
ROB 498/599: Deep Learning for Robot Perception (DeepRob)

Welcome!

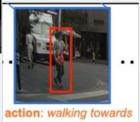
Today

- Introductions (15min)
- Deep Learning x Robot Perception (25min)
- Course Resources (20min)
- P0 starter (10min)

Xiaoxiao Du

[Sounds like "she-OW she-OW doo"]

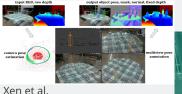
Assistant Research Scientist & Lecturer in Robotics


Email: xiaodu@umich.edu Office: 3257 FRB or virtually

Research Interest: sensor data integration, pedestrian prediction, autonomous driving

intent: will cross

Anthony Opipari


Ph.D. student in Robotics

Email: topipari@umich.edu

Office: 2150 FRB (PROGRESS Lab) or virtually

Research Interest: Robot perception, computer vision, image and video segmentation, object pose estimation, goal-directed manipulation

Cale Colony (GSI)

M.S. student in Robotics (Engineering), M.S. student in Sustainable Systems (SEAS)

Dow Sustainability Fellow (2025) Bosch Sustainability Fellow (2024) Michigan Climate Venture - Food/Agriculture Lead

Email: ccolony@umich.edu

Research Interest: Agricultural Robotics, Persistent Robotics, Edge ML, Weather/Renewable Energy Forecasting, Sustainable Al

Advaith Balaji (IA)

Undergraduate student in Robotics

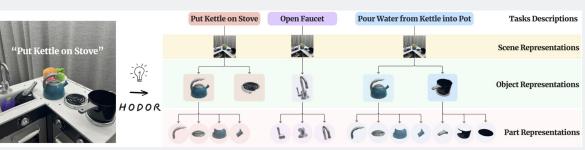
Researcher at ARMLAB

Email: advaithb@umich.edu

Research Interests:

- Al and Robotics for sustainability
- Perception and Planning for Manipulation

Sydney Belt (IA)


- Undergraduate student in Robotics
- President of UMARV team
- Mapping and Motion Lab Researcher

Email: sydbelt@umich.edu

Research Interests:

- Autonomous Vehicles
- Robot Manipulation
- ML for Embedded Systems

Jason Brown (IA)

Undergraduate student in Robotics and Aerospace Engineering

Email: jaybrow@umich.edu

Research Interest: Aerospace and Robotics, exploration, navigation, and sensing

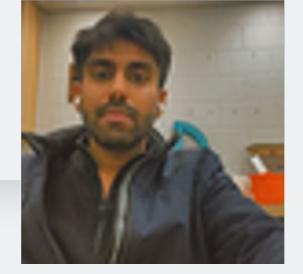
Meha Goyal (IA)

"I took DeepRob in W24, and since then, I've been able to use what I learned to research and build various exciting projects outside of class!"

- Senior studying CS and Business
- •1st semester teaching DeepRob, 4th semester teaching Web Systemd
- •From Cupertino, CA

Email: mehaq@umich.edu

Research Interest: Al and healthcare applications, entrepreneurial leadership



Nitin Jotwani (Grader)

M.S. student in Robotics

Email: njotwani@umich.edu

Research Interest: Multi-modal

fusion, object detection

RGB Thermal

Distributed Teaching Collaborative

Prof. Chad Jenkins

Prof. Karthik Desingh

Prof. Iris Bahar

Prof. Tom Williams

Prof. Kaveh Fathian

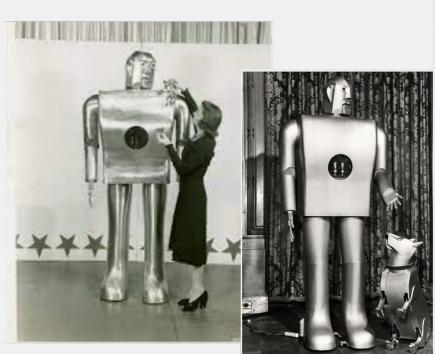
Special acknowledgment and Thanks to Stanford CS231N

