTICS

RMSProp + Momentum (“Almost” Adam)

momentl = 0

moment2 = 0 Adam
for t in range(1, num_steps + 1): # Start at t =1

dw = compute_gradient(w) Momentum
|moment1 = betal * momentl + (1 - betal) x dw|
moment2 = beta2 *x moment2 + (1 - beta2) x dw *x dw AdaGrad / RMSPI’Op

W —=|learning_rate * momentl"/ (moment2.sqrt() + le-7)

grad_squared = 0

for t in range(num_steps): RMSProp
dw = compute_gradient(w)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) *x dw * dw
w —= learning_rate * dw / (grad_squared.sqrt() + le-7)

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

ROBOTICS

RMSProp + Momentum (“Almost” Adam)

momentl 0
moment?2 0 Adam

for t in range(1, num_steps + 1): # Start at t =1
dw = compute_gradient(w)

Momentum
momentl = betal x momentl + (1 - betal) * dw
moment2 = beta2 *x moment2 + (1 - beta2) x dw *x dw AdaGrad / RMSProp
w —= learning_rate * momentl / (moment2.sqrt() + le-7)

Q: What happens at t=1?
(Assume beta2 = 0.999)

ROBOTICS

RMSProp + Momentum (“Almost” Adam)

momentl 0

moment2 0

for t in range(1, num_steps + 1): # Start at t =1
dw = compute_gradient(w)

momentl = betal * momentl + (1 - betal) * dw Momentum

moment2 = beta2 x moment2 + (1 - beta2) * dw * dw

momentIl_unbias = momentl / (1 - betal xx t) AdaGrad / RMSPI’Op
moment2_unbias = moment2 / (1 - beta2 *k t)

w —= learning_rate * momentl_unbias / (moment2_unbias.sqrt() + le-7)

Bias correction

Bias correction for the fact that first m) Adam with betal = 0.9,

and second moment estimates start at beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
Z€ero is a great starting point for many models!

Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

ROBOTICS

Adam: Very common in practice!

common practice, the network is trained end-to-end using stochastic gradient descent with the Adam

optimizer [22].

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurlPS 2019 Johnson, Gupta, and Fei-Fei, CVPR 2018

We train all models using Adam [23] with learning rate

Eating 10~% and batch size 32 for 1 million iterations;

We train for 25 epochs
using Adam [27] with learning rate 10~* and 32 images per
batch on 8 Tesla V100 GPUs.

Gkioxari, Malik, and Johnson, ICCV 2019

For gradient descent, we use
Adam [29] with a learning rate of 10~3 and default hyperparameters. All models
are trained with batch size 12. -

Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

with a batch size of 64 for 200 epochs
using Adam [22] with an initial learning rate of 0.001.

Gupta, Johnson, et al, CVPR 2018

m) Adam with betal = 0.9,

beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

ROBOTICS

Adam: Very common in practice!

Additional References:

https://towardsdatascience.com/a-vi
sual-explanation-of-gradient-desce
nt-methods-momentum-adagrad-rm
sprop-adam-f898b102325¢c

https://www.cs.toronto.edu/~tiimen/
csc321/slides/lecture slides lec6.p
df

ROBOTICS

https://docs.google.com/file/d/1mawN4Uj4VJdBh9l2UukoGDR3kAj6lL4t/preview
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Optimization Algorithms Comparison

Tracks first U SR Leaky ! .
. moments Bias correction for
Algorithm moments - second .
iMomentam] (Adaptive Serait e moment estimates
learning rates)
SGD X X X X
SGD+Momentum v X X X
Nesterov v X X X
AdaGrad X v X X
RMSProp X v v X
Adam v v v v

ROBOTICS

L2 Regularization vs. Weight Decay

Optimization Algorithm L2 Regularization

LW) = LyaieW) + Ly, (W) Lw) =Ly, (w)+4|w|’

g, =VLw) g =VLw,)=VL,, (w)+2iw,
s, = optimizer(g,) s, = optimizer(g,)

Wil = W — QS Wit1 = W — QS;

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so people ~~ Weight decay
often use the terms interchangeably!

