ROB 498/599: Deep Learning for Robot Perception (DeepRob)

Lecture 2: Image Classification; K Nearest Neighbors

Today

- Logistics (Office Hours, P0 starter) (5min)
- Image Classification (KNN)
 - K Nearest Neighbors Basics (15 min)
 - K Nearest Neighbors in-class activity (20min)
 - Hyperparameters (15min)
 - Universal Approximation (20min)
- Summary and Takeaways (5min)

Office Hours

• See <u>Course Info doc</u>

	Sun 1/12	Mon 1/13	Tue 1/14	Wed 1/15	Thu 1/16	Fri 1/17	Sat 1/18
all-day							
9am							
10am			9:30 - 12:00 ₪ DeepRob Office Hours		10:30 - 11:30 🗂		
11am			(Sydney)		DeepRob Staff 11:30 - 1:00		
12pm					DeepRob Office Hours	DeepRob	
1pm		1:30 - 2:50 🗋	-	1:30 - 2:50 🕅	1:00 - 3:30 👘 DeepRob	Office	
2pm		DeepRob Office Hours (Adi)	-	DeepRob Office Hours (Adi)	Office Hours (Jason)	Hours	
3pm		DeepRob	-				
4pm		Office Hours					

*May have small changes - stay tuned

Office Hours

Specifically, this week Jan.13- Jan.17

- Monday 3:00pm-4:30pm (Prof. Du) or by appointment 3257 FRB
- Tuesday 2:00pm-3:30pm (Cale- GSI) CSRB Lounge (outside classroom)
- Tuesday 5:30-7pm (after lab) or by appointment (Sydney IA) CSRB
- Wednesday 1:30pm (after lecture) (Adi IA)
- Thursday 11:30am-2pm (Meha IA) 3310 FRB
- Thursday 1pm-3:30pm (Jason IA) 3310 FRB

Always available on Piazza

P0 Starter

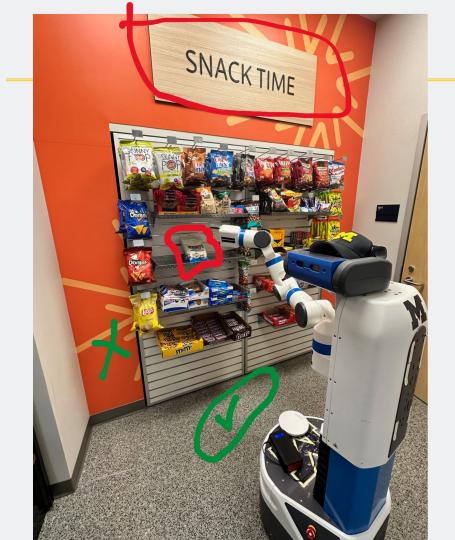
P0 folder: <u>https://drive.google.com/drive/folders/1g|KZIMKRuLmA4</u> <u>EsICxrREa3dujlyY9XC?usp=drive_link</u>

Please create a "DeepRob" folder in your own Google Drive, and put P0 folder under there. This will be your individual private copy of the code - do NOT change the starter code in shared folder!

Reminder

About waitlist

About access (Google Colab etc.)



- How do you "classify" which part is traversable for the robot, which part is not?
- How do you tell which one is the correct snack?

Image Classification —A Core Computer Vision/Robot Perception Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

