ROB 498/599: Deep Learning for Robot Perception (DeepRob)

Lecture 3: Linear Classifier

Today

- Feedback and Recap (5min)
- Linear Classifiers
 - Interpreting a linear classifier three viewpoints (15min)
 - Softmax: Cross-Entropy Loss (25min)
 - Multi-class SVM loss (25min)
- Summary and Takeaways (5min)

Aha Slides (In-class participation)

https://ahaslides.com/P8X0L

Q0: Feedback/Questions so far?

Recap: Image Classification - A Core Computer Vision/Robot Perception Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar

Potato Chips

Water Bottle

Popcorn

Recap: Image Classification Challenges

Viewpoint Variation & Semantic Gap

Illumination Changes

Intraclass Variation

Recap: Machine (Deep) Learning - A Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Example training set

Recap: KNN parameters, train/val/test

Using more neighbors helps smooth out rough decision boundaries

Linear Classifiers

Linear Classifier - Building Block of Neural Networks

Linear

This image is CC0 1.0 public domain

Recall: PROPS dataset

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

10 classes32x32 RGB images50k training images (5k per class)10k test images (1k per class)

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

1 Algebraic Viewpoint

Linear Classifier - Bias Trick

Linear Classifier - Predictions are Linear

f(x, W) = Wx (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

$$f(x,W) = Wx + b$$

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

large

marker

Interpreting a Linear Classifier - 2 Visual Viewpoint

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

231

1.3

0.0

3.2

437.9

-96.8

0

0.2

.25

-0.3

-1.2

61.95

Linear classifier has one "template" per category You can visualize W as a "template" pattern image

Interpreting a Linear Classifier - Visual Viewpoint

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Linear classifier has one 231 "template" per category 24 1.5 0.2 -0.5 1.3 0 .25 W 0.1 2.0 2.1 0.0 0.2 -0.3 h 1.1 3.2 -1.2 -96.8 437.9 61.95 master tomato fish gelatin large meat chef cracker mustard sugar soup box marker can can mug box box bottle can can

Interpreting a Linear Classifier Visual Viewpoint

Linear classifier has one "template" per category

***Note:** A single template cannot capture multiple modes of the data e.g., Rotation

master

chef

can

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

231

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Difficult Case (Examples) for a Linear Classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Difficult Case (Examples) for a Linear Classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Class 1: 1 <= L2 norm <= 2

Class 2: Everything else

Difficult Case (Examples) for a Linear Classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else

How do we actually choose a good W?

Define a score function

f(x,W) = Wx + b

master chef can	-3.45	-0.51	3.42
mug	-8.87	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can	-0.36	-2.09	-4.79
large marker	-0.72	-2.93	6.14

Define a score function

1. Use a loss function to quantify how good a value of W is (today)

mug

maste

- tomat
- crack
- musta 2
- tuna
- sugar
- gelati
- potted meat can
- Find a W that minimizes the loss function (optimization)
- -0.36 -2.09-4.79large marker -0.72-2.936.14

(next week)

A **loss function** measures how good our current classifier is.

Low loss = good classifier High loss = bad classifier

Also called: objective function, cost function, reward function, profit/utility/fitness function, etc.

Loss Function

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

- where x_i is an image and y_i is a (discrete) label
- Loss for a single example is $L_i(f(x_i, W), y_i)$
- Loss for the dataset is average of per-example losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Cross Entropy Loss

Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W) \qquad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax}$$
Class k KUBUIUS

(EECS 445/545, Bishop: Pattern Recognition and Machine Learning Book)

Want to interpret raw classifier scores as **probabilities** $s = f(x_i; W)$ $P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_i \exp(s_i)}$ Softmax function

Maximize probability of correct class $L_i = -\log P(Y = y_i | X = x_i)$ Putting it all together

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$
FINALLY REPARTING

Aha Slides (In-class participation)

https://ahaslides.com/P8X0L

Q1, Q2

List of Questions on AhaSlides (for your record) Q1: What is the min / max possible loss? Q2: If all scores are small random values, what is the loss?

Multi-class SVM Loss

Multiclass SVM Loss

Multiclass SVM Loss

(multi-class SVM - example)

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$s = f(x_i, W)$$
 be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Multiclass SVM Loss - Concrete Example

Cracker
mug3.2
5.1
-1.7
2.91.3
2.2
4.9
2.5Given an example
$$(x_i, y_i)$$

 $(x_i is image, y_i is label)Let $s = f(x_i, W)$ be scores
Then the SVM loss has the form:
 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ Sugar
Loss-1.7
2.0
-3.1-3.1
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9$

Multiclass SVM Loss - Concrete Example

Aha Slides (In-class participation)

https://ahaslides.com/P8X0L

Q3: What is the multi-class SVM loss for Slide 55, third image? Q4: For multi-class SVM loss, what if the loss uses a mean instead of a sum? Would the prediction results be the same or different?

Multiclass SVM Loss - Concrete Example

Cross Entropy Loss vs. Multi-class SVM Loss

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and
$$y_i = 0$$

Q: What is cross-entropy loss? What is SVM loss?

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100] and $y_i = 0$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and
$$y_i = 0$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

 $[10, 9, 9]$
 $[10, -100, -100]$
and $y_i = 0$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-Entropy Loss will change; SVM loss will stay the same for 1st and 3rd cases; SVM loss will change for the 2nd case

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100] and $y_i = 0$ **Q**: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$ **Q**: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-Entropy Loss will ????; (Canvas quiz) SVM loss still 0

Linear Classifier - Three Viewpoints

Loss Functions

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

$$s = f(x; W, b) = Wx + b$$

Linear classifier

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Next up: How to find best W and b? Optimization

Due dates

Canvas Assignment: 20250113 KNN Quiz

Scored - individual (as part of in-class activity points)

Due Jan. 15, 2025

Canvas Assignment: 20250115 Linear Classifier Quiz

Scored - individual (as part of in-class activity points)

Due Jan. 19, 2025

P0

5 submissions per day - Start today!!!

Due Jan. 19, 2025

