
Leveraging Transfer Learning and Knowledge
Distillation for Leaf Disease Classification

David Smith
CSE and Robotics Department

University of Michigan
Ann Arbor, Michigan

Email: smitd@umich.edu

Jess Wu
CSE and Robotics Department

University of Michigan
Ann Arbor, Michigan

Email: jessyw@umich.edu

William Hasey
Robotics Department

University of Michigan
Ann Arbor, Michigan

Email: whasey@umich.edu

Abstract—Identification of diseased crops through the symp-
toms displayed on their leaves can help farmers manage large-
scale operations. Integrating deep learning with robotics provides
a promising way for farmers to maintain their crops in an effi-
cient and cost-effective manner. However, deep learning models
are often too large and computationally complex to be deployed
in agricultural robots. Previous research has been conducted on
small datasets and has produced models that can identify diseases
for a specific species of crop. Drawing from previous research
on the study of apple leaves and associated diseases, along with
studies on knowledge distillation, this work proposes a lightweight
model that can classify 17 common diseases spanning 14 different
crop species.

I. INTRODUCTION

Agricultural robotics is a fast-growing area of research—in
particular, many researchers are focusing on using automation
to perform tedious everyday tasks such as weeding, scouting,
and harvesting [1]. Properly trained robots would be less
prone to missing important information when working fields,
and would not fall victim to dangerous environmental factors
such as extreme heat, pesticides, and hazardous machinery. As
robotics has become a more prominent field in engineering,
interest in agricultural robotics has spiked [2], and deep
learning has been a heavily researched area relating to this
topic. However, as interest in this specific area of robotics has
increased, the requirements for a practical machine learning
model have become narrower. Any model created must be
highly accurate, generalizable to real-world data, and require
as little memory and computational power as possible, such
that a robot’s ability to perform tasks remains more efficient
than a human’s.

Therefore, the purpose of this work is to develop a
lightweight model that expands on the capabilities of previous
models while maintaining a high enough accuracy to be a
practical solution in the world of agricultural robotics. Using
deep transfer learning, we train the large, powerful model
DiseasedCNN, aiming to maximize accuracy over all else.
Then, leveraging the advantages of knowledge distillation, we
propose DiseasedCNN-Lite: a lightweight model that adopts
DiseasedCNN’s accuracy, while being a fraction of the size.

II. RELATED WORKS

Image processing and classification of diseased leaves has
been researched before, and a majority of studies are spe-
cific to one crop (apples and tomatoes are by far the most
common). Many different machine learning architectures have
been attempted—some deep models, some not—and most
have been able to achieve test accuracies upwards of 90%-95%
[3] [4] [5] [6] [7] [8] [9]. These studies focused on one crop
species and had relatively small datasets of a few thousand
training images creating a lack of versatility.

A. DeepCNN

DeepCNN is a convolutional neural network built by [3]
that can identify three different apple leaf diseases, as well as
a healthy leaf. This study laid the foundation for our work on
disease detection. After training for 1000 epochs, DeepCNN
achieved an accuracy of 98% on a dataset consisting of 3,171
images (2,228 training, 634 validation, 319 testing). To lay
the foundation for our model, we attempted to reproduce the
final results of [3]. The study provided the dataset used and
outlined the exact architecture of DeepCNN, including specific
dimensions for each layer; however, specifics for the data
augmentation performed were not provided.

In our attempt to reproduce these results, we discovered
that DeepCNN would drastically overfit to the data when
trained for 1,000 epochs. Instead, we achieved 96% testing
accuracy after 250 epochs of training, and training for any
longer would lead to a decrease in overall model performance.
We theorize that this discrepancy could be a result of the
differing data augmentation. Since the operations performed
on the images were not detailed by [3], we researched and used
relatively common operations (horizontal and vertical flips,
shearing, scaling, shifting) and applied them to each training
image with a 40% probability. Data augmentation is used to
prevent overfitting, but its misuse can harm model performance
and actually increase the chance of overfitting. Therefore, we
believe that our data augmentation was substantially different,
and led to the drastic change in accuracy as the number of
training epochs passed 250.

