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Abstract—Collaborative robots must operate safely and effi-
ciently alongside humans, especially in dynamic environments
like artistic painting. We develop a human-aware motion plan-
ning system for a 6-DoF robot arm collaborating with a hu-
man artist. Using real-time 3D pose estimation from OpenPose
and depth sensing, we capture the artist’s motion and predict
future poses with the lightweight siMLPe network. Predicted
poses are converted into obstacle representations for real-time,
collision-aware trajectory planning with MoveIt2. Our system
integrates open-source platforms including ROS2, Gazebo, and
various learning models to enable adaptive robotic painting.
Results demonstrate a strong proof-of-concept for human-aware
collaboration, with future work focused on improving prediction
robustness, sensor fidelity, and artist-specific data collection.

Index Terms—Collaborative Robotics, Robot Learning, Motion
Planning, Human-Robot Interaction

I. INTRODUCTION

How can we predict human motion from a sequence of
3D body poses? This is a useful deep learning application
because it can improve decision-making in autonomous driv-
ing, provide better tracking of human motions, and improve
human-robot interactions. Specifically for our research, we are
investigating how a collaborative robot painter can work with
a human artist while painting, such as in Figure 1, exploring
how generative AI systems can be used in the creative process
can help us locate biometric data to explore the meaning of an
authentic creative process. To do this, we develop a human-
aware motion planner for collaborative painting with a high
degree of freedom (DoF) robot arm.

Fig. 1. Artist Painting Alongside Robotic Arm

II. PRIOR WORK

Predicting human joint motion has been extensively studied
in the past, with the idea of fusing spatio-temporal information
in a sequence-to-sequence task being core concepts.

A. Traditional Methods

Previous works have employed probabilistic models such as
Hidden Markov Models (HMMs) to predict human motion by
learning transitions between discrete states based on extracted
features [6]. Similarly, Gaussian Process Latent Variable Mod-
els (GP-LVMs) have been used to capture the underlying low-
dimensional structure of human motion sequences by mapping
complex pose data into a continuous latent space [5]. While
these are effective for modeling periodic or simple motions,
they struggle to generalize when more complex and non-
repetitive human motions arise. This limitation arises due to
their reliance on assumptions about motion regularity and their
limited capacity to capture spatial-temporal dependencies in
natural human behavior.

B. Deep Learning Architectures

Applications of deep learning to predict human motion
include using Recurrent Neural Networks (RNNs), Graph
Convolutional Networks (GCN), and Transformers. RNN’s
sequential nature allows them to model temporal dependen-
cies, but they often suffer from vanishing gradients and long-
term dependency issues. There has also been use of encoder-
decoder frameworks to embed human poses with the use of
long short term memory to update the latent space and predict
future motion [2]. In GCN, the human pose is built as a graph
to generate a mesh of the human model, and it is trained
using a generative adversarial method in which the generator
generates a mesh similar to the manifold of a human mesh
distribution and the network acts as a supervisor to determine
if the mesh is real [4]. Transformers have been applied in
other works to fuse spatial and temporal information using
the key idea of self-attention to use repetitive motion patterns
for prediction [7]. These more complex networks are harder
to analyze and modify, as there are many more parameters to
train.

III. METHODS

A. Open-Source Software

Besides the deep learning networks we utilized, other open-
source softwares were used to enable our pipeline to work
together. v4l2loopback and FFMPEG were used to create a
virtual device in Linux and restream the depth camera’s RGB



Fig. 2. OpenPose Network Architecture

Fig. 3. siMLPe Network Architecture

video for OpenPose to use. Specifically for the Intel Realsense
D455 depth camera, we installed the Intel Realsense software
development kit (SDK) and librealsense package.

ROS2 Humble allowed us to connect predicted poses to the
simulated environment in Gazebo for planning. It managed
and connected different data streams. MoveIt2 is a ROS
package for plug-and-play robot manipulation, and it includes
capabilities in motion planning, manipulation, 3D perception,
kinematics, control, and navigation [8]. We also used the
XArm ROS 2 package that enables MoveIt for our specific
robot model, the UFactory XArm 850.

B. Open Pose

OpenPose is a real-time multi-person keypoint detection
library for body joint estimation [1]. The key innovation of
the work is the real-time multi-person capability. The network
uses part affinity fields (PAFs) to learn to associate body
parts with people in an image, achieving high accuracy and
realtime performance using a bottom-up approach. This work
also provided keypoint detectors in the body, foot, hand, and
face. The network architecture is shown in Figure 2, with the

first set of stages predicting PAFs and the last set predicting
2D confidence maps of body part locations. In both stages,
multiple 7x7 convolutional layers are used leading into 1x1
convolution kernels.

C. SiMLPe

To predict the next position of a human’s joints, we used
siMLPe, a multi-layer perceptron based network. The key idea
in siMLPe is that a human’s last pose is similar to future poses,
which is intuitive to our understanding of the human range of
motion. Therefore, we can let the network predict the residual
between the future pose and the last input pose. This model
is able to achieve state-of-the-art performance with low mean
per joint position error (MPJPE) and 20-60x fewer parameters
[3]. Thus, this system is lightweight and efficient, while still
being accurate.

This network was trained on the Human 3.6M dataset, a
large-scale dataset of human poses and corresponding images
captured by motion capture system. During training, sequences
of past poses were provided as input, and the network was
optimized to predict future poses by minimizing the mean per



joint position error. By focusing on predicting the residuals
between the last observed pose and the future pose, siMLPe
effectively captures subtle variations in human motion while
maintaining low computational complexity, which makes it
particularly suitable for real-time applications where both
speed and accuracy are critical.

