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Overview
1. One time setup:
• Activation functions, data preprocessing, weight 

initialization, regularization
2. Training dynamics:
• Learning rate schedules; hyperparameter optimization

3. After training:
• Model ensembles, transfer learning, large-batch training



Model Ensembles

1. Train multiple independent models
2. At test time average their results:
(Take average of predicted probability distributions, then choose 
argmax)

Enjoy 2% extra performance



Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Cyclic learning rate schedules can 
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. 



Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a moving 
average of the parameter vector and use that at test time 
(Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992. 

Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 201 



Transfer Learning

“You need a lot of data if you want to 
train / use CNNs”

What if data is limited?



Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 



Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 



Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 



Transfer Learning with CNNs

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014 
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Transfer Learning with CNNs



Transfer Learning with CNNs

Some tricks:
• Train with feature extraction first 

before fine-tuning
• Lower the learning rate: use 

~1/10 of LR used in original 
training

• Sometimes freeze lower layers to 
save computation

• Train with BatchNorm in “test” 
mode



Transfer Learning with CNNs



Transfer Learning: Fine Tuning



Transfer Learning with CNNs: Architecture Matters!

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition 



Transfer Learning with CNNs
Dataset similar to 

ImageNet
Dataset very different 

from ImageNet

Very little data (10s to 
100s)

Use Linear Classifier on 
top layer

You’re in trouble…
Try linear classifier from 

different stages

Quite a lot of data (100s 
to 1000s)

Finetune a few layers Finetune a larger 
number of layers



Transfer Learning is pervasive!
Its the norm, not the exception

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015 

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with 
permission. 



Transfer Learning is pervasive!
Its the norm, not the exception

Word vectors pretrained 
with word2vec

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015 

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with 
permission. 



Transfer Learning is pervasive!
Its the norm, not the exception

Zhou et al, “Unified Vision-Language Pre-Training for Image 
Captioning and VQA”, arXiv 2019 

1. Train CNN on ImageNet

2. Fine-Tune (1) for object detection on Visual 
Genome

3. Train BERT language model on lots of text

4. Combine (2) and (3), train for joint image / 
language modeling

5. Fine-tune (5) for image captioning, visual 
question answering, etc.



Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019 

Training from scratch can work as well as 
pertaining on ImageNet!

… if you train for 3x as long



Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019 

Pretraining + Finetuning beats training from 
scratch when dataset size is very small

Collecting more data is more effective than 
pretraining



Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 2019 

My current view on transfer learning: 

• Pretrain + finetune makes your training faster, 
so practically very useful

• Training from scratch works well once you 
have enough data

• Lots of work left to be done



Summary

1. One time setup:
• Activation functions, data preprocessing, weight 

initialization, regularization
2. Training dynamics:
• Learning rate schedules; hyperparameter optimization

3. After training:
• Model ensembles, transfer learning
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A zoo of frameworks!

Caffe
(UC Berkeley)
Torch
(NYU / Facebook)
Theano
(U Montreal)

PyTorch
(Facebook)
TensorFlow
(Google)

Caffe2
(Facebook)

Darknet
(Redmon)

CNTK
(Microsoft)

Chainer

JAX
(Google)PaddlePaddle

(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, 
MIT, Hong Kong U, etc. but main 
framework of choice at AWS



26

A zoo of frameworks!

Caffe
(UC Berkeley)
Torch
(NYU / Facebook)
Theano
(U Montreal)

PyTorch
(Facebook)
TensorFlow
(Google)

Caffe2
(Facebook)

Darknet
(Redmon)

CNTK
(Microsoft)

Chainer

JAX
(Google)PaddlePaddle

(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, 
MIT, Hong Kong U, etc. but main 
framework of choice at AWS

We’ll focus on these



Recall: Computational Graphs
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The motivation for deep learning frameworks

1. Allow rapid prototyping of new ideas

2. Automatically compute gradients for you

3. Run it all efficiently on GPU or TPU 
hardware 



PyTorch: Versions

For this class we are using PyTorch version 1.13
(Released October 2022)

Be careful if you are looking at older PyTorch code—
the API changed a lot before 1.0
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PyTorch: Version 2.2 (2024)

further optimize models (torch.compile,
scaled_dot_product_attention)

Intended (not committing) to be backwards compatible

30

Video credit: PyTorch

https://pytorch.org/get-started/pytorch-2.0/


PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of 
                  Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable 
               weights

31



PyTorch: Tensors
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Running example: 
Train a two-layer ReLU network 
on random data with L2 loss



PyTorch: Tensors
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Create random tensors 
for data and weights



PyTorch: Tensors
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Forward pass: compute 
predictions and loss



PyTorch: Tensors
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Backward pass: manually 
compute gradients



PyTorch: Tensors
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Gradient descent 
step on weights



PyTorch: Tensors
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To run on GPU, just use 
a different device!



PyTorch: Autograd
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Creating Tensors with 
requires_grad=True 
enables autograd

Operations on Tensors with 
requires_grad=True cause PyTorch 
to build a computational graph



PyTorch: Autograd
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We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights



PyTorch: Autograd
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Compute gradients with 
respect to all inputs that 
have requires_grad=True!



PyTorch: Autograd
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Every operation on a tensor with 
requires_grad=True will add to the 
computational graph, and the resulting 
tensors will also have requires_grad=True
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PyTorch: Autograd
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PyTorch: Autograd
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PyTorch: Autograd
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PyTorch: Autograd
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PyTorch: Autograd

47

Backprop to all inputs 
that require grad



PyTorch: Autograd

48

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed



PyTorch: Autograd
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After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Make gradient step on weights



PyTorch: Autograd
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After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Set gradients to zero—forgetting this is 
a common bug!



PyTorch: Autograd

51

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Tell PyTorch not to build a graph for 
these operations



PyTorch: New Functions
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PyTorch: New Functions
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PyTorch: New Functions
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PyTorch: nn
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60

PyTorch: nn
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PyTorch: nn
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PyTorch: nn
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PyTorch: optim
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PyTorch: optim
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PyTorch: nn
Defining Modules
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PyTorch: nn
Defining Modules
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PyTorch: nn
Defining Modules
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PyTorch: DataLoaders
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PyTorch: DataLoaders
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PyTorch: Pretrained Models

Super easy to use pertained models with torch vision

https://pytorch.org/vision/stable/

https://pytorch.org/vision/stable/
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PyTorch: Dynamic Computation Graphs
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PyTorch: Dynamic Computation Graphs
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PyTorch: Dynamic Computation Graphs
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Alternative: Static Computation Graphs
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Alternative: Static Graphs with JIT
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Alternative: Static Graphs with JIT
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Static vs Dynamic Graphs: Optimization
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Static vs Dynamic Graphs: Optimization
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Dynamic Graph Applications

[2] Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee. “Particle Filter Recurrent Neural Networks” AAAI, 2020.
[1] Rico Jonschkowski, Divyam Rastogi, Oliver Brock. “Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors” RSS, 2018

[2] Ma et al., AAAI 2