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Abstract—This study explored enhancements to the DOPE
framework by improving both its network architecture and
synthetic data generation pipeline for 6D object pose estima-
tion. We proposed replacing the original VGG-19-based fea-
ture extractor with a Vision Transformer (ViT), aiming to
leverage its superior representation capabilities. In parallel, we
developed a refined data generation pipeline, resulting in an
augmented HOPE dataset [1] and a new fully synthetic dataset
of a customized object, Block. These datasets were used to
train and evaluate our modified DOPE model on two target
objects: Cookies and Block. Experimental results demonstrate
that incorporating ViT improves pose estimation performance
over the original VGG-19 backbone, suggesting the potential for
further advancements through the integration of more powerful
feature extractors. This project’s public repository is available
at: https://github.com/jypipi/DOPE-Plus.

I. INTRODUCTION

As robotics continues to advance, researchers are increas-
ingly exploring ways to equip robots with the capabilities
needed to perform everyday tasks. Many of these tasks re-
quire fundamental operations such as object fetching, which
depend on accurate pose estimation of target objects. This
study investigated the DOPE (Deep Object Pose Estimation)
proposed by J. Tremblay et al. in 2018 [2], and further
extended the feature extraction and data generation pipelines.
The original DOPE framework employed VGG-19 as the
feature extractor. In our work, we replaced it with a Vision
Transformer (ViT) [3], [4], motivated by its superior feature
extraction capabilities, particularly in capturing relationships
between multiple objects. Meanwhile, we enhanced the data
synthesis pipeline proposed by [2] to augment and generate
two new datasets for network training. Our goal is to improve
the accuracy of 6D object pose estimation and to validate
the effectiveness of our enhancements for object perception
in real-world scenarios.

A. Original DOPE

DOPE (Deep Object Pose Estimation) is a one-shot,
instance-based, deep neural network-based system designed
to estimate the 3D poses of known objects in cluttered scenes
from a single RGB image, in near real time and without the
need for post-alignment. The system employs a straightfor-
ward deep network architecture trained entirely on synthetic
data. It predicts the 2D image coordinates of the projected
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3D bounding box corners, which are then used with the
perspective-n-point (PnP) algorithm to recover the 3D pose.

1) Network architecture: The DOPE network is a convolu-
tional deep neural network that detects objects’ 3D keypoints
using multi-stage architechture. Firstly, image features are
extracted by the first ten layers of the VGG-19 convolutional
neural network (with pre-trained parameters). Then two 3 * 3
convolutional are applied to the features to reduce the feature
dimensions from 512 to 128. Second, these 128-dimensional
features are fed into the first stage, which consists of three
3x3+128 convolutional layers and one 1x1x512 layer, followed
by a 1x1x9 to produce belief maps and and 1116 to produce
vector fields. There are 9 believe maps, 8 of them are for the
projected vertices of the 3D objects and one for its centroid.
Vector fields indicate that the direction from vertices to their
corresponding centroids, to construct the bounding boxes of
objects after detection. There are overall 6 identical stages as
the first stage, except for the follow-up stages accept image
features, belief maps and vector fields as their input, therefore
they have five 7% 7 * 128 and one 1 * 1 x 128 layers to align
data before converting to belief maps and vector fields. The
network could leverages increasing larger receptive fields as
data go through the neural network. This enables the network
reduce the ambiduities in early stages and thus produce context
relationships in later stages.

2) Data Generation: As more data is required to train
a deep network with high performance, it can be difficult
to gather enough data for training. In addition, unlike 2D
labeling, making 3D pose labels manually is much more
difficult. DOPE proposed a method to generate data, which
allows scientists to gather enough number of data rapidly, and
greatly alleviate the workload of labeling manually.

The overall data synthesis strategy is to generate two kinds
of dataset: “domain randomized (DR)” and “photorealistic
(photo)”. The domain randomized data are generated by
putting the target object into a virtual environment, which is
composed of different distractor objects and a random back-
ground. The objects shown in DR images do not necessarily
obey physical principles. Photorealistic data are generated
by putting target objects into 3D backgrounds with physical
constraints. In other words, they are impacted by the effects
of gravity and collision.
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Fig. 1: Performance Comparison between DOPE and
poseCNN on Cracker Box

Training on these synthesized data demonstrated a good
experiment result. Figure 1 (reproduced from [2]) compares
its performance with traditional poseCNN. It also shows that
using a combination of DR and photo images gives a much
better result than using them alone.