Prof. Justin Johnson EECS 498/598: Deep Learning for Computer Vision

Aha Slides (In-class participation tool)

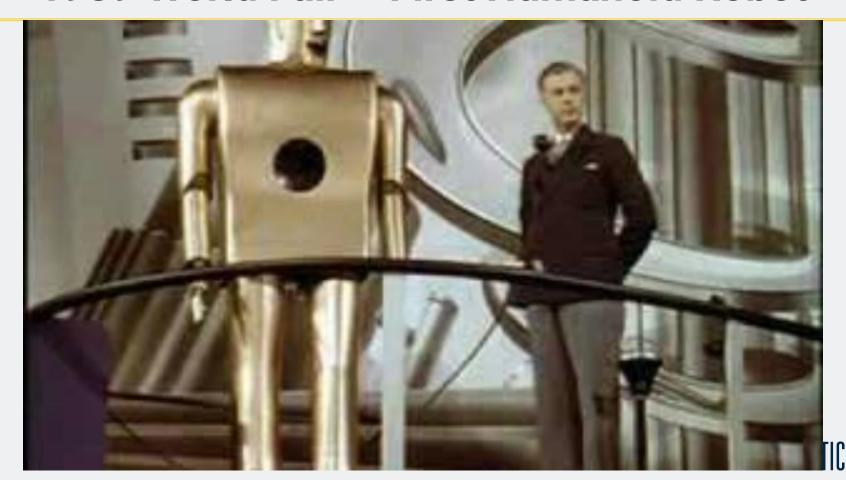
Try it out!

https://ahaslides.com/77GME



How did we get started?

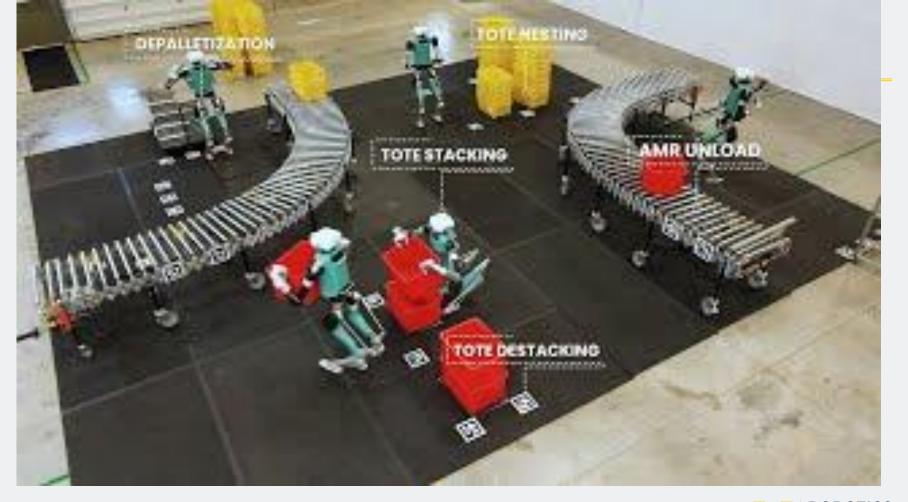
Elektro, 1939



Robot Family: Herbert Televox (left) was Westinghouse's first human-form robot. The more famous member of the Westinghouse robot family was Elektro; a copy is shown in the middle, while the original is on the right. PHOTO: MANSFIELD MEMORIAL MUSEUM

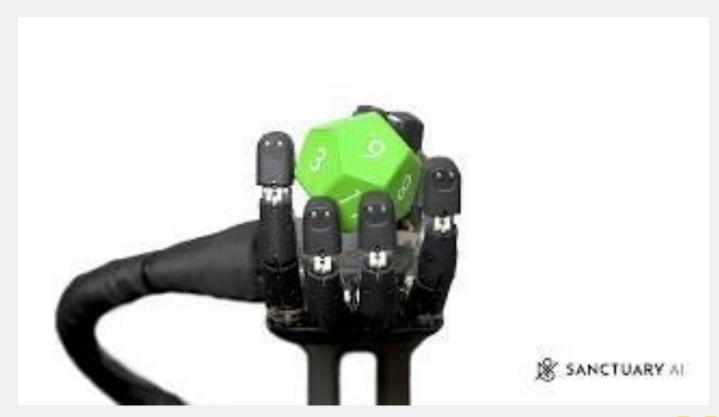
Robot's Best Friend: Westinghouse introduced Sparko the dog as a companion for Elektro. PHOTO: BETTMANN/GETTY IMAGES

