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Why Interpretability
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« Safety . K

® Class1 () Support vector

® Class2 © Sample violating constraint

» (Contestability/Reproducibility

INTERMELPIATE FEEPBACK

HOW PO YOU LIKE IT, SO FARZ'

AT /:I_AS\ HUMAN

SUBSYSTEM TOOL (IN THE LOOP) |

Stanford, Humans in the Loop General Bluprint

l *Some figures adapted from Harvard AC295 Lecture 11 INTERACTION & CURATION
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Transparent Model

* Visualize feature maps:

« Saliency Map

* (Class Activation Maximization (CAM)

Answers this question: What made the network give a certain class as output?

e.g., Why is it classifying this image as “dog”?
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DR

Saliency Map

* (we didn’t talk about this in class but good to know)

“a way to measure the spatial support of a particular class in each image”

s

Layer Ab
Reconstruction _ Pooled Maps
Switches
Max Poolin
Common method: wastoans T ( ﬁ g
||
Unpooled Maps Rectified Feature Maps

Deconvolution (Zeiler and Fergus, 2013) e L 1] e

Rectified Unpooled Maps Feature Maps

https.//arxiv.org/abs/1311.2901 g 1l [

Reconstruct ion Layer Below Pooled Maps
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DR

CAM

* (Class Activation Map

Step 1: last layer of conv

N\

< 206
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CONV ayers

I btt P[@ https://www.pinecone.io/learn/class-activation-maps/ ik
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Step 2: GAP (Global average pooling)

Take the average of feature map -> scalar
Femture ma,v #I

qk’lza‘l+82+ ... + a9
a4 ad ab 9

The last aT a8 ad
CONV layer Step 3: The output of GAP will
]‘ be a n-length vector, for n is the
' ~l - number of feature maps (from
A conv
(’\)l * P ) Vector of scalars,
¥ k_i = avg. of feature map #i
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DR

CAM

*This_captures the relationship between feature

» Class Activation Map maps learned from Conv to class labels!

Step 4: train a linear model to learn the weights between GAP vector outputs and
class labels

We will train this C
times for C classes

1
ve =) wiz ) )M
K i

Cc — class
i k- k" feature map, k=1,...,n
GAP outputs Z — total number of pixels
Af; - the pixel value at (i,j) for the

l btt P@ https://www.pinecone.io/learn/class-activation-maps/ . th ot re map
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Grad-CAM

*Use backprop to flow
gradients from output
class score y© to the

» Gradient-Weighted Class Activation Maps feature maps
Task-Specific Block of
N the ConvNet Wk — z 2 aAk

N , |

C C C & l

O O O o Gradients flowin .i*

ARG v info the last CONV

/n,amL image \‘va layer grad—cam = RelLU (z ngAk)
CONV /ayers

— See https://www.pinecone.io/learn/class-activation-m for derivations.
l bttf@ P P aps/ for derivations
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Model with Uncertainty

Uncertainty in data, label/annotations, model, etc...

Examples (not limited to):

1. Dropout

2. Bayesian Neural Networks

| bttfﬂ_a

Prediction without uncertainty

Prediction with uncertainty




Model with Uncertainty

Uncertainty in data, label/annotations, model, etc...

Examples:

Weak Model

Dropout i

Bayesian Neural Networks

3. Ensemble Methods

Final Prediction

| bzz,;ﬂé)
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Model with Uncertainty

Uncertainty in data, label/annotations, model, etc...

Examples:

Dropout

Bayesian Neural Networks

Ensemble Methods

4. Bootstrap Aggregating (Bagging)

Multiple Instance Learning

| bztfﬂ_a
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Model with Uncertainty

Uncertainty in data, label/annotations, model, etc...

Examples:

Dropout

Bayesian Neural Networks
Ensemble Methods

Bootstrap Aggregating (Bagging)

5. Multiple Instance Learning

| bzzfn_a

Negative Bags

Positive Bags

“label uncertainty”
Design loss function based on “bag-level” labels
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