II. RELATED WORK

Many efforts has been made to recognize object pose accu-
rately. One of the most impactful work is poseCNN [5]. It can
estimate the 6D pose from a single RGB image, and presents a
decent result. Wang Y. et al. proposed DenseFusion [6], which
further introduced depth information to enhance the model
performance. In DOPE, the 3D model of the target object
must be known beforehand to enable pose estimation, which
helps improve precision. This approach is particularly suitable
for applications such as fetching known objects in controlled
environments. In general, various sensing modalities have been
employed across different methods to maximize the robustness
and accuracy of 6D object pose estimation.

III. REPRODUCTION & ALGORITHMIC EXTENSION
A. Original Paper Reproduction

We reviewed the original DOPE paper and codebase to thor-
oughly understand the proposed network architecture, dataset
compositions, and training techniques. To reproduce the orig-
inal work, we configured our local computing environment
with the necessary dependencies for the original framework.
We successfully ran DOPE with the Robotics Operation Sys-
tem (ROS), establishing real-time data streaming and model
inference in ROS Noetic. As shown in Figure 2, we deployed
the pose estimation pipeline using pre-trained models and
visualized inference results for two objects, Tomato Ketchup
and Cracker Box, with both open-sourced datasets and Intel
RealSense RGB-D camera streams, which were consistent
with those reported in [2].

B. Network Architecture

One of the key algorithmic extensions we introduced in-
volves replacing the original VGG-19 feature extractor with
a Vision Transformer (ViT). This modification was driven

(a) Tomato Ketchup

(b) Cracker Box

Fig. 2: Pose Estimation Reproduction with RViz Visualization

# === 1. ViT backbone using timm ===
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9 nn 256,
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12 nn

Listing 1. ViT Backbone and Feature Projection

by ViT’s superior capability to capture long-range dependen-
cies and global contextual information, thanks to its self-
attention mechanism. Unlike VGG-19, which relies on local
convolutional filters with relatively small receptive fields, ViT
processes the entire image as a sequence of patches, enabling
it to model holistic scene relationships more effectively. To
accommodate this change, substantial adjustments were made
throughout the model backbone, including feature dimen-
sionality alignment and downstream compatibility with the
transformer-based output structure. Basically, we changed one
of the core codebases model.py, and some key changes are
shown in Listing 1.

We created a pre-trained ViT feature extractor using the
timm library. It accepts images of dimension 244 x 244 with
a patch size 16 x 16, as a result, interpolating is needed to
make sure the input data has a size of 244 x 244. Then we
take the output from ViT only in the final layer. At the next
stage, two convolutional layers are employed to reduce the
number of channel to 128, hence the dimension matches the
following network structure (the belief map stages). Corre-
sponding changes also need to be made in forward function
and in detector.py. Because now the weight parameters has
been changed to adopt ViT structure, so in the inference stage
code also need to be modified in order to adopt this new
parameter file. Figure 3 demonstrated this structure in a clear
flow chart.
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Fig. 3: Enhanced ViT-DOPE Network Architecture

C. Data Generation

We enhanced the original data generation pipeline [2] using
BlenderProc to produce two distinct synthetic RGB datasets,
each corresponding to a specific target object: Cookies and
Block. The Cookies object is part of the publicly available
HOPE dataset [1], while the Block is a newly introduced,
custom-designed object. Our pipeline incorporates randomized
camera poses, object poses, and 360-degree HDRI back-
grounds, while ensuring that these variations remain physically
reasonable. These improvements aim to create a more diverse
and robust synthetic dataset, helping to mitigate the common
sim-to-real domain gap in deep learning applications. The
enhanced pipeline consists of four main stages: (1) textured 3D
CAD modeling, (2) real-world HDRI background generation,
(3) image synthesis, and (4) ground truth annotation pre-
processing.

1) Textured 3D CAD Modeling and Real-World Background
Generation: To obtain a precise 3D textured model of the
customized object, we first used SolidWorks to create an
accurate geometric model with correct dimensions. Blender
was then employed to add textures and enrich visual details,
including colors and physical material properties, as shown in
Figure 6(b).

For real-world HDRI background generation, we captured
raw 360-degree images of the desired physical environments
using the Insta360 X3 camera. These images were subse-
quently pre-processed and converted into HDRI backgrounds
using Adobe Photoshop, as illustrated in Figure 6(a).

2) Image Synthesis: With all necessary elements prepared,
we proceeded to the image synthesis stage. We developed
a Python script to randomize the poses of cameras, target
objects, and distractors. To emulate typical indoor scenarios
encountered in onboard SLAM and manipulation tasks, we
assumed that both the camera and the target object remained
upright, with randomized yaw angles and small perturbations

in pitch and roll. In contrast, distractor objects were random-
ized with full degrees of freedom as a form of data augmen-
tation, without adhering to physical stability constraints.