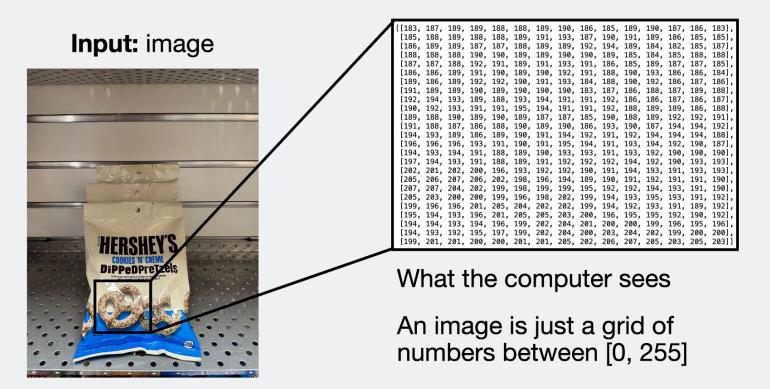
Granola Bar

Potato Chips

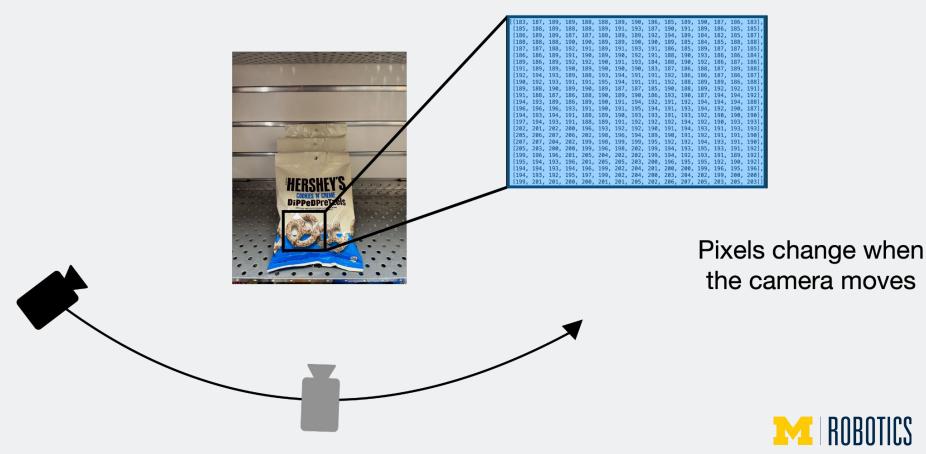
Water Bottle

Popcorn

"Semantic Gap"



Challenges–Viewpoint Variation



Challenges–Intraclass variation



Challenges—Fine Grained Categories

e.g.,

Challenges-Background Clutter



Challenges–Image Resolution

iPhone 14 Camera

4032x3024

ASUS RGB-D Camera

640x480

Challenges–Illumination Changes

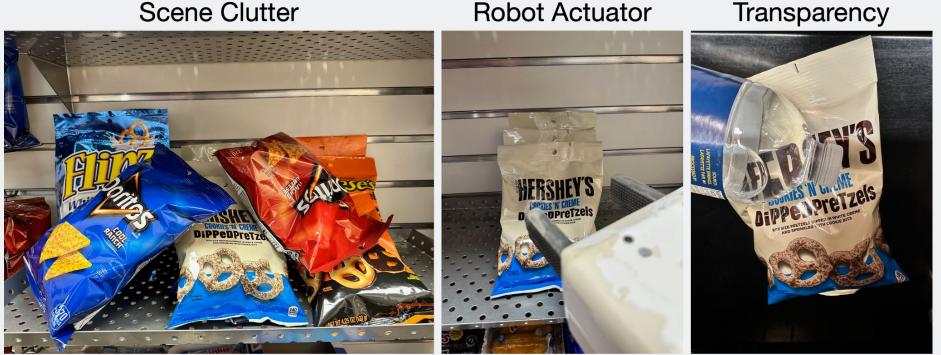
Want our robot's perception system to be reliable in all conditions

Challenges–Subject Deformation

Challenges—Occlusion

Robot Actuator

Scene Clutter



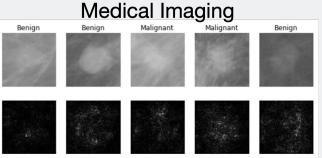
Challenges–Semantic Relationship

Reflections

Contact Relationships

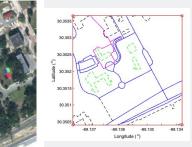
Robots have to act on the state they perceive

Application of Image Classification

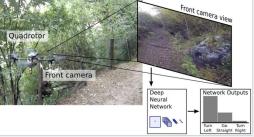


Lévy et al., "Breast Mass Classification from Mammograms using Deep Convolutional Neural Networks", arXiv:1612.00542, 2016

Hyperspectral Imaging



Trail Direction Classification

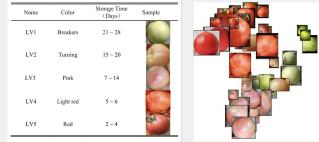


Giusti et al., "A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots", IEEE RAL, 2016