L(W) — Ldata(w)

But they are not the same for adaptive methods g, =V Ld (W)
(AdaGrad, RMSProp, Adam, etc) ! ata\""'t

s, = optimizer(g,) +2Aw,
Loshchilov and Hunter, “Decoupled Weight Decay
Regularization,” ICLR 2019 wl’-l-l — wt — ast ‘ H[]B[]'” ES

AdamW: Decouple Weight Decay

Algorithm 2 \Adam with Ly regularization and Adam with decoupled weight decay (AdamW)

: given a = 0.001,8; =0.9,82 =0.999,e =107, A € R

BN —

vector vi—g < 0, schedule multiplier n,—o € R
. repeat
t—t+1

g < Vfi(6i-1)]| +20;—1

initialize time step ¢ <— 0, parameter vector 8;—y € IR", first moment vector m;— <— 0, second moment

m; «— fimi—1 + (1 —B1)g, > here and below all operations are element-wise

D Ve Bavio1 + (1 — ,32)gf
9: fy —mi/(1—pBY)
10: v v /(1 —ﬁg)

3
4.
50 Vfi(6i-1) < SelectBatch(6¢—1) > select batch and return the corresponding gradient
6.
7
8

> (31 is taken to the power of ¢
> [2 is taken to the power of ¢

11: n¢ « SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

12: 0, Oy — i (atine/ (Vi +) #A0ua)
13: until stopping criterion is met
14: return optimized parameters 6

Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

ROBOTICS

AdamW: Decouple Weight Decay

Algorithm 2 Adam with Ly regularization and Adam with decoupled weight decay (AdamW)

1: given o = 0.001,3; = 0.9,8>, =0.999,¢ = 10", A € R
2: initialize time step ¢t < 0, parameter vector 8;—y € R", first moment vector m;—o < 0, second moment
vector v;—q <— 0, schedule multiplier n,—o € R

3:
4.
) AdamW should/could probably be your ™
‘ “default” optimizer for new problems
11: ne < SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

12: 0y < 041 — 1y ((uilf/(\/f’_t—F €) +A0;_1)
13: until stopping criterion is met
14: return optimized parameters 6;

Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019 ‘ H []H []Il ES

Second-Order Optimization

So Far: First-Order Optimization

A
Loss

wi

ROBOTICS

So Far: First-Order Optimization

Loss

A

1. Use gradient to make linear approximation
2. Step to minimize the approximation

\ /%

w1

ROBOTICS

Second-Order Optimization

A 1. Use gradient and Hessian to make quadratic approximation
Loss 2. Step to minimize the approximation
w1

ROBOTICS

Second-Order Optimization

Loss

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas of
low curvature

wi

ROBOTICS

Second-Order Optimization

Second-order Taylor Expansion:

1
L(w) = L(wy) + (w — WO)TVWL(WO) + E(W — wO)THWL(wO)(w — W)

Solving for the critical point we obtain the Newton parameter update:

wk =wy — H L(wy)~ V. L(wy)

Hessian has O(NA2) elements
Inverting takes O(NA3)
N = (Tens or Hundreds of) Millions

ROBOTICS

Q: Why is this impractical?

Second-Order Optimization

w* = w, — HWL(WO)_l V., L(wy)

- Quasi-Newton methods (BGFS most popular): instead of inverting the
Hessian ((O(n\3)), approximate inverse Hessian with rank 1 updates over
time (O(n\2) each).

- L-BFGS (Limited memory BFGS): Does not form/store the full inverse
Hessian

ROBOTICS

Second-Order Optimization: L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have
a single, deterministic f(x) then L-BFGS will probably work very nicely.

- Does not transfer very well to mini-batch setting. Gives bad results.
Adapting second-order methods to large-scale, stochastic setting is an
active area of research.

Le et al, “On optimization methods for deep learning,” ICML 2011
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations,” ICLR 2017

ROBOTICS

In-Practice (Take-aways)

e Adam is a good default choice in many cases.
can outperform Adam but
may require more tuning.
e |[f you can afford to do full batch updates then
try out (and don't forget to disable all
sources of noise)

ROBOTICS

State-Of-the-Art (2024 ICLR accepted papers - example)

e Large Language Models as Optimizers

Table 1: Top instructions with the highest GSM8K zero-shot test accuracies from prompt optimization

objective function with different optimizer LLMs. All results use the pre-trained PaLM 2-L as the scorer.

evaluator Source Instruction Acc
' CBaselines __.

(Kojima et al., 2022) Let’s think step by step. 71.8

(Zhou et al., 2022b) Let’s work this out in a step by step way to be sure we have the right answer. ~ 58.8

generated (empty string) 34.0

return top solutions_ solutions Ours

when finish K '~ PalM 2-1-IT Take a deep breath and work on this problem step-by-step. 802

meta prompt PalM 2-L Break this down. 79.9

> ; gpt-3.5-turbo A little bit of arithmetic and a logical approach will help us quickly arrive at ~ 78.5

LLM as solution-score pairs the solution to this problem.
I e L. gpt-4 Let’s combine our numerical command and clear thinking to quickly and 74.5
optimizer task description accurately decipher the answer.

