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Abstract—DiffusionDet is a recent object-detection framework
that treats bounding-box prediction as a denoising process:
Gaussian noise is added to ground-truth boxes and the network
learns to recover the originals. While the authors trained and
evaluated DiffusionDet on the large-scale MS-COCO dataset, we
investigate its robustness on the much smaller PROPS dataset.In
our experiments DiffusionDet converged slowly and achieved sub-
optimal accuracy on PROPS, so we added heat-map head after
encoder backbone network and introduced an additional heat-
map loss to complement the original objective. The modified
network converges markedly faster and improves performance
by +1.8 AP over the baseline on PROPS.Source code is available
at: DiffusionDet-on-PROPS. (Project page: https://deeprob.org)

I. INTRODUCTION

Object detection is a classic computer vision task that aims
to locate objects in a digital image. Object detection methods
have been evolving with the development of object candidates,
for example from fast-RCNN [1],YOLO [2] to learnable object
queries such as end-to-end detection with transformers [3]
and DETR [4]. Most object detection methods use surrogate
regression and classification on empirically designed object
candidates, refine the model by minimizing classification and
regression errors,i,e. Faster-RCNN [1], sliding window based
detection [5] etc.

Existing models usually have fix sized learneable queries
or bounding boxes, the authors of DiffusionDet [6] proposed
a new diffusion-based method that follows the ”noise to
box” paradigm. Similarly to image denoising task, which can
generate the image by gradually removing noise from an image
via the learned denoising model, DiffusionDet generates the
positions (center coordinates) and sizes (widths and heights) of
bounding boxes in the image. At the training stage, Gaussian
noises are added to ground truth boxes, then use these random
boxes as ROI(regions of interest) on feature maps extracted
by backbone networks(the authors use ResNet [7] and Swin
Transformer [8]),then send ROIs to detection decoder, which is
a RNN head trained to predict the ground-truth boxes without
noise. Thus the model learned how to ”denoise” random boxes
and find ground truth ones. At the inference stage, the model
predicts the noise added to bounding boxes at each time stamp
all the way to the original ground truth boxes. The original
model pipeline is shown in Fig.1

Fig. 1. Original Pipeline of DiffusionDet

However, the original DiffusionDet has some potential
drawbacks: First, the authors claim that the model reaches
45.8 AP on COCO dataset(with 200K+ images and over
100 classes), but it cannot prove that DiffusionDet has a
good performance on smaller datasets, furthermore, the model
may experience some performance fluctuation when detecting
small or occluded items in dense scenes due to its complete
random bounding boxes. Second, in early stage of training,
DiffusionDet generates fixed number boxes as proposals, but
many proposals are negative and sparse, which means that the
model converges relatively slow in the beginning due to the
lack of gradient.

To improve the model in the above 2 ways, we made two
contributions as follows:

1) Train and test DiffusionDet on PROPS dataset. This
dataset is much smaller(with only 5K images and 10
classes) compared to COCO, and contains more chal-
lenging detection tasks for DiffusionDet, such as high-
frequency occluded objects and small targets. We refine
the model by tuning the number of proposals, finally
reached 66.67 AP with ResNet-50 backbone, detectron2
[9] learning rate scheduler and 200 proposals.

2) Add a heatmap head after the backbone feature map,
designed a weighted heatmap loss and count it toward
main loss(box regression and classification). The model
obtains a much faster convergence rate(+10 AP at the
first 1000 iterations,+9 at the first 2000 iterations),
higher final AP(+0.6).

https://github.com/fuingcrazy/DiffusionDet-on-PROPS
https://deeprob.org


II. RELATED WORK

A. Object Detection

Object detection is a fundamental task in computer vision,
aiming to simultaneously localize and classify objects within
an image. Traditional approaches, such as two-stage detectors
like Fast R-CNN [1], first generate region proposals and then
classify each region. Although effective, these methods often
suffer from high computational costs due to their complex
pipeline. To address this, single-stage detectors like YOLO [2]
were introduced, streamlining the detection process by directly
regressing object bounding boxes and class probabilities in a
dense prediction manner.

B. Diffusion Models

Diffusion models have recently emerged as a powerful class
of generative models, capable of producing high-fidelity sam-
ples through a gradual denoising process. Initially proposed for
image generation tasks, diffusion models work by reversing a
Markovian forward process that adds Gaussian noise to data
over multiple time steps [10]. Due to their strong modeling
capacity and stable training, diffusion models have achieved
state-of-the-art results in image synthesis, super-resolution,
and inpainting.