Galaxy Classification

Dieleman et al., "Rotation-invariant convolutional neural networks for galaxy morphology prediction", 2015

Tomato Ripeness Classification

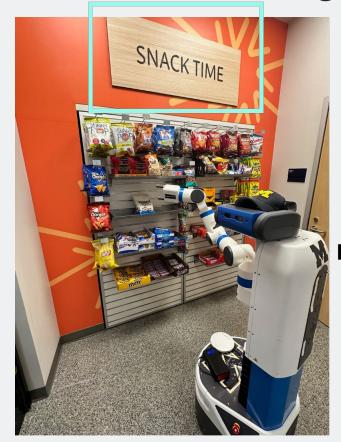


Zhang et al., "Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot", IEEE Access, 2016

INC | ROBOTICS

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and public domain

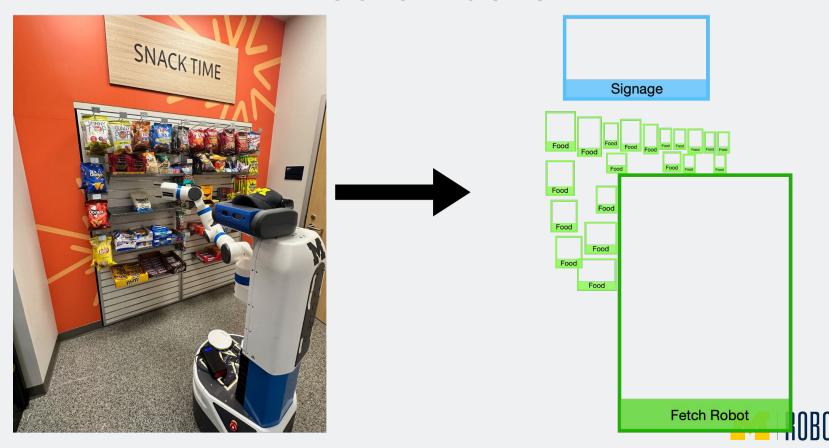
Image Classification – Building Block for Other Tasks



Example: Object Detection

Wall Floor Signage Fetch Robot Snacks

Image Classification – Building Block for Other Tasks



An Image Classifier

def classify_image(image):
 # Some magic here?
 return class_label

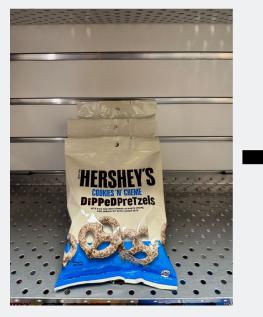
Unlike well defined programming (e.g. sorting a list)

No obvious way to hard-code the algorithm for recognizing each class

One "classifical" Computer Vision approach

(example)

Input: image



Detect: Edges **Detect:** Corners ???

Deep Learning – A Data-Driven Approach

- Collect a dataset of images + labels
- 2. Use ML/DL to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

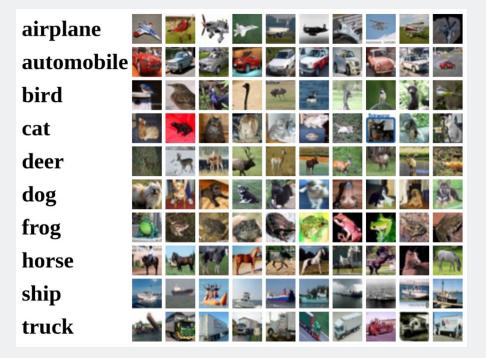
def predict(model, test_images):
 # Use model to predict labels
 return test_labels

MNIST

Handwritten digits

10 classes: Digits 0 to 928x28 grayscale images50k training images10k test images

Due to relatively small size, results on MNIST often do not hold on more complex datasets



CIFAR10

10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

CIFAR100

100 classes
32x32 RGB images
50k training images (500 per class)
10k test images (100 per class)