“meta-prompt”

Large Language Models as Optimizers. Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou,
Xinyun Chen. https://iclr.cc/virtual/2024/poster/19209

https://iclr.cc/virtual/2024/poster/19209

State-Of-the-Art (2024 ICLR accepted papers - example)

e Neural Topic Modeling as Multi-Objective
Contrastive Optimization

2
.
1min aveﬁlnfoNCE(e) + (1 a)VQLELB()(H, ¢) 8 Z 0
& 2
B CoTTTTTT T NITM+CL Our Model
shuttle Tands on planet job career ask development 0.0093 0.0026
star astronaut planet light moon 0.8895 0.9178
shuttle lands on planet job career ask development zeppelin/s- | 0.9741/0.9413 0.0064/0.0080
zeppelin/scardino cardino
star astronaut planet light moon 0.1584/0.2547 0.8268/0.7188

https://openreview.net/pdf?id=HdAoLSBYX]j

ROBOTICS

https://openreview.net/pdf?id=HdAoLSBYXj

State-Of-the-Art (2024 ICLR accepted papers - example)

e Neural Topic Modeling as Multi-Objective
Contrastive Optimization

2
mgn aVoLsonce(0) + (1 — a)VoLego(0,0)|| >0
2
F(x y) _ 9o (X)Tgcp (Y) /7_ Igliqsn Leieo = —Eg, (zx) [l0g pg (x|2)] + KL [go(z|x) || p(z)]
o [|

| 9o(%) Il 9o (¥)

ROBOTICS

https://openreview.net/pdf?id=HdAoLSBYXj

Summary

Summary

Use Linear Models for image
classification problems.

Use Loss Functions to express
preferences over different choices
of weights.

- - Li = (0’ = — -|— 1)
Use Regularization to prevent %ma" 5=-5+1) SVM

overfitting to training data. L=13 s row)
- N i=1 i

— SGD

Use Stochastic Gradient Descent | _
to minimize our loss functions and for t in range(num_steps):

train the model dw = compute_gradient(w)
. v = rho *x v + dw

w —= learning_rate * v

SGD+Momentum

=== RMSProp

=== Adam

Next up: Neural Networks ‘ROBOTICS

Due dates

Canvas Assignment: 20250122 Optimization Quiz
Scored - individual (as part of in-class activity points)
Due Sunday Jan. 26, 2025

P1 (KNN and Linear Classifier)

5 submissions per day - Start today!!!

Due Feb. 2, 2025

ROBOTICS

Enroliment/Waitlist

Please send us your UnigName (or reply via email)
by Thursday Jan. 23 5pm EST
if you intend to enroll in the class

1. ROB 498 or 599
2. Your UnigName

https://piazza.com/class/m4pgejar4dua2gf/post/33

ROBOTICS

https://piazza.com/class/m4pgejar4ua2qf/post/33

Office Hour Calendar Now Available

https://calendar.google.com/calendar/u/0?cid=

Y18zZDZhOGMyMTqag0Y2I13ZDA4ZmlIwZDg40

GM1OWNINTUOOGVIiNzczMTZIOTg3ZTE3Ym
FIYIFKZDkwOWRNhZWQyYZTc2QGdyb3VwLmN
hbGVuZGFylL mdvb2dsZS5ib20

You can add this calendar to your UM
google calendar.

ROBOTILS

https://calendar.google.com/calendar/u/0?cid=Y18zZDZhOGMyMTg0Y2I3ZDA4ZmIwZDg4OGM1OWNiNTU0OGViNzczMTZiOTg3ZTE3YmFlYjFkZDkwOWRhZWQyZTc2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
https://calendar.google.com/calendar/u/0?cid=Y18zZDZhOGMyMTg0Y2I3ZDA4ZmIwZDg4OGM1OWNiNTU0OGViNzczMTZiOTg3ZTE3YmFlYjFkZDkwOWRhZWQyZTc2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
https://calendar.google.com/calendar/u/0?cid=Y18zZDZhOGMyMTg0Y2I3ZDA4ZmIwZDg4OGM1OWNiNTU0OGViNzczMTZiOTg3ZTE3YmFlYjFkZDkwOWRhZWQyZTc2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
https://calendar.google.com/calendar/u/0?cid=Y18zZDZhOGMyMTg0Y2I3ZDA4ZmIwZDg4OGM1OWNiNTU0OGViNzczMTZiOTg3ZTE3YmFlYjFkZDkwOWRhZWQyZTc2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
https://calendar.google.com/calendar/u/0?cid=Y18zZDZhOGMyMTg0Y2I3ZDA4ZmIwZDg4OGM1OWNiNTU0OGViNzczMTZiOTg3ZTE3YmFlYjFkZDkwOWRhZWQyZTc2QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20

