
Lecture 12
Deep Learning Software
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

Overview
1. One time setup:
• Activation functions, data preprocessing, weight

initialization, regularization
2. Training dynamics:
• Learning rate schedules; hyperparameter optimization

3. After training:
• Model ensembles, transfer learning, large-batch training

Model Ensembles

1. Train multiple independent models
2. At test time average their results:
(Take average of predicted probability distributions, then choose
argmax)

Enjoy 2% extra performance

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Cyclic learning rate schedules can
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a moving
average of the parameter vector and use that at test time
(Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 201

Transfer Learning

“You need a lot of data if you want to
train / use CNNs”

What if data is limited?

Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Transfer Learning with CNNs

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014

Transfer Learning with CNNs

Transfer Learning with CNNs

Some tricks:
• Train with feature extraction first

before fine-tuning
• Lower the learning rate: use

~1/10 of LR used in original
training

• Sometimes freeze lower layers to
save computation

• Train with BatchNorm in “test”
mode

Transfer Learning with CNNs

Transfer Learning: Fine Tuning

Transfer Learning with CNNs: Architecture Matters!

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition

Transfer Learning with CNNs
Dataset similar to

ImageNet
Dataset very different

from ImageNet

Very little data (10s to
100s)

Use Linear Classifier on
top layer

You’re in trouble…
Try linear classifier from

different stages

Quite a lot of data (100s
to 1000s)

Finetune a few layers Finetune a larger
number of layers

Transfer Learning is pervasive!
Its the norm, not the exception

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments
for Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with
permission.

Transfer Learning is pervasive!
Its the norm, not the exception

Word vectors pretrained
with word2vec

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments
for Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with
permission.

Transfer Learning is pervasive!
Its the norm, not the exception

Zhou et al, “Unified Vision-Language Pre-Training for Image
Captioning and VQA”, arXiv 2019

1. Train CNN on ImageNet

2. Fine-Tune (1) for object detection on Visual
Genome

3. Train BERT language model on lots of text

4. Combine (2) and (3), train for joint image /
language modeling

5. Fine-tune (5) for image captioning, visual
question answering, etc.

Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019

Training from scratch can work as well as
pertaining on ImageNet!

… if you train for 3x as long

Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019

Pretraining + Finetuning beats training from
scratch when dataset size is very small

Collecting more data is more effective than
pretraining

Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019

My current view on transfer learning:

• Pretrain + finetune makes your training faster,
so practically very useful

• Training from scratch works well once you
have enough data

• Lots of work left to be done

Summary

1. One time setup:
• Activation functions, data preprocessing, weight

initialization, regularization
2. Training dynamics:
• Learning rate schedules; hyperparameter optimization

3. After training:
• Model ensembles, transfer learning

25

A zoo of frameworks!

Caffe
(UC Berkeley)
Torch
(NYU / Facebook)
Theano
(U Montreal)

PyTorch
(Facebook)
TensorFlow
(Google)

Caffe2
(Facebook)

Darknet
(Redmon)

CNTK
(Microsoft)

Chainer

JAX
(Google)PaddlePaddle

(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU,
MIT, Hong Kong U, etc. but main
framework of choice at AWS

26

A zoo of frameworks!

Caffe
(UC Berkeley)
Torch
(NYU / Facebook)
Theano
(U Montreal)

PyTorch
(Facebook)
TensorFlow
(Google)

Caffe2
(Facebook)

Darknet
(Redmon)

CNTK
(Microsoft)

Chainer

JAX
(Google)PaddlePaddle

(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU,
MIT, Hong Kong U, etc. but main
framework of choice at AWS

We’ll focus on these

Recall: Computational Graphs

27

!

"

* Hinge
loss +

!

L

! = #$ %! = ∑
"#$!

'($(0, !" − !$! + 1)

0(#)

28

The motivation for deep learning frameworks

1. Allow rapid prototyping of new ideas

2. Automatically compute gradients for you

3. Run it all efficiently on GPU or TPU
hardware

PyTorch: Versions

For this class we are using PyTorch version 1.13
(Released October 2022)

Be careful if you are looking at older PyTorch code—
the API changed a lot before 1.0

29

PyTorch: Version 2.2 (2024)

further optimize models (torch.compile,
scaled_dot_product_attention)

Intended (not committing) to be backwards compatible

30

Video credit: PyTorch

https://pytorch.org/get-started/pytorch-2.0/

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of
 Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable
 weights

31

PyTorch: Tensors

32

Running example:
Train a two-layer ReLU network
on random data with L2 loss

PyTorch: Tensors

33

Create random tensors
for data and weights

PyTorch: Tensors

34

Forward pass: compute
predictions and loss

PyTorch: Tensors

35

Backward pass: manually
compute gradients

PyTorch: Tensors

36

Gradient descent
step on weights

PyTorch: Tensors

37

To run on GPU, just use
a different device!