3) Ground Truth Annotation Pre-Processing: With the ex-
isting pipeline provided by [2], ground truth annotations for
each frame were automatically generated. However, when con-
structing a comprehensive dataset for training and validation,
it was necessary to combine synthetic and real images from
various sources. In this case, the annotation files (e.g., JSON
files) often differed in format and configuration. To streamline
data preparation and ensure compatibility with downstream
tasks, we developed an additional Python script to pre-process
and standardize the ground truth annotations.

D. Innovative Enhanced Datasets

We augmented the original HOPE dataset and created a new
dataset for the customized Block object by generating syn-
thetic domain-randomized (DR) images, referred to as HOPE-
Syn&Real and the Synthetic Block Dataset, respectively.

1) HOPE Data Augmentation (HOPE-Syn&Real Dataset):
We generated additional synthetic data based on the HOPE
dataset [1]. The original dataset consists of 28 grocery items,
with approximately 300 real images per object. We selected
Cookies as the target object for subsequent training tasks. To
enrich the existing dataset, we synthesized additional 12,000
domain-randomized (DR) images of this object using the
enhanced data generation pipeline developed upon [2], and
combined them with the existing real images to form the
HOPE-Syn&Real dataset. To verify the quality of the synthe-
sized images, we employed a validation method adapted from
the original codebase to visualize the ground truth annotations,
as shown in Figure 5.

2) Synthetic Block Dataset: In addition to augmenting the
HOPE dataset, we created a fully synthetic dataset for our
customized Block object using the aforementioned methods



and strategies. This dataset consists of over 19,300 domain-
randomized images, with random variations in block poses,
instance counts, backgrounds, and distractor objects. Further-
more, as shown in Figure 6(c), lighting conditions and shadows
were simulated and rendered to further enhance realism and
dataset diversity.

(a) Raw RGB Image
Fig. 4: Sampled HOPE Dataset Real Image and Ground Truths

(b) Ground Truth Annotations

Fig. 5: Sampled Generated Data and Visualized Ground Truth
in the HOPE-Syn&Real Dataset. (Left column: generated RGB
images, Right column: visualized ground truths)

IV. EXPERIMENTS AND RESULTS

Since DOPE is an instance-based network that requires prior
knowledge of the target object, each trained model is limited
to recognizing a single object. In our experiments, we selected
Cookies from the HOPE dataset and Block (a custom object
we introduced) as the two target objects. For each object,
we trained both the original DOPE model and our modified
ViT-DOPE variant. The models were then evaluated based on
their final pose estimation results with both visualizations and
quantitative metrics, including mean Average Precision (mAP),
Average Distance of Model Points (ADD), and predicted
keypoints accuracy.

(b) 3D Textured Model

(c) Sampled Synthetic Image

Fig. 6: 3D Textured Block Model (Blender), Sampled HDRI
Background, and Synthetic Domain Randomized Image in the
Synthetic Block Dataset

A. Experimental Setup

To facilitate training on the HOPE dataset, we implemented
a pre-processing step to convert each object’s pose, which was
originally represented as a transformation matrix, into a ground
truth belief map. In this dataset, object poses are provided as
4x4 transformation matrices that encode the object’s 6D pose
relative to the camera, along with the corresponding camera
intrinsics. To generate the belief maps, we first reconstructed
the 3D bounding boxes of the objects based on their real-world
dimensions. These 3D coordinates were then projected onto
the 2D image plane using the camera’s intrinsic matrix (as
illustrated in Figure 4(b)). After computing the 2D centroids
from the projected bounding boxes, we rendered the ground
truth belief maps and integrated them into the training pipeline
as supervision signals for our model.

B. Training

To quantify and compare model performance, we trained
a total of four models: one original DOPE and one ViT-
DOPE model for each object (Cookies and Block). The HOPE-
Syn&Real Dataset and the Synthetic Block Dataset were used
to train the Cookies and Block models, respectively. Each
dataset was split into training and validation subsets, with
the validation sets comprising approximately 5%—7% of the
total images. Due to project timeline constraints and the
absence of open-source photorealistic data generation scripts
in the original DOPE codebase, neither dataset contained
photorealistic images. As a result, the Cookies models were
trained on both domain-randomized (DR) and real images,
whereas the Block models were trained exclusively on DR
data.



To ensure a reasonable comparison, all models were trained
using identical hyperparameters, optimizers, and learning rate
schedules, as detailed in Table I. Specifically, the AdamW
optimizer and a Cosine Annealing learning rate schedule were
employed, with an initial learning rate of 0.00005. The only
difference in the training procedure was the number of epochs:
the Cookies models were trained for 200 epochs, whereas the
Block models were trained for 400 epochs. The evolution of
the learning rate over the course of training is illustrated in
Figure 7.