In the context of object detection, diffusion models have
been adapted to model the distribution over object bounding
boxes and class labels. Instead of treating detection as a direct
regression problem, methods like DiffusionDet propose to
formulate object detection as a denoising task, where noisy
object queries are progressively refined into accurate detec-
tions through a learned reverse process [6]. This perspective
brings several advantages, including better uncertainty model-
ing, improved robustness, and the ability to naturally handle
variable numbers of objects without the need for predefined
anchors or proposals. The integration of diffusion processes
into detection frameworks represents a promising direction,
bridging generative modeling and structured prediction tasks.

C. DiffusionDet

In the realm of object detection, DiffusionDet [6] introduces
a novel generative approach by modeling the detection task
as a denoising diffusion process. During training, the model
learns to reverse the process of adding noise to ground-truth
bounding boxes, effectively learning to recover object boxes
from noisy inputs. At inference, DiffusionDet starts from
randomly generated bounding boxes and iteratively refines
them to accurately detect objects. This method offers flex-
ibility by accommodating a dynamic number of boxes and
supports iterative evaluation. Experimental results demonstrate
that DiffusionDet achieves favorable performance compared to
previous well-established detectors, highlighting the potential
of diffusion models in object detection tasks.

D. Heatmap Head

In object detection, the heatmap head is a pivotal component
in anchor-free, keypoint-based detectors such as CenterNet
[11]. This module predicts a class-specific heatmap over the

spatial dimensions of the input image, where each pixel
indicates the likelihood of an object center belonging to a
particular class. During training, the model encodes ground
truth object centers as 2D Gaussians, allowing it to learn
spatial attention toward central regions. At inference, high-
confidence peaks on the predicted heatmaps correspond to
object centers, from which bounding boxes are recovered using
additional regression heads.

This design significantly simplifies the detection pipeline by
eliminating anchor box generation and non-maximum suppres-
sion across predefined regions. Instead, it adopts a keypoint-
based representation that is more flexible and interpretable.
The heatmap head is typically paired with two additional
heads: a dimension head that regresses the width and height of
the object, and an offset head that refines the center prediction
to counteract resolution loss due to downsampling.

The heatmap-based formulation has demonstrated strong
performance in dense detection tasks and has been particularly
effective for detecting small or overlapping objects, such as
in pedestrian or crowd datasets. Moreover, its lightweight
architecture and fast inference capabilities make it well-suited
for real-time applications. Subsequent works have further
extended this concept to 3D detection, pose estimation, and
tracking, confirming the generality and robustness of the
heatmap head design.

III. ALGORITHMIC EXTENSION

In order to accelerate convergence rate and improve the
model’s performance on small or occluded objects, we pro-
posed the heatmap layer. The detailed structure of our op-
timized DiffusionDet is shown as Fig.2. Heatmap head is
composed of 1 2D convolution layer, 1 Relu activation layer
and the final convolution layer. The first convolution layer
takes high dimension feature map extracted by backbone
network and returns 64 dimension filters. The last convolution
layer takes activated 64 dimension map to 10 dimension
heatmap w.r.t class numbers. The predicted heatmap will be
interpolated to C×H×W, where H and W stands for height
and width of original image, this is for convenience of training
process. We use synthesized heatmap for training.Here is how
we do it:

First, consider a ground truth box,its top left corner is at
(x1, y1), bottom right (x2, y2), (x1, y1, x2, y2) ∈ [0, 1], class
labels C ∈ [0, 1, ..., 9], size of heatmap is H × W , we can
deride the center coordinates:

(xc, yc) = (
x1 + x2

2
·H,

y1 + y2
2

·W ),

For each class label c, we define a 2D Gaussian kernel function
to define the ”possibility” that a point(x, y) is at the center of
a ground truth box:

G(x, y) = exp

(
− (x− xc)

2 + (y − yc)
2

2r2

)
, (1)

where
r = max(min radius, min(w, h) · ρ).



Fig. 2. Our model structure

min radius is a preset minimum radius that sets a threshold of
the size of the ”plateau” on pixel scale, ρ is a scaling factor.
We then normalize the heatmap by dividing the largest value.
After experiments, we find that min radius = 4 and ρ = 0.5
will synthesize an accurate heatmap.