III. DESIGN CONSIDERATIONS

A. Dataset

One limiting factor of the DeepCNN network proposed by
[3] was that the dataset used only contained four classes on
a single species. Therefore, we first aimed to build a network
that could identify many more species and diseases at a similar
rate. We used the Plant Village dataset [10]. This dataset
contains 54,305 images spanning 14 different species of crop
and 17 common diseases, amounting to 38 separate classes.
We split the dataset into training, testing, and validation using
the standard 70-20-10 split.

As a preemptive measure to prevent overfitting, we proba-
bilistically applied different augmentation operations to each
training image. Given that there were only approximately
1,000 images per class in the Plant Village training set, we
determined that data augmentation would be our most effective
tool against overfitting. Our data augmentation consisted of
shearing, scaling, horizontal and vertical flipping, and elastic
distortion.

B. Backbone

To determine which pretrained model to use as a backbone
for transfer learning, we benchmarked the performance of
seven commonly used models against the Plant Village dataset
[10]. This process included adding one fully connected layer
to the end of each pretrained model, and then training for
20 epochs. As seen in Figures 1 and 2, EfficientNet-B0 and
ResNet50 performed best. Both reached a loss below 3.0 and
a validation accuracy above 80%. After this benchmarking
process, we trained DiseasedCNN for three epochs with both
EfficientNet-B0 and ResNet50 to determine which model
meshed best with our fine-tuning layers. We determined that
ResNet50’s feature extraction was better suited for our needs,
as EfficientNet-B0 achieved a test accuracy of 61.51% and
ResNet50 achieved a test accuracy of nearly 75%. Therefore,
we decided to use ResNet50 as our pretrained backbone for
DiseasedCNN.

Fig. 1. Loss per epoch for each pretrained backbone candidate

Fig. 2. Validation accuracy per epoch for each pretrained backbone candidate

IV. DISEASEDCNN

DiseasedCNN is the powerful model that we built to serve
as a teacher during the knowledge distillation process. It
relies on ResNet50’s feature extraction to provide a basis
for its classification abilities, and utilizes fine-tuning layers
to calibrate its prediction to our dataset. It also employs a
rectified linear unit (ReLU) activation function to provide
nonlinearity, and softmax is used on the output to produce
a probabilistic prediction.

A. Structure

The foundation of DiseasedCNN is a ResNet50 backbone
with the last three layers (adaptive average pooling, flattening,
and fully connected) removed. This allows us to feed the
output of the network into our fine-tuning layers, while main-
taining the spatial information that the network has extracted.

The fine-tuning layer architecture is as follows: two con-
volutional layers with ReLU activations on the outputs, one
batchnorm layer and one adaptive average pooling layer, and
two fully connected layers, with ReLU activation after the first
layer and softmax after the second. Table 1 provides specifics
on DiseasedCNN’s layer architecture.

B. Training

DiseasedCNN trained for 50 epochs on the Plant Vil-
lage [10] dataset, with model validation performed every 13
batches. During training, we used an Adam optimizer with a
learning rate of 0.0005, a β1 value of 0.9, and a β2 value
of 0.999. In addition, we used an exponential learning rate
scheduler with a γ factor of 0.9. Our loss function for Dis-
easedCNN’s training was the standard PyTorch cross-entropy
loss function. The model was trained for approximately two
hours, and while the average epoch loss remained relatively
high (above 2.5, shown in Figure 3), the model reached a final
validation accuracy of 93%, as seen in Figure 4.

TABLE I

C. Capabilities

Ultimately, DiseasedCNN achieved a test accuracy of 93%,
with an average inference time of 1.15 milliseconds on an
RTX 4090 GPU. We expect this inference time to increase
by a factor of roughly 100 when running on an average CPU,
which would be approximately 115 milliseconds. Additionally,
DiseasedCNN is 140 megabytes in size.