As shown in Figure 3, the network is fairly simple. It takes
in a sequence of 3D human poses in the past T timesteps. The
poses are then transformed using a discrete cosine transform
(DCT) to encode temporal information, transpose layers, and
fully connected layers. The fully connected layers operate on
the spatial dimension of the transformed motion sequence to
account for space. Then, the MLP blocks consisting of fully
connected and layer normalization layers are used to merge
information across frames. In the siMLPe paper, they found
that using 4 MLP blocks was most effective, balancing pre-
diction accuracy and model size. This configuration allowed
the model to outperform previous methods while maintaining
a simple architecture for real-time applications [3].

Fig. 4. System Architecture

D. Combined System

In our combined system, we are capturing the artists move-
ments using an Intel Realsense D455 camera. Using OpenPose
to track the human joint positions and querying the depth data
at joint positions, we obtain the human poses in the past 25
timesteps. This is then sent to our pre-trained siMLPe model
to predict the poses in the next 10 timesteps. The predicted
poses are reduced more as we take the torso and arm joints
to create cylinders or other primitive shapes to represent a
safe area around the human pose for the robot to plan around.
These obstacles are sent to MoveIt which will simulate the
obstacles and robot arm to create safe trajectories. The goal
positions for the robot are given from the CoFRIDA node,

which plans strokes for the robot to paint using Generative AI
[9]. Once a trajectory is found, the robot can execute it in the
real world.

IV. RESULTS

We visualize the detected 2D joint keypoints using Open-
Pose overlaid on the live RGB camera feed in Figure 5.
The right side of each image shows the extracted skeleton
structure in 2D space. This mapping provides the foundation
for accurate 3D human pose reconstruction in our pipeline
when combined with depth information.

Fig. 5. Real-time Mapping of Joint Positions

We show the predicted future joint trajectories from the
siMLPe network over several frames in Figure 6. Each plot
visualizes the progression of joint movements based on past
observed poses, demonstrating the model’s ability to anticipate
natural human motion with minimal latency.

Fig. 6. Real-time Motion Predictions from siMLPe

The predicted human motion from siMLPe were used to
generate virtual obstacles around the human body. These
obstacles are placed into the motion planning environment in
Gazebo, shown in Figure 7, allowing the robot arm to plan
and execute collision-free trajectories in real-time alongside a
moving human collaborator.

V. DISCUSSION

A. Extension

In this work, we showed a strong proof-of-concept for a
motion planner using predicted human motion. Our extension
to siMLPe was the integration and connection of multiple
disjoint open-source software through modification of systems
and/or rerouting data to enable the application of siMLPe in
an online robotic system.



Fig. 7. Online Obstacle Generation from Entire Pipeline

B. Challenges

Some of the challenges we ran into were limited hardware,
lack of documentation, inconsistent human skeleton formats,
and lack of robustness of networks. For the depth camera,
we initially tested out the ZED and the PrimeSense depth
cameras. The ZED was promising, however it ended up being
deprecated and lacked the human tracking SDK capability, so
we turned to the Intel Realsense D455 camera. This camera
had fewer SDK capabilities, which led us to adding OpenPose
in the first place.

A challenge related to the datasets used in training included
lack of documentation of H3.6M keypoint joint labels. This
made it more difficult to extract the key body parts we wanted
to translate into obstacles. Also, it was difficult to format the
OpenPose skeleton for the expected siMLPe skeleton structure.
OpenPose was formatted with 25 joints, while siMLPe trains
on 22 joints but outputs 32 joints. This indirect translation led
to uncertainty in the siMLPe output. There was also a lack
of robustness to un-detected keypoint joints. When OpenPose
does loses tracking, it will return (0, 0) for the 2D location
of that joint. Directly sending this data to siMLPe results in
inaccurate predictions.

C. Future Work

In this work, we assumed that an artist’s movements are not
any different from collected data of human movements, such
as walking, talking on the phone, or other everyday activities
in the 3.6M Human Dataset. Some future work could include
creating a dataset of artist movements while painting using
motion capture. Modifying siMLPe’s architecture or retraining
it for artist motions could also be a way to improve our model
for artistic applications. For example, siMLPe does not have
any nonlinear activation functions, so attempting to add back
some of the complexity of human tracking could improve the
model.

Integrating better depth cameras or body tracking modules
other than OpenPose could also help our predictions. For
measuring the state of a person’s joints, the most ideal setup
would be using motion capture, which would definitely be
applicable to an artist. While OpenPose provided us with
accurate and real-time joint measurements, it sometimes found

human skeletons in random objects even when no humans
were in frame and was somewhat noisy. Validation of predicted
pose data from siMLPe against motion capture would also
be an important next step to both improving the model and
assuring the results we are getting are accurate.

Improving online obstacle generation would also improve
this project. Our current simulated environment runs slowly
due to the delay in sending obstacles to Gazebo. This would
only decrease in performance if we increased the fidelity of the
human, so it would be necessary to improve our performance
for the best online results. Also, adding rotation of body links
using quaternions from the pose data would greatly improve
the motion planning of the robot, as the simulation is more
accurate to real life.

Finally, training the network to work even with missing
joints or faulty sensor measurements would improve the ro-
bustness of the system. To do this, we could record OpenPose
data and use it for training siMLPe, as well as change the
expected joint input format and number of joints to train on.
Retraining the network would likely provide a large increase
in accuracy of our predictions, especially since the data is
collected using the sensors on our real system.
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