PyTorch: Autograd

38

Creating Tensors with
requires_grad=True
enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch
to build a computational graph

PyTorch: Autograd

39

We will not want gradients
(of loss) with respect to data

Do want gradients with
respect to weights

PyTorch: Autograd

40

Compute gradients with
respect to all inputs that
have requires_grad=True!

PyTorch: Autograd

41

Every operation on a tensor with
requires_grad=True will add to the
computational graph, and the resulting
tensors will also have requires_grad=True

PyTorch: Autograd

42

Every operation on a tensor with
requires_grad=True will add to the
computational graph, and the resulting
tensors will also have requires_grad=True

PyTorch: Autograd

43

PyTorch: Autograd

44

PyTorch: Autograd

45

PyTorch: Autograd

46

PyTorch: Autograd

47

Backprop to all inputs
that require grad

PyTorch: Autograd

48

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

PyTorch: Autograd

49

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Make gradient step on weights

PyTorch: Autograd

50

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Set gradients to zero—forgetting this is
a common bug!

PyTorch: Autograd

51

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Tell PyTorch not to build a graph for
these operations

PyTorch: New Functions

52

53

PyTorch: New Functions

54

PyTorch: New Functions

55

PyTorch: New Functions

56

PyTorch: New Functions

57

PyTorch: nn

58

PyTorch: nn

59

PyTorch: nn

60

PyTorch: nn

61

PyTorch: nn

62

PyTorch: nn

63

PyTorch: optim

64

PyTorch: optim

65

PyTorch: nn
Defining Modules

66

PyTorch: nn
Defining Modules

67

PyTorch: nn
Defining Modules

68

PyTorch: nn
Defining Modules

69

PyTorch: nn
Defining Modules

70

PyTorch: nn
Defining Modules

71

PyTorch: nn
Defining Modules

72

PyTorch: DataLoaders

73

PyTorch: DataLoaders

74

PyTorch: Pretrained Models

Super easy to use pertained models with torch vision

https://pytorch.org/vision/stable/

https://pytorch.org/vision/stable/

75

PyTorch: Dynamic Computation Graphs

76

PyTorch: Dynamic Computation Graphs

77

PyTorch: Dynamic Computation Graphs

78

PyTorch: Dynamic Computation Graphs

79

PyTorch: Dynamic Computation Graphs

80

PyTorch: Dynamic Computation Graphs

81

PyTorch: Dynamic Computation Graphs

82

PyTorch: Dynamic Computation Graphs

83

PyTorch: Dynamic Computation Graphs

84

PyTorch: Dynamic Computation Graphs

85

PyTorch: Dynamic Computation Graphs

86

PyTorch: Dynamic Computation Graphs

87

Alternative: Static Computation Graphs

88

Alternative: Static Graphs with JIT

89

Alternative: Static Graphs with JIT

90

Alternative: Static Graphs with JIT

91

Alternative: Static Graphs with JIT

92

Alternative: Static Graphs with JIT

93

Static vs Dynamic Graphs: Optimization

94

Static vs Dynamic Graphs: Optimization

95

Static vs Dynamic Graphs: Optimization

96

Dynamic Graph Applications

[2] Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee. “Particle Filter Recurrent Neural Networks” AAAI, 2020.
[1] Rico Jonschkowski, Divyam Rastogi, Oliver Brock. “Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors” RSS, 2018

[2] Ma et al., AAAI 2020[1] Ma et al., RSS 2018

97

Dynamic Graph Applications

[1] Karkus et al., RSS 2019

[1] Peter Karkus, Xiao Ma, David Hsu, Leslie Pack Kaelbling, Wee Sun Lee, Tomas Lozano-Perez.
“Differentiable Algorithm Networks for Composable Robot Learning” RSS, 2019

98

Dynamic Graph Applications

Final Project

99

TensorFlow: Versions

100

TensorFlow 1.0: Static Graphs

101

TensorFlow 1.0: Static Graphs

102

TensorFlow 2.0: Dynamic Graphs

103

TensorFlow 2.0: Dynamic Graphs

104

TensorFlow 2.0: Dynamic Graphs

105

TensorFlow 2.0: Dynamic Graphs

106

TensorFlow 2.0: Dynamic Graphs

107

TensorFlow 2.0: Static Graphs

108

TensorFlow 2.0: Static Graphs

109

TensorFlow 2.0: Static Graphs

110

Keras: High-level API

111

Keras: High-level API

112

Keras: High-level API

113

Keras: High-level API

114

Keras: High-level API

115

Keras: High-level API

116

Keras: High-level API

117

TensorBoard

Summary: PyTorch vs TensorFlow

• Pytorch
• Clean, imperative API
• Dynamic graphs for easy debugging
• JIT allows static graphs for production
• Hard/inefficient to use on TPUs
• Not easy to deploy on mobile

• Tensorflow 1.0: static graphs by default; can be confusing to debug;
API could be messy

• Tensorflow 2.0: dynamic by default; standardized on Keras API

118

Lecture 12
Deep Learning Software
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