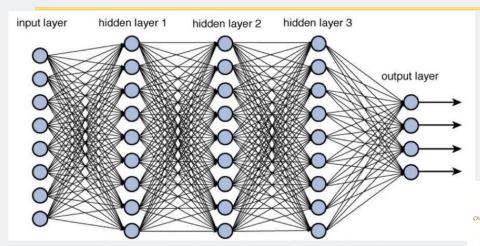
1939 World Fair - First Humanoid Robot



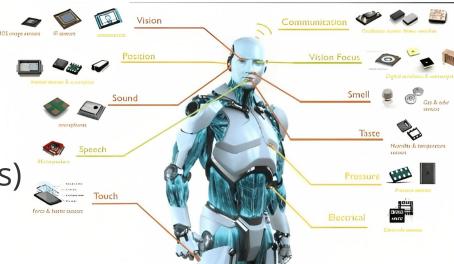
Elektro the Robot and his Dog Sparko (1940s)

(Oct. 2024)

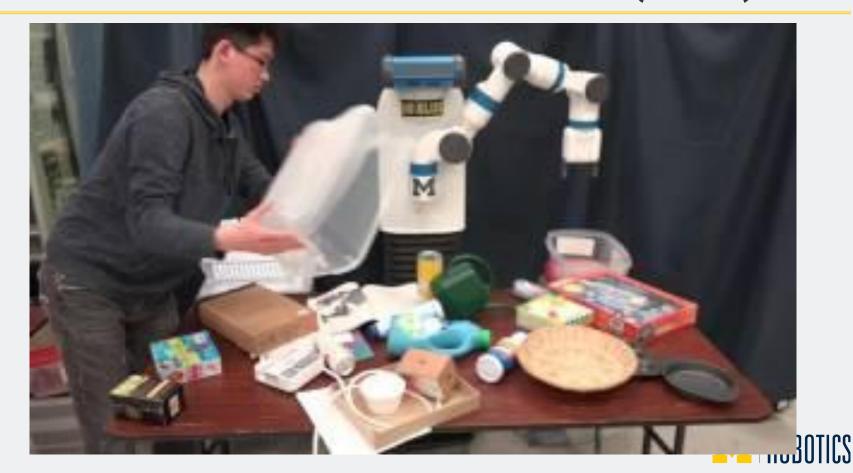




In-hand manipulation



Deep Learning x Robot Perception



Deep Neural Networks

Robot Sensory Data Commonly, visual data (images) (but not limited to)

PROGRESS Lab Fetch Robot (2017)

Final Project (DeepRob 2024 GrapeBot)

More at:

https://deeprob.org/w24/reports/

Challenges in

- "Easy to fool"
- Large volume of data
- Limited annotation/labels
- Ethics

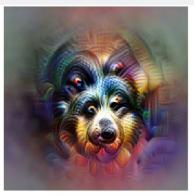
•

FOOLING THE AI

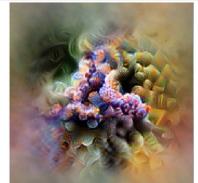
Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.

These stickers made an artificial-intelligence system read this stop sign as 'speed limit 45'.

Scientists have evolved images that look like abstract patterns — but which DNNs see as familiar objects.