D. Discussion

DiseasedCNN’s inference time is relatively high compared
to other models of the same size. We would like to see this
value within the range of 10 to 30 milliseconds. This is partic-
ularly important for any integration with agricultural robotics,
because a longer inference time means that it takes more
energy and computational power to run inference. Maximizing
battery life is a major aspect of agricultural robotics. Further-
more, DiseasedCNN is too large for many agricultural robots
and drones. This is largely due to its ResNet50 backbone,
which provides the necessary feature extraction and enables
such high classification accuracy. Overall, DiseasedCNN is a
good start, but in order to be a practical solution in the field
of optimized agricultural robotics, DiseasedCNN would need
to see a drastic reduction in size and inference time.

V. DISEASEDCNN-LITE

DiseasedCNN-Lite is a much smaller model that we built to
serve as a student during the knowledge distillation process.
Instead of relying on a large, pretrained backbone such as
ResNet50 to perform feature extraction, it extracts a small
number of foundational features from a given image, while
focusing on learning to predict the output of its teacher,
DiseasedCNN. Since this model is much smaller than Dis-
easedCNN, we opted to use a Leaky ReLU activation function
to prevent any gradients from vanishing during the training
process.

A. Structure

DiseasedCNN-Lite consists of three convolutional layers
with Leaky ReLU activations on the outputs and pooling layers
following the activation function. The first two pooling layers

Fig. 3. DiseasedCNN average training loss per epoch

Fig. 4. DiseasedCNN validation accuracy, measured every 13 batches

are max pooling with a 2×2 kernel, and the third is an adaptive
average pooling layer that shrinks the spatial features to 1×1.
Afterwards, the output is flattened and passed through one
final fully connected layer.

B. Distillation Loss Definition

The process of knowledge distillation can be implemented
in many different ways. Feature maps, weights, biases, or
any other aspect of the student and teacher models can be
compared at any point in the training process, and used to
calibrate the student. For our implementation, we opted to
calculate the student model’s loss with a weighted combina-
tion of the student’s loss and the teacher’s loss. A defining
characteristic of this process is the temperature value. This
value defines the smoothness of the probability distributions
produced by the teacher. A higher temperature leads to a less
concentrated distribution, whereas a lower temperature leads
to a more peaked distribution. This dictates how much the

student model will focus on the most confident predictions
made by the teacher.

First, we define pi and qi as the result of the softmax with
temperature function, where T is the temperature value, and
where Ti and Si are the teacher and student output logits,
respectively.

pi =
eTi/T∑C
j=1 e

Tj/T
, qi =

eSi/T∑C
j=1 e

Sj/T

Next, we use the Kullback–Leibler divergence to measure
the difference in the probability distributions predicted by the
student and the teacher. This enables the student to learn the
probability distribution produced by the teacher for a given
input image, and allows for a more well-rounded prediction
than could be achieved by purely basing its loss on the discrete
(correct or incorrect) output of cross-entropy loss.

KL(P ||Q) =
1

N

N∑
n=1

C∑
i=1

p
(n)
i log

(
p
(n)
i

q
(n)
i

)
Then, we define soft loss and hard loss. Soft loss is defined

as the result of the Kullback-Leibler divergence, multiplied
by a scale factor T 2. We introduce this T 2 term to correct for
the scaling that occurs due to the temperature term within the
softmax function. Hard loss is defined as the standard cross-
entropy loss function.

Lsoft = T 2 · 1

N

N∑
n=1

C∑
i=1

p
(n)
i log

(
p
(n)
i

q
(n)
i

)

Lhard = −
C∑
i=1

pi log (qi)

Lastly, we produce the final loss of the student model by
performing a weighted sum of the hard loss and the soft
loss. The weighting factor α is a hyperparameter tuned during
training, with the constraint that the sum between α and 1−α
must equal 1.