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, otter, seal, whale

ImageNet

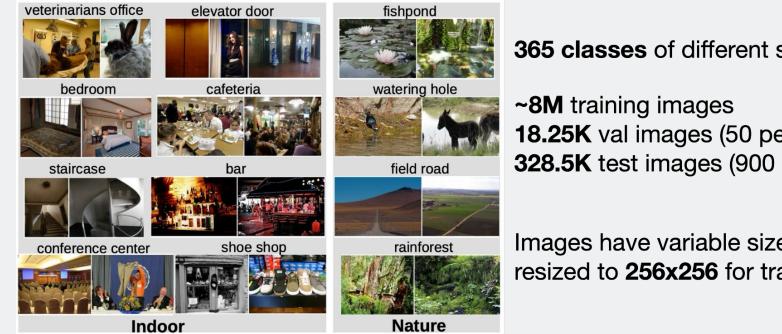
1000 classes

~1.3M training images (~1.3K per class) 50k validation images (50 per class) **100K** test images (100 per class)

Images have variable size, but often resized to 256x256 for training

Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015.

MIT Places



Zhou et al., "Places: A 10 million Image Database for Scene Recognition", TPAMI, 2017.

365 classes of different scene types

18.25K val images (50 per class) **328.5K** test images (900 per class)

Images have variable size, but often resized to **256x256** for training

Image Classification Dataset

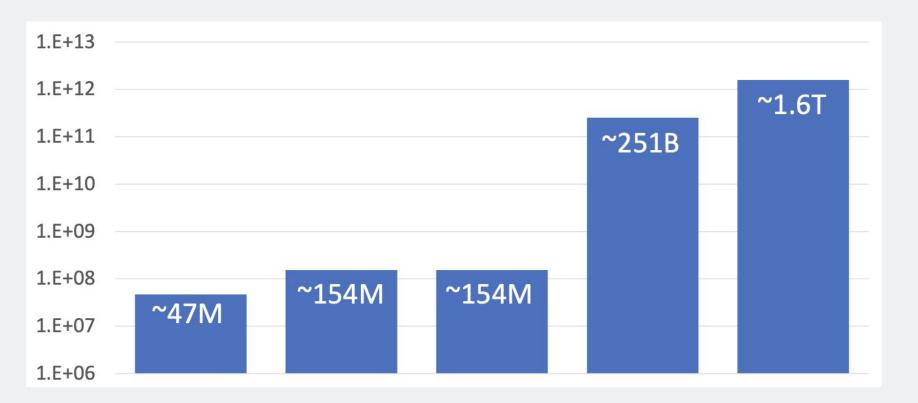
Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

(PROPS)

10 classes32x32 RGB images50k training images (5k per class)10k test images (1k per class)

Size of Dataset - # of Training Pixels



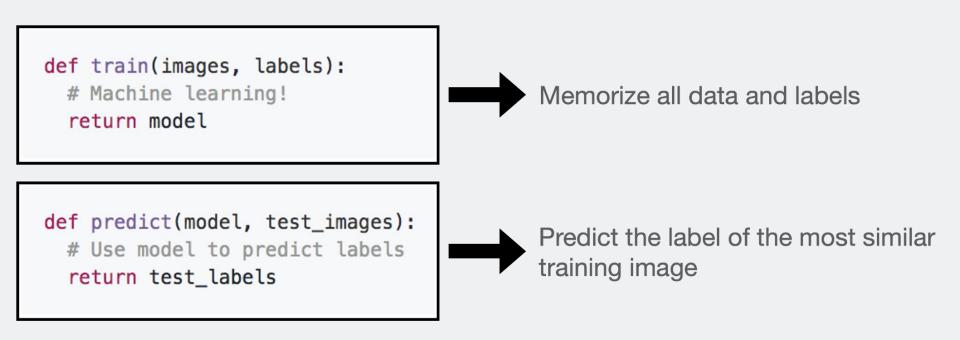
Our first classifier - Nearest Neighbor

Aha Slides (In-class participation)

https://ahaslides.com/DMOPW

Q1, Q2

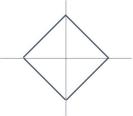
Our first classifier - Nearest Neighbor



Distance Metric to Compare Images

"How do you know which one is the `<u>nearest</u>` neighbor?"

distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$



test image						
56	32	10	18			
90	23	128	133			
24	26	178	200			
2	0	255	220			

4 - - 4 1 -----

L1

training image					
10	20	24	17		
8	8 10		100		
12	16	178	170		
4	32	233	112		

And the transmission of the second

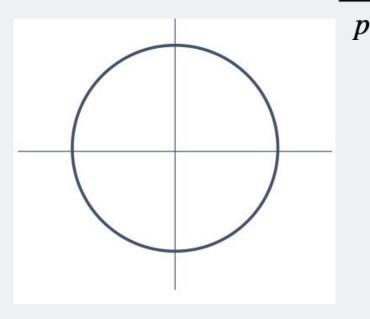
pixel-wise absolute value differences

=	46	12	14	1	
	82	13	39	33	add
	12	10	0	30	→ 456
	2	32	22	108	

Distance Metric to Compare Images

"How do you know which one is the `<u>nearest</u>` neighbor?"

L2 (Euclidean) distance $d_2(I_1, I_2) = (\sum (I_1^p - I_2^p)^2)^{\frac{1}{2}}$



import numpy as np

```
class NearestNeighbor:
    def __init__(self):
        pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

```
def predict(self, X):
```

""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows

```
for i in xrange(num_test):
```

find the nearest training image to the i'th test image

```
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

https://ahaslides.c om/DMOPW

import numpy as np

```
class NearestNeighbor:
    def __init__(self):
        pass
```



```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

loop over all test rows

```
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the ll distance sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = l)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Memorize training data


```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.vtr = v
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
```

for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the l1 distance sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

For each test image: Find <u>nearest</u> training image Return label of nearest image

return Ypred

import numpy as np

```
class NearestNeighbor:
    def __init__(self):
        pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

```
def predict(self, X):
```

""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows

```
for i in xrange(num_test):
```

find the nearest training image to the i'th test image # using the L1 distance sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)

This is a problem: we can train slow offline but need fast testing!

Further reading: faster/more efficient nearest neighbors

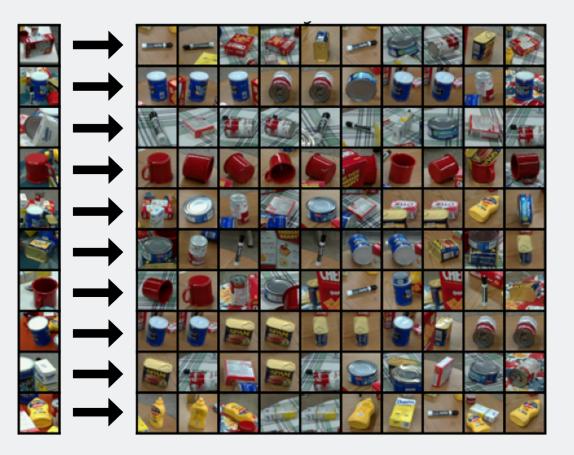
Example:

https://github.com/facebookresearch/faiss

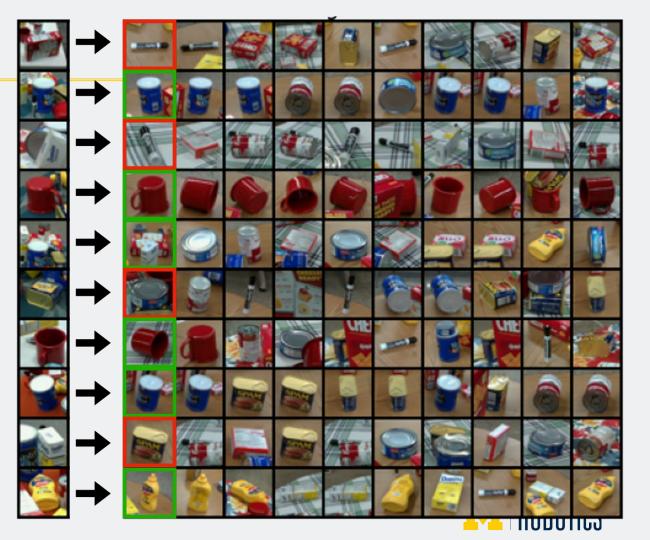
More distance metrics

- Similarity/dissimilarity metrics
 - Euclidean distance: $d_E = \sqrt{(\mathbf{x}_1 \mathbf{x}_2)^T (\mathbf{x}_1 \mathbf{x}_2)}$
 - $_{\circ}$ City block distance: $d_{C} = \sum_{i=1}^{d} |x_{1i} x_{2i}|$
 - \circ Mahalanobis distance: $(\mathbf{x}_1 \mathbf{x}_2)^T \Sigma^{-1} (\mathbf{x}_1 \mathbf{x}_2)$
 - Geodesic distance
 - Cosine angle similarity: $\cos \theta = \frac{\mathbf{x}_1^T \mathbf{x}_2}{|\mathbf{x}_1|_2^2 |\mathbf{x}_2|_2^2}$
 - $\circ\,$ and many more...

What does this look like in PROPS dataset?



PROPS dataset is instance-level



CIFAR10 dataset is category-level



In-Class Activity

20250113_knn.ipynb

K-Nearest Neighbors—Web Demo

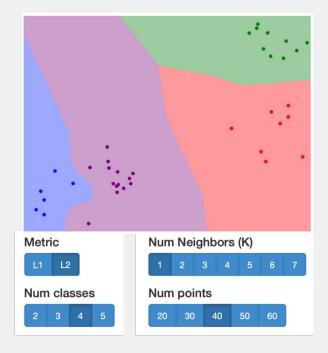
(for fun!)

Interactively move points around and see decision boundaries change

Observe results with L1 vs L2 metrics

Observe results with changing number of training points and value of K

http://vision.stanford.edu/teaching/cs231n-demos/knn/



What is the best value of K to use? What is the best **distance metric** to use?

What is the best value of K to use? What is the best **distance metric** to use?

These are <u>examples</u> of hyperparameters: choices about our learning algorithm that we don't learn from the training data. Instead, <u>we can set them</u> at the start of the learning process.

Very problem-dependent - In general may need to try them all and observe what works best for our data

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

	BAD : No idea how algorithm will perform on new data	
train	test	

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test	Better!	
train	validation	test
		M ROBOLICS

Your Dataset