Challenges in DL

- •"Easy to fool"
- Large volume of data
- Limited annotation/labels
- Ethics

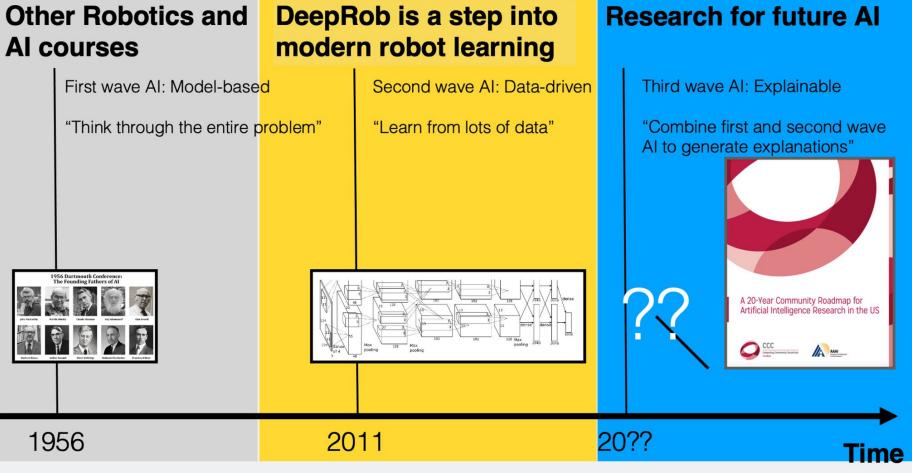

•...

Baseball—or stripes? mixed4a, Unit 6

Animal faces—or snouts? *mixed4a, Unit 240*

Clouds—or fluffiness? mixed4a, Unit 453

Buildings—or sky? mixed4a, Unit 492


Challenges in DL

- •"Easy to fool"
- Large volume of data
- Limited annotation/labels
- Ethics

•...

"a salmon swimming down a river"

Course Resources

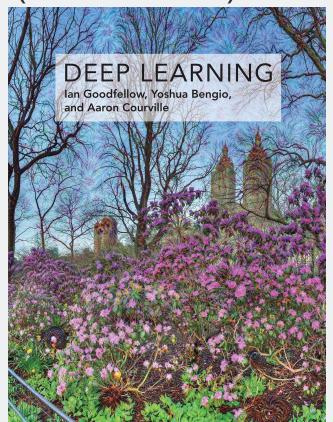
Google Drive (lectures slides, jupyter notebooks, etc.) https://drive.google.com/drive/folders/1vOz1SA_fb1ebIe0JIaFMHA3AdwKkh7sG https://drive.google.com/drive/folders/1vOz1SA_fb1ebIe0JIaFMHA3AdwKkh7sG

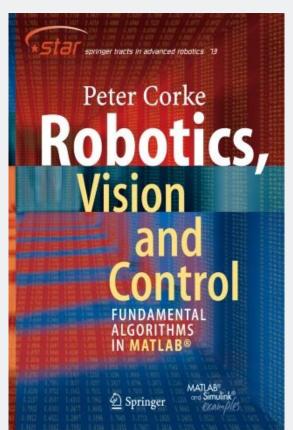
Course website https://deeprob.org/w25/

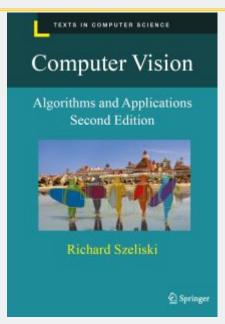
Canvas https://canvas.it.umich.edu/

Piazza (Q&A, project help, etc.):

https://piazza.com/umich/winter2025/rob498011598012


Autograder (project submissions): https://autograder.io/


Office Hour Queue https://oh.eecs.umich.edu/courses/rob498-599



Reference Textbooks

(not limited to)

Grading

•	Prog	(52%)	
	0	Project 0	5%
	0	Project 1	10%
	0	Project 2	17%
	0	Project 3	10%
	0	Project 4	10%
•	Mid	term (individual)	(10%)
•	Fina	al Project (Group)	(23%)
	0	Proposal Presentation	5%
	0	Final Report and code (paper reproduction, algorithmic extension)	15%
	0	Showcase (Video, Website, etc.)	3%
•	In-c	lass activities (individual) [quiz, notebooks, etc.]	(10%)
•	Part	icipation (individual) [in class participation, office hours, Piazza, et	c.] (5%)