To train the heatmap head, we use MSE loss, which is
the element-wise mean squared error. As shown in Fig.2, the
predicted heatmap of class ”Mustard bottle” is at the bottom
right corner, suppose f(xp, yp, C) is the value on (xp, yp) for
class C, zs is the value at the same position on synthesized
heatmap, the MSE loss should be:

Lmin =
1

2
||f(xp, yp, C)− zs||2 (2)

Then we multiply the heatmap loss with weight, count it
toward total loss generated by RNN decoder. This process
is analogous to ”space attention” , this gives the model a
special hint that ”this position is probably occupied by class 0
object”, we can calculate gradient from every pixel and each
target bounding box is supervised, furthermore, this module is
independent from the overall DiffusionDet pipeline, makes it
robust and stable.

The heatmap head also improves the model’s performance
on detecting occluded and small objects. Recall that heatmap
layer will predict positions for every object on a image, while
in traditional DiffusionDet , small or occluded objects are
always neglected by larger targets due to larger bounding
boxes.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments are carried out on the PROPS dataset,
consisting of 5,000 images in 10 object categories. The model
was trained and test on a single NVIDIA A40 GPU. Ini-
tially, we implemented DiffusionDet using a Swin Transformer
backbone with 30 bounding-box proposals, but observed a
notably slow convergence rate. Subsequently, we switched to
a ResNet-50 backbone and increased the number of proposals,

resulting in improved performance. To further accelerate con-
vergence and boost accuracy, we introduced a heatmap layer
with minimum radius of 4 and a scaling factor of 0.5.

The model is trained for 15,000 iterations, with performance
evaluated at intervals of 1,000 iterations. Detection accuracy
was assessed using mean Average Precision (mAP) over
Intersection over Union (IoU) thresholds ranging from 0.50
to 0.95.

B. Results

Fig. 3 compares the Average Precision (AP) over the course
of training. The baseline using the Swin Transformer backbone
with 30 proposals demonstrated a low initial convergence
rate. Upon transitioning to the ResNet-50 backbone with an
increased number of proposals, the AP improved considerably.
Incorporating the heatmap head led to a substantial acceler-
ation in convergence, especially evident in the early training
stages, where AP sharply rose from approximately 38% to
58% within the first 1,000 iterations. After 15,000 iterations,
the heatmap-enhanced model achieved a final AP around 67%,
surpassing the baseline approaches by approximately 10%.

Fig. 3. AP with iteration

Fig. 4 provides qualitative results on sample images
from the PROPS dataset, highlighting the heatmap-enhanced
model’s capability to accurately localize objects with high
confidence, including challenging small and partially occluded
targets. The optimized DiffusionDet model enhanced by the
heatmap layer demonstrates precise localization and excep-
tionally high detection confidence across various object cat-
egories. Notably, the model achieved over 95% confidence
scores for all detected instances, illustrating the robustness and
accuracy of our proposed heatmap guidance. Table I presents
the Average Precision (AP) for each category in the PROPS
dataset after adding the heatmap layer. Most object categories
achieved AP values above 75. However, detection performance
for smaller objects, such as large marker and tuna fish can,
still remains low.



Fig. 4. Result with heatmap on PROPS dataset

TABLE I
PER-CATEGORY AVERAGE PRECISION (AP) ON PROPS DATASET

Category AP (Without Heatmap) AP (Heatmap)
master chef can 74.873 80.74

cracker box 72.318 77.84
sugar box 75.262 79.01

tomato soup can 72.893 76.05
mustard bottle 72.541 79.95
tuna fish can 44.210 58.62
gelatin box 55.481 60.85

potted meat can 65.272 70.77
mug 70.459 75.43

large marker 25.211 34.40
Average AP 62.852 69.368

V. CONCLUSIONS

We evaluated **DiffusionDet** on the PROPS dataset.
After tuning the number of box proposals and testing several
back-bone networks, the detector reached a respectable mean
Average Precision (mAP) of **67

Diffusion-based detectors usually suffer from slow infer-
ence and high computational cost. Our proposed **heat-map
head** can accelerate inference by reducing the required
sampling steps: given a heat-map, the model only denoises
boundingboxes in regions with large values—that is, regions
that are more likely to contain an object. Because of time
constraints we were not able to integrate this module into the
inference stage. Nevertheless, the heat-map can be regarded
as an explicit prompt for diffusion models, and the same idea
might generalise to other tasks such as image generation.

VI. CONTRIBUTION

Gongxing Yu add the heatmap head to to the model,run the
experiment and write introduction and algorithmic extensions
sections of this report. Liangkun Sun run the experiment,draw
the plot for the results and write the experiments and results
section of this report. Yang Lyu run the experiment,draw the
poster,make the website and finish the rest.
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