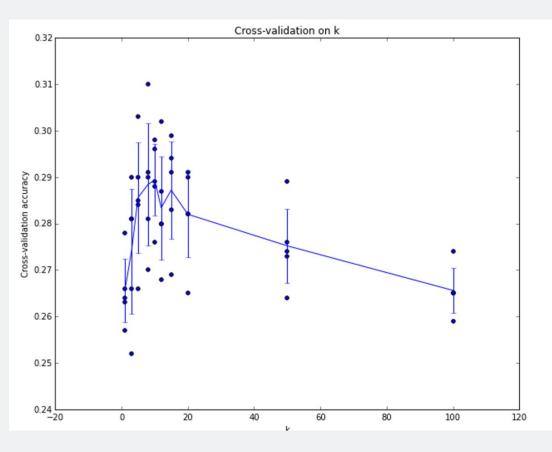
Idea #4: Cross-Validation Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

🔽 I KOROLICZ

Setting Hyperparameters - KNN example



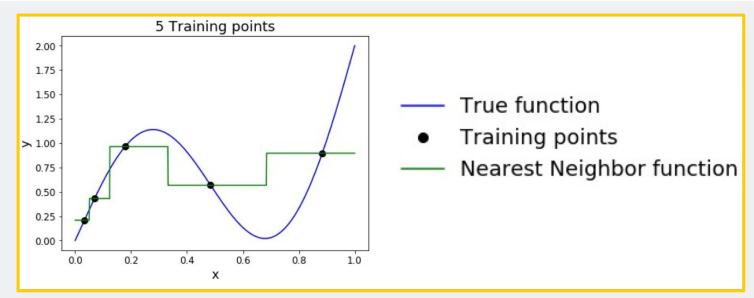
Example of 5-fold cross-validation for the value of **k**.

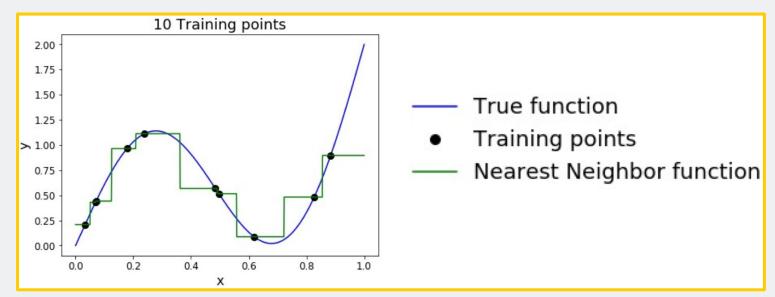
Each point: single outcome.

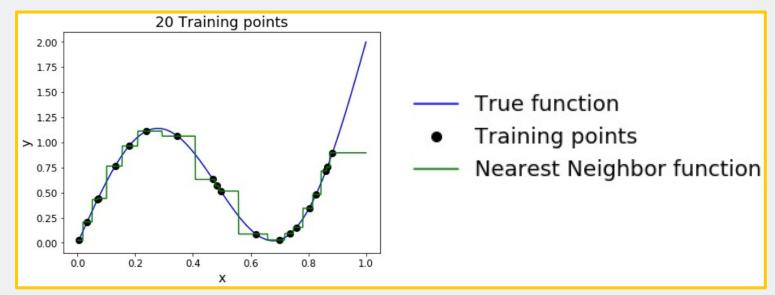
The line goes through the mean, bars indicated standard deviation

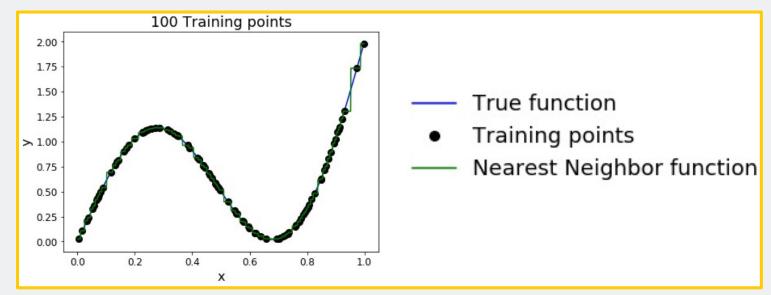
ՈՈՈՈՈՐ

(Seems that k ~ 7 works best for this data)



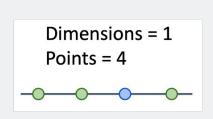


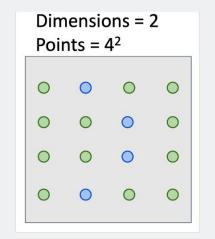




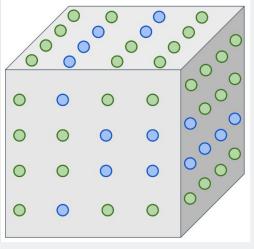
Problem - Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension





Dimensions = 3 Points = 4^3



Problem - Curse of Dimensionality

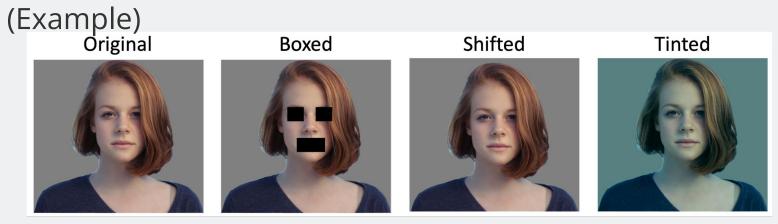
Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Number of possible 32x32 binary images

 $2^{32X32} \approx 10^{308}$

Notes

- K-Nearest Neighbors Seldom Used on Raw Pixels
- Very slow at test time
- Distance metrics on pixels are not informative



All 3 images have same L2 distance to the original

K-Nearest Neighbors with ConvNet Features Works Well

Devlin et al., "Exploring Nearest Neighbor Approaches for Image Captioning", 2015.

In **image classification** we start with a training set of images and labels, and must predict labels for a test set

Image classification is challenging due to the **semantic gap**:

we need invariance to occlusion, deformation, lighting, sensor variation, etc. Image classification is a **building block** for other vision tasks

The K-Nearest Neighbors classifier predicts labels from nearest training samples

Distance metric and *K* are hyperparameters

Choose hyper parameters using the **validation set**; only run on the test set once at the very end!

Aha Slides (In-class participation)

https://ahaslides.com/DMOPW

Due dates

Canvas Assignment: 20250113 KNN Quiz

Scored - individual (as part of in-class activity points)

Due Jan. 15, 2025

P0

5 submissions per day - Start today!!!

Due Jan. 19, 2025

