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Abstract—Advanced Driver Assistance Systems (ADAS) de-
mand high accuracy and robustness in object detection, par-
ticularly under adverse weather conditions such as rain, snow,
fog, and sandstorms. Transformer-based detectors like DETR
have demonstrated strong performance under clear weather,
but their effectiveness deteriorates under low-visibility scenarios.
In this project, we evaluate DETR’s baseline performance on
the DAWN dataset and propose improvements through fine-
tuning to better extract low-level features and handle noisy
inputs. Additionally, we integrate deweathering techniques to
enhance model generalization. Our results show that fine-tuning
on domain-specific datasets improves detection robustness, but
challenges remain in achieving consistent performance across
diverse hazardous conditions. Future work includes integrating
de-weathering modules to further enhance detection reliability.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) rely heavily
on accurate and robust object detection to support critical
functionalities such as emergency braking, collision avoid-
ance, and lane departure warning. While modern object de-
tectors, particularly transformer-based models like DEtection
TRansformers (DETR) [1], have achieved strong performance
under clear weather conditions, their robustness significantly
degrades when faced with adverse environments such as
rain, snow, fog, and sandstorms. These hazardous conditions
introduce challenges like reduced visibility, motion blur, and
low-contrast scenes, making object detection a much harder
task even for human drivers.

Improving detection robustness under these conditions is
crucial for ensuring the safety and reliability of autonomous
systems. Collecting large-scale real-world datasets across dif-
ferent weather scenarios is both costly and logistically chal-
lenging, which motivates the exploration of domain-specific
datasets such as DAWN [2], an image collection focusing
on vehicle detection under adverse weather. Furthermore,
simple fine-tuning of existing models often falls short, as
models may overfit to specific conditions without achieving
true generalization across diverse environments.

In this project, we aim to improve the robustness of
transformer-based object detectors under hazardous weather
conditions. We first evaluate DETR’s baseline performance
on the DAWN dataset and identify key weaknesses. We then
propose a combination of fine-tuning the CNN backbone and
transformer decoder modules, along with de-weathering tech-

niques. Through these efforts, we seek to enhance detection
accuracy and model generalization under adverse weather
conditions. Our findings provide insights into the challenges
and opportunities for advancing perception systems in safety-
critical applications.

II. RELATED WORK

Object detection for ADAS has been primarily driven by
deep learning-based methods, with YOLO, Faster R-CNN, and
Single-Shot Detector (SSD) among the most widely adopted.
YOLO offers real-time performance with relatively high ac-
curacy, making it suitable for embedded automotive systems.
However, it tends to struggle under low-visibility conditions
due to its sensitivity to image noise and contrast loss. Faster R-
CNN provides higher detection precision, especially for small
objects, but is slower and more computationally demanding,
which limits its real-time application in vehicles. SSD balances
speed and accuracy better than Faster R-CNN but similarly
degrades in adverse weather scenarios. Recent transformer-
based approaches, like DETR, have shown promise in handling
complex scenes but often require large datasets and extensive
computation, making them challenging for deployment on
resource-limited ADAS platforms.

DETR have made a breakthrough by removing the need
for traditional hand-crafted components such as anchor box
design and non-maximum suppression (NMS). DETR re-
frames object detection as a direct set prediction problem,
using a transformer encoder-decoder architecture to model
global relationships across the entire image. The self-attention
mechanisms in the transformer allow DETR to reason about
all object instances simultaneously, enabling better handling of
complex scenes with overlapping objects. DETR simplifies the
training pipeline by requiring only bipartite matching between
predictions and ground-truth objects, resulting in a simple
and end-to-end optimization process compared to two-stage
detectors like Faster R-CNN.

This fully attention-based approach benefits ADAS appli-
cations with higher robustness to occlusions, better contextual
understanding, and the potential for integrating multi-modal
sensor inputs. Furthermore, DETR’s ability to model long-
range dependencies can be particularly useful for identifying
partially visible or small objects, which are critical for safe
autonomous driving. However, DETR has limitations under



adverse weather. Its detection performance drops when visibil-
ity and contrast are reduced, such as in rain, fog, or snow, due
to weaker feature extraction. It is also computationally heavy
and slow to train, making real-time deployment in vehicles
difficult, which remains a challenge for ADAS.

The DAWN dataset was introduced to address the lack
of adverse-weather-specific benchmarks. It provides annotated
images under various weather conditions, including snow, fog,
rain, and sandstorms, simulating real-world driving environ-
ments. However, the dataset size remains relatively small com-
pared to general object detection datasets, posing challenges
for generalization and fine-tuning.