Hyperparameter | Value
Batch Size 64
Initial LR 0.00005
Weight Decay 0.001
Epoch (Cookies) | 200
Epoch (Block) 400

TABLE I: Key Hyperparameters and Values
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Fig. 7: Learning Rates vs. Epochs

C. Results and Analysis

(a) Ground Truth

(b) Predicted Belief Maps

Fig. 8: Ground Truth and Key Point Beliefs of a Block object
in a Sampled Frame

The losses and performance metrics of all models converged
to stable values with minor fluctuations after training. We
define predicted keypoints accuracy as the percentage of
keypoints correctly predicted within a specified pixel threshold
across a batch of images.

1) Cookies: Figure 9 quantifies the performance of the
Cookies models on both the training and validation subsets of
HOPE-Syn&Real. As shown in Figure 9(a), all losses dropped
rapidly during the initial phase of training and gradually
stabilized around epoch 125, indicating a reasonable and
expected loss convergence trend. In Figure 9(b), the validation
accuracy is consistently higher than the training accuracy. This
phenomenon suggests either noise in the training set or the
presence of strong regularization during training. The former
is unlikely, as the images were randomly split into training and
validation sets. The latter appears more plausible, as a weight
decay rate of 0.001 and additional data augmentation tech-
niques (such as blur and contrast adjustments) were applied
during training to mitigate overfitting. Such regularization can
lead to higher validation accuracy relative to training accuracy.

When comparing the original DOPE network (using a
VGG-19 feature extractor) with our ViT-DOPE architecture,
both the training and validation accuracies of ViT-DOPE are
approximately 5% higher. This improvement highlights the
effectiveness of our architectural enhancements and aligns
with the primary goals of this project. Nevertheless, as demon-
strated in Figures 9(b) and (d), despite the improvements, the
overall estimation performance of both the original DOPE
and ViT-DOPE models remains relatively low. Several factors
may contribute to this: the batch size was halved due to GPU
resource constraints; the dataset lacked photorealistic images;
and the total number of synthetic images was limited compared
to the original DOPE training process. Specifically, the original
DOPE model was trained with approximately 60,000 domain-
randomized and 60,000 photorealistic images per object [2],
whereas our HOPE-Syn&Real Dataset comprises only about
10.25% of that amount.

Additionally, the absolute values of predicted keypoint
accuracies and ADD metrics may have been affected by the
relatively strict pixel threshold used for evaluation, where
predictions were considered correct only if they fell within
approximately 10 pixels of the ground truth. Despite these
limitations, the observed trends demonstrate a promising future
for DOPE-based architectures. Our results suggest that with
stronger feature extractors and further dataset enhancements,
significant improvements in 6D pose estimation accuracy are
achievable.

2) Block: Figure 10 showcases the performance of the
Block models on the training and validation splits of the
Synthetic Block Dataset. As demonstrated, although the losses
remained low after training, the predicted keypoint accuracies
plateaued around 20%, and the mAP values stabilized below
0.4, indicating a failure of both the DOPE and ViT-DOPE
models for this object. While the absence of photorealistic
data may have contributed, the primary cause is attributed
to DOPE’s core architectural limitations in handling object
symmetry [2]. As illustrated in Figure 8, the trained models
successfully predicted the nine keypoints of the Block object
but failed to generate accurate pose estimations due to the
object’s geometric and textured symmetry. This also explains
the low and oscillating trends observed in the accuracy metrics
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in Figure 10.

However, the models’ success in locating keypoints of the
desired object demonstrated by the belief maps shown in
Figure 8(b) highlights the strength of the feature extractors and
encourages potential future algorithmic extensions to better
handle symmetry.

V. CONCLUSIONS

Our study successfully extends the original DOPE frame-
work through enhancements in both feature extraction and
data generation. By replacing VGG-19 with a vision trans-
former and increasing the randomization and realism of the
datasets, we achieved improvements in object pose estimation

performance. These results demonstrate the potential of ViT
for precise feature extraction and highlight the effectiveness
of synthetic data in facilitating model training, enabling high
model accuracy while significantly reducing the need for man-
ual ground truth annotation. For future research, integrating
other advanced feature extractors into the DOPE architecture
is a promising direction, as further improvements in estima-
tion performance are likely achievable with more powerful
backbones. Additionally, developing algorithmic extensions to
better accommodate object symmetry is another important
avenue for increasing the adaptability and robustness of the
DOPE network.
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