

Lecture 18 Interpretability and Uncertainty University of Michigan I Department of Robotics

Why Interpretability

- Trust
- Safety
- Contestability/Reproducibility

INTERMEDIATE FEEDBACK

"HOW DO YOU LIKE IT, SO FAR?"

Transparent Model

• Visualize feature maps:

- Saliency Map
- Class Activation Maximization (CAM) \bullet

Answers this question: What made the network give a certain class as output?

e.g., Why is it classifying this image as "dog"?

Saliency Map

- (we didn't talk about this in class but good to know)
- "a way to measure the spatial support of a particular class in each image"

- Common method:
- Deconvolution (Zeiler and Fergus, 2013)
- https://arxiv.org/abs/1311.2901

CAM

Class Activation Map

https://www.pinecone.io/learn/class-activation-maps/

Step 2: GAP (Global average pooling)

Take the average of feature map -> scalar

 k_n

CAM

*This captures the relationship between feature maps learned from Conv to class labels!

Class Activation Map

Step 4: train a linear model to learn the weights between GAP vector outputs and class labels

https://www.pinecone.io/learn/class-activation-maps/ kth feature map

We will train this C times for C classes

c – class k- k^{th} feature map, k=1,...,n Z – total number of pixels A_{ii}^k - the pixel value at (i,j) for the

Uncertainty in data, label/annotations, model, etc... lacksquare

- Examples (not limited to):
- **1. Dropout** \bullet
- **2. Bayesian Neural Networks**

 \otimes

 \otimes

 \otimes

 \otimes

Uncertainty in data, label/annotations, model, etc...

- Examples:
- Dropout
- **Bayesian Neural Networks** \bullet
- **3. Ensemble Methods** \bullet

Uncertainty in data, label/annotations, model, etc... lacksquare

- Examples:
- Dropout \bullet
- **Bayesian Neural Networks**
- **Ensemble Methods** \bullet
- 4. Bootstrap Aggregating (Bagging) \bullet
- Multiple Instance Learning

Uncertainty in data, label/annotations, model, etc... •

- **Examples:**
- Dropout \bullet
- **Bayesian Neural Networks**
- **Ensemble Methods** \bullet
- Bootstrap Aggregating (Bagging) \bullet
- **5. Multiple Instance Learning**

"label uncertainty" Design loss function based on "bag-level" labels

Negative Bags

Positive Bags

Lecture 18 Interpretability and Uncertainty University of Michigan I Department of Robotics