Related efforts on de-weathering such as TransWeather [3]
and Restormer [4] explore the use of transformer architectures
for image restoration and enhancement, potentially increase
image visibility by reducing the adverse weather effects.
Restormer proposes an efficient transformer model for high-
resolution image restoration and has achieved state-of-the-art
results on several key image restoration tasks, including image
deraining, single-image motion deblurring, defocus deblurring,
and image denoising. It makes key improvements into the
traditional transformer architectures such that it can capture
long-range pixel interactions in large images. TransWeather
uses its novel encoder to enhance attention inside the image
patches to effectively remove weather degradations and in-
troduces its transformer decoder with learnable weather type
embeddings to adjust to the weather degradation at hand.
It saves efforts from redundant weather-specific encoders in
CNN-based models. Both Restormer and Transweather sug-
gests the potential of resolving low visibility due to adverse
weathers and integrating de-weathering modules with object
detectors to further improve detection robustness.

While previous work has focused either on improving
detection in clear conditions or on restoring images degraded
by weather, our project aims to directly enhance transformer-
based object detection models to operate more reliably under
hazardous conditions without relying solely on image restora-
tion preprocessing.

III. METHODOLOGY

Our methodology consists of three major stages: Baseline
Evaluation, two Fine-tuning DETRs, and Weather-aware Data
Augmentation. Our code can be found in our github repository.

A. Weather-aware Data Augmentation

The DAWN dataset contains images under 7 classes of ad-
verse weathers (e.g. fog, snow storm, dust tornado, sand storm,
mist, haze, and rain storm). The original method has already
applied basic data augmentations, such as horizontal flipping,
to expand the training set. In our experiments, we use the
dataset as provided, without applying further augmentations
due to study focus and time limitation. The lack of more
sophisticated weather-specific transformations may limit the
model’s ability to generalize to unseen weather conditions.

B. Baseline Evaluation

We use the pre-trained DETR model with a ResNet-
50 backbone (facebook/detr-resnet-50), provided by
the Hugging Face transformers library. The model is
initialized with weights pre-trained on the COCO dataset
and deployed on a GPU when available. Input images are
processed using the corresponding DetrImageProcessor,
maintaining aspect ratio and resizing according to the default
DETR configuration.

For each image, the model performs inference. We set the
detection confidence threshold to 0.5. The resulting bounding
boxes and class predictions are post-processed and formatted
to match the COCO evaluation format.

Evaluation is conducted separately for each weather con-
dition (e.g. fog, snow storm, dust tornado, sand storm, mist,
haze, and rain storm) using the DAWN dataset annotations and
the pycocotools library. Performance metrics, including
mean Average Precision (mAP), are computed following the
standard COCO evaluation protocol with IoU type set to
bbox.

C. Fine-tuning DETR

To enhance DETR’s performance under adverse weather
conditions, we explore two fine-tuning strategies.

The first strategy involves directly fine-tuning the original
pre-trained DETR model (facebook/detr-resnet-50)
without freezing any layers. We use the DAWN dataset, with
weather-specific data augmentations applied during training.
The model is fine-tuned using the original DETR loss func-
tions, which consist of a bipartite matching loss (Hungarian
loss) and a bounding box regression loss. The goal is to allow
the model to adapt its feature extraction and object detection
capabilities to adverse weather scenarios without altering its
underlying architecture.

The second strategy is motivated by the observation that
the DAWN dataset contains only 8 object categories. To
better align the model’s output space with the dataset, we
modify DETR’s classification head to predict only 8 categories
instead of the original 91 COCO categories. By restricting the
prediction space, we aim to reduce false positive detections
on irrelevant classes and improve the model’s precision under
adverse weather conditions. During training, to mitigate the
variance introduced by the new classification head, we initially
freeze all backbone and transformer layers for the first 100
iterations, allowing only the newly initialized classification
layers to be updated. After this stabilization phase, we unfreeze
the entire network and continue fine-tuning all parameters
jointly for an additional 200 iterations.

D. Deweathering

We also attempt the approach of deweathering to re-
cover image features and enhance the object detection ac-
curacy under adverse weather conditions. We use the pre-
trained Restormer model for deraining task with corresponding
weights and parameters and apply it on the dawn dataset
to achieve enhanced DAWN dataset images. Each image is
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individually processed and inferenced by the Restormer model
to enhance visibility. The de-weathered output images are later
streamed into the DETR model without additional retraining.