L = (α) · Lhard + (1− α) · Lsoft

C. Training

DiseasedCNN-Lite trained for 100 epochs on the Plant
Village dataset [10], with model validation performed at the
end of each epoch. During training, we used many of the
same hyperparameters as DiseasedCNN. We used an Adam
optimizer with a learning rate of 0.0005, a β1 value of 0.9,
and a β2 value of 0.999. We also used a learning rate scheduler
to help optimize the training of the student model, with a γ
factor of 0.9. However, for DiseasedCNN-Lite we added a
weight decay factor of 0.00001 to avoid large weights and
prevent overfitting. Furthermore, DiseasedCNN-Lite trained
with a T value of 4, as we chose to soften the teacher
model’s probability distribution, and an α value of 0.7, putting
more emphasis on hard loss than soft loss. Table 2 details

TABLE II
TRAINING HYPERPARAMETERS

the hyperparameters used for training both DiseasedCNN and
DiseasedCNN-Lite.

The model trained for approximately one and a half hours.
As seen in Figure 6, the average epoch loss started at an
unusually high value of 16. We believe that this stems from the
model attempting to integrate the teacher model’s probability
distribution into its loss calculation. The use of a high T
value meant that the teacher’s probability distribution did not
provide as clear of a choice for DiseasedCNN-Lite as it could
have, but we believed this paired well with an α value that
put more emphasis on DiseasedCNN-Lite’s loss. Our choice
of hyperparameters was tailored towards using the teacher
model to gently guide DiseasedCNN-Lite toward the correct
prediction, rather than forcing DiseasedCNN-Lite to accept
the teacher’s prediction and potentially harm its ability to
generalize to real-world data.

DiseasedCNN-Lite also began training with a very low
validation accuracy compared to its teacher, DiseasedCNN.
However, this was expected, as there was no feature extraction
performed by a pretrained backbone. As seen in Figure 7, the
validation accuracy quickly rose to 70% in 20 epochs, and
then began to rise much more slowly over the next 80 epochs.

D. Capabilities

DiseasedCNN-Lite achieved a test accuracy of 87%, with
an average inference time of 0.007 milliseconds on an RTX
4090 GPU. As with DiseasedCNN, we expect this inference
time to increase by a factor of roughly 100 when running on an
average CPU, which would be approximately 0.7 milliseconds.
Overall, DiseasedCNN-Lite was 390 kilobytes in size.

E. Discussion

DiseasedCNN-Lite’s inference time was much faster than
DiseasedCNN’s, and will likely require significantly less en-
ergy and computational power to run on an agricultural robot.

Fig. 5. Knowledge Distillation Model

Fig. 6. DiseasedCNN-Lite average training loss per epoch

In addition to this, DiseasedCNN-Lite was 334 times smaller
than its teacher, DiseasedCNN. The total size of the model,
along with the shortened inference time, makes DiseasedCNN-
Lite a more practical solution than DiseasedCNN, and opens
the door to integration with agricultural robots and drones.
Although a test accuracy of 87% is relatively low compared
to other existing models (which routinely achieve accuracies
above 90%), DiseasedCNN-Lite provides a strong foundation
for future research into training smaller student models.

We believe that with slight changes to hyperparameters,
and many more epochs of training, DiseasedCNN-Lite could
increase its capabilities. We would have to be careful not to
overfit to our dataset, and to prevent this our best option would
likely be to increase our data augmentation. To best support an

Fig. 7. DiseasedCNN-Lite validation accuracy per epoch

increase in DiseasedCNN-Lite’s abilities, we would continue
to calibrate DiseasedCNN in order to optimize its accuracy.
Although unlikely, it is possible that DiseasedCNN-Lite could
achieve a higher test accuracy than its teacher, DiseasedCNN.
However, a more accurate teacher model would only be more
helpful during training.