Total: 100%

Assignments

- P0: Intro to Python and PyTorch
- P1: KNN and Linear models
- P2: Classification and Detection using CNNs
- P3: Pose Estimation
- P4: Transformers
- Occasional in-class activities (Aha Slides, Codes, etc.)
- Mid-term (in-class)
- Final Project

Lecture content

- Image Classification (linear/non-linear)
- Training and Optimizing Neural networks
- Backpropagation
- Convolutional Neural Networks
- Pose Estimation
- Transformers
- Generative Methods

- Frontiers in DL
 - Neural Rendering (Nerf, Gaussian Splatting)
 - Diffusion
 - Language models
 - Reinforcement learning
 - Applications
 - ...

If you have ideas, please feel free to reach out!

GenAl Activity

U-M GenAl website: https://genai.umich.edu/

Activity: Use DALL-E to generate images based on prompts such as "deep learning for robot perception" "deep learning for robot perception and manipulation" and submit the generated images under Piazza thread.

Piazza: https://piazza.com/umich/winter2025/rob498004599005/home

GenAl Course Policy

For individual projects (P0-P4) and mid-term, NOT ALLOWED - must complete code yourself

For final project, permitted to brainstorm with disclosure

See Course Information Document for more details

Collaboration Policy

Encouraged Collaboration	X Unacceptable Collaboration			
✓ Discussing high-level design strategies, e.g., helper function organization or data structure choices	✗ Walking through an important piece of code step-by-step, sharing pseudocode, sharing comments			
✓ Helping others understand the spec or project nuances	✗ Give someone your code as a reference			
✓ Explaining a compiler or runtime error to someone	✗ Fixing/Debugging a compiler or runtime error for someone			
✓ Brainstorming edge cases for testing	Discussing specifics about what test cases are on the autograder, especially if one person has submitted already and the other is still working on the code			
✓ Sharing template code/code updates (if any) provided by the course staff	Copying code in whole or in part, or writing original code for someone else, or having someone else write your project			
✓ Looking at small snippets of someone else's code to understand concepts	✗ Copy code, or sharing your code in a way that could be copied, e.g., sending code over email or taking a picture of code			

Collaboration Policy

 Group assignment (final project) will contain a signed statement of contribution with your submission

"I participated and contributed to team discussions on each problem, and I attest to the integrity of each solution. Our team met as a group on [DATE(S)]. "

"Contribution of Authors: [Team member A] did [Task XXX]; [Team members B and C] did [Task YYY]; [Team members A, B and C] did [ZZZ]. [All authors] [gave feedback on the software development, contributed to writing the report/making the demo presentation, and approved the final version for submission.]"

 All members are expected to contribute to the project implementation (codes) as well as write-up and final presentation

Office Hours

• See Course Info doc

	Sun 1/12	Mon 1/13	Tue 1/14	Wed 1/15	Thu 1/16	Fri 1/17	Sat 1/18
all-day							
9am							
10am			9:30 - 12:00 () DeepRob Office		40.00 44.00 🗟		
11am			Hours (Sydney)		10:30 - 11:30 ☐ - DeepRob Staff 11:30 - 1:00 ☐		
12pm					DeepRob Office Hours	DeepRob	
1pm					1:00 - 3:30 🖺	Office	
2pm		1:30 - 2:50 DeepRob Office Hours (Adi)	-	1:30 - 2:50 DeepRob Office Hours (Adi)	Office Hours (Jason)	Hours	
3pm		DeepRob	-				
4pm		Office Hours					

*May have small changes - stay tuned

P0 Starter

P0 folder:

https://drive.google.com/drive/folders/1gJKZlMKRuLmA4 EslCxrREa3dujlyY9XC?usp=drive link

Please create a "DeepRob" folder in your own Google Drive, and put P0 folder under there. This will be your individual private copy of the code - do NOT change the starter code in shared folder!