IV. EXPERIMENT AND RESULTS

We compare the baseline results against the finetuned
version of our model denoted as ”Finetuned”, and the de-
weathering approach denoted as ”De-weathered”. While there
are eight weather types in the DAWN dataset, we omit
‘dusttornado’ which only has two samples, and also a duplicate
of one of the weather types. The results for each weather type
is summarized as a table or figure, and there are a total of
six weather types. The categories are each ‘rain storm’, ‘sand
storm’, ‘haze’, ‘mist’, ‘foggy’, and ‘snow storm’ with 28, 21,
7, 7, 11, and 14 samples respectively. We follow the same
metric evaluation as in the baseline, which comprises of six
Average Precision (AP) metrics and six Average Recall (AR)
metrics. Note that the difference of rows 4-6 and rows 10-12
are both based on the area (small/medium/large), and rows
7-9 differ in the maximum number of detections (1/10/100).
IoU=0.5:0.95 means that the result is sampled equally spaced
between IoU=0.5 and IoU=0.95 and averaged.

Metric Baseline Finetuned De-weathered
AP @ IoU=0.5:0.95 0.026 0.036 0.026
AP @ IoU=0.5 0.044 0.056 0.044
AP @ IoU=0.75 0.029 0.038 0.029
AP @ IoU=0.5:0.95 0.006 0.015 0.006
AP @ IoU=0.5:0.95 0.028 0.038 0.029
AP @ IoU=0.5:0.95 0.61 0.078 0.061
AR @ IoU=0.5:0.95 0.008 0.009 0.009
AR @ IoU=0.5:0.95 0.024 0.032 0.025
AR @ IoU=0.5:0.95 0.029 0.041 0.030
AR @ IoU=0.5:0.95 0.008 0.023 0.008
AR @ IoU=0.5:0.95 0.032 0.044 0.033
AR @ IoU=0.5:0.95 0.071 0.085 0.071

TABLE I
RAIN STORM

Metric Baseline Finetuned De-weathered
AP @ IoU=0.5:0.95 0.018 0.058 0.061
AP @ IoU=0.5 0.041 0.089 0.113
AP @ IoU=0.75 0.014 0.068 0.034
AP @ IoU=0.5:0.95 0.016 0.038 0.009
AP @ IoU=0.5:0.95 0.021 0.068 0.048
AP @ IoU=0.5:0.95 0.028 0.036 0.136
AR @ IoU=0.5:0.95 0.009 0.019 0.049
AR @ IoU=0.5:0.95 0.021 0.060 0.063
AR @ IoU=0.5:0.95 0.021 0.062 0.064
AR @ IoU=0.5:0.95 0.015 0.038 0.014
AR @ IoU=0.5:0.95 0.027 0.074 0.050
AR @ IoU=0.5:0.95 0.028 0.035 0.135

TABLE II
SAND STORM

We also qualitatively evaluate the baseline and the finetuned
model on the DAWN dataset. We visualize the ground truth
bounding boxes as the green boxes, and the red boxes signify
the predictions for each of the models in Fig 1.

Metric Baseline Finetuned De-weathered
AP @ IoU=0.5:0.95 0.041 0.010 0.042
AP @ IoU=0.5 0.071 0.020 0.074
AP @ IoU=0.75 0.063 0.009 0.062
AP @ IoU=0.5:0.95 0.103 0.007 0.103
AP @ IoU=0.5:0.95 0.010 0.011 0.010
AP @ IoU=0.5:0.95 0.009 0.011 0.009
AR @ IoU=0.5:0.95 0.035 0.003 0.035
AR @ IoU=0.5:0.95 0.041 0.008 0.041
AR @ IoU=0.5:0.95 0.043 0.011 0.043
AR @ IoU=0.5:0.95 0.106 0.010 0.106
AR @ IoU=0.5:0.95 0.010 0.012 0.010
AR @ IoU=0.5:0.95 0.008 0.011 0.008

TABLE III
MIST

Metric Baseline Finetuned De-weathered
AP @ IoU=0.5:0.95 0.012 0.026 0.012
AP @ IoU=0.5 0.021 0.049 0.021
AP @ IoU=0.75 0.013 0.021 0.013
AP @ IoU=0.5:0.95 0.003 0.006 0.003
AP @ IoU=0.5:0.95 0.021 0.040 0.021
AP @ IoU=0.5:0.95 0.007 0.007 0.007
AR @ IoU=0.5:0.95 0.005 0.012 0.005
AR @ IoU=0.5:0.95 0.012 0.026 0.012
AR @ IoU=0.5:0.95 0.012 0.027 0.012
AR @ IoU=0.5:0.95 0.004 0.007 0.004
AR @ IoU=0.5:0.95 0.022 0.041 0.021
AR @ IoU=0.5:0.95 0.006 0.006 0.005