VI. CONCLUSION

DiseasedCNN-Lite achieved a respectable accuracy of 87%,
while being an extremely lightweight model totaling only 390
kilobytes in size. Compared to the capabilities of its teacher,
DiseasedCNN-Lite was capable of similar accuracies while
shrinking the size of the model by a factor of 334. Overall,
this model is still not ready to be deployed and tested with

agricultural robots and drones, but it lays a solid foundation
for future work.

One of the main limitations of DiseasedCNN-Lite is that
it can only predict diseases given an image containing only
one leaf. A potential solution to this problem is to use
a vision transformer as a pretrained backbone, and teach
DiseasedCNN-Lite to not only identify diseased leaves, but
also locate leaves with bounding boxes if given an image
with multiple leaves. We would also like to increase the test
accuracy of DiseasedCNN-Lite, and perform tests on how well
it generalizes to real-world data. The next step after those
improvements is to deploy the model onto an agricultural robot
or drone, and test its capabilities in the real world.

ACKNOWLEDGMENTS

A special thanks to Xiaoxiao Du and the rest of the ROB
498 Staff.

REFERENCES

[1] R. Shamshiri, C. Weltzien, I. Hameed, I. Yule,
T. Grift, S. Balasundram, L. Pitonakova, D. Ahmad, and
G. Chowdhary, “Research and development in agricul-
tural robotics: A perspective of digital farming,” Interna-
tional Journal of Agricultural and Biological Engineer-
ing, vol. 11, pp. 1–14, 2018.

[2] S. Hajjaj and K. Sahari, “Review of agriculture robotics:
Practicality and feasibility,” IEEE International Sympo-
sium on Robotics and Intelligent Sensors, vol. 4, pp. 194–
198, 2017.

[3] V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and
A. A. Khan, “Detection of apple plant diseases using
leaf images through convolutional neural network,” IEEE
Access, vol. 11, pp. 6594–6609, 2022.

[4] M. Agarwal, S. Gupta, and K. Biswas, “A new conv2d
model with modified relu activation function for iden-
tification of disease type and severity in cucumber
plant,” Sustainable Computing: Informatics and Systems,
vol. 30, 2021.

[5] P. Wspanialy and M. Moussa, “A detection and severity
estimation system for generic diseases of tomato green-
house plants,” Computers and Electronics in Agriculture,
vol. 178, 2020.

[6] P. Jiang, Y. Chen, B. Liu, D. He, and C. Liang, “Real-
time detection of apple leaf diseases using deep learning
approach based on improved convolutional neural net-
works,” IEEE Access, vol. 7, 2019.

[7] S. Kodors, G. Lacis, O. Sokolova, V. Zhukovs,
I. Apeinans, and T. Bartulsons, “Apple scab detection
using cnn and transfer learning,” Agronomy Research,
vol. 19, pp. 507–519, 2021.

[8] Z. urRehman, M. Khan, F. Ahmed, R. Damaševičius,
S. Naqvi, W. Nisar, and K. Javed, “Recognizing apple
leaf diseases using a novel parallel real-time processing
framework based on mask rcnn and transfer learning: An
application for smart agriculture,” IET Image Process,
vol. 15, p. 2157–2168, 2021.

[9] C. B. amd Jiamin Wang, Y. Duan, B. Fu, J.-R. Kang,
and Y. Shi, “Mobilenet based apple leaf diseases iden-
tification,” Mobile Networks and Applications, vol. 27,
pp. 172–180, 2020.

[10] M. Singh, “Plant village dataset,” tech. rep., Kaggle,
2021.

	Introduction
	Related Works
	DeepCNN

	Design Considerations
	Dataset
	Backbone

	DiseasedCNN
	Structure
	Training
	Capabilities
	Discussion

	DiseasedCNN-Lite
	Structure
	Distillation Loss Definition
	Training
	Capabilities
	Discussion

	Conclusion