TABLE IV
HAZE

V. DISCUSSION

We find a general trend of improvement in the finetuned
model’s experimental results. We do not list the results of
the second approach of finetuning (altering the classification
layers first), as they have similar results to simply finetuning
the entire model. Especially, one can clearly see that the
images in Fig 1 correctly find vehicles in harsh weather by
noticing cues like headlights or the outlines of the vehicle.
Also, the finetuned model has less ghost predictions compared
to the baseline model’s predictions. However, we also note
that this is not always the case and there are failure examples
where the baseline model performs better than the finetuned
model. Especially, the pretrained DETR model outperforms
our finetuned model in certain weather conditions, such as
‘mist’ or ‘rain storm’. Some of these causes come from the
class imbalance in the dataset, or the fact that there are such
little information in the image for the model to infer any
existing vehicles. We also note that the finetuned model has
improved itself in much more harsher conditions such as ‘sand
storm’ or ‘haze’ in a short amount of time, and thus there is
potential in the model to consistently outperform in various
hazardous weather conditions.

VI. LIMITATIONS

One major limitation of this project arises from the DAWN
dataset itself. First, the dataset contains numerous annotation
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Fig. 1. Qualitative Examples

Metric Baseline Finetuned De-weathered
AP @ IoU=0.5:0.95 0.004 0.017 0.004
AP @ IoU=0.5 0.006 0.030 0.006
AP @ IoU=0.75 0.005 0.008 0.005
AP @ IoU=0.5:0.95 0.000 0.001 0.000
AP @ IoU=0.5:0.95 0.003 0.022 0.003
AP @ IoU=0.5:0.95 0.012 0.022 0.012
AR @ IoU=0.5:0.95 0.001 0.011 0.001
AR @ IoU=0.5:0.95 0.003 0.016 0.003
AR @ IoU=0.5:0.95 0.003 0.016 0.003
AR @ IoU=0.5:0.95 0.000 0.001 0.000
AR @ IoU=0.5:0.95 0.003 0.021 0.003
AR @ IoU=0.5:0.95 0.011 0.022 0.011

TABLE V
FOGGY

Metric Baseline Finetuned De-weathered
AP @ IoU=0.5:0.95 0.027 0.031 0.026
AP @ IoU=0.5 0.048 0.052 0.047
AP @ IoU=0.75 0.029 0.027 0.027
AP @ IoU=0.5:0.95 0.020 0.024 0.020
AP @ IoU=0.5:0.95 0.023 0.027 0.021
AP @ IoU=0.5:0.95 0.060 0.076 0.059
AR @ IoU=0.5:0.95 0.014 0.014 0.014
AR @ IoU=0.5:0.95 0.029 0.037 0.028
AR @ IoU=0.5:0.95 0.029 0.042 0.029
AR @ IoU=0.5:0.95 0.020 0.041 0.019
AR @ IoU=0.5:0.95 0.026 0.030 0.026
AR @ IoU=0.5:0.95 0.064 0.077 0.062

TABLE VI
SNOW STORM

errors, such as missing labels for certain vehicles, which
can negatively impact both training and evaluation. Second,
the dataset size is relatively small, limiting the diversity of
scenarios the model can learn from. Furthermore, the dis-
tribution of weather conditions within the dataset is highly
imbalanced, with some weather types represented by only two
test cases such as ‘dusttornado’. In addition to the imbalance
in weather conditions, the category distribution is also heavily
skewed. The majority of annotations correspond to category

ID 3 (cars), while other vehicle categories, such as trains, are
extremely underrepresented, with only a single instance found
in the entire dataset. Finally, the data augmentation techniques
applied by the model were relatively simple as we only opt
for horizontal flipping.

VII. FUTURE WORK

Based on the limitations observed in this study, several
directions for future work are worth exploring.

First, more advanced data augmentation techniques could
be employed to address the lack of diverse adverse weather
data. In particular, it may be feasible to leverage generative
models to simulate various adverse weather effects (e.g., rain,
fog, snow) on images originally captured in normal conditions.
This approach could substantially expand the dataset without
requiring additional manual annotations.

Second, given a sufficiently large amount of training data,
future models could incorporate weather-awareness directly
into the detection pipeline. For example, an auxiliary branch
could be added after the CNN backbone to predict the weather
condition of the input image. The predicted weather feature
could then be fused into the Transformer module, allowing
the model to adapt its object detection strategy based on the
environmental context.

VIII. STATEMENT OF CONTRIBUTION

Rui contributed to the baseline visualization for proposal,
website deployment, and report sections [FILL]. Yuqing con-
tributed to the baseline evaluation and visualization, de-
weathering experiments, and report sections [FILL]. Inbum
contributed to finetuning DETR directly, making the poster,
and report sections IV and V. Ziyang contributed to finetuning
DETR with modified classification head and report sections
[FILL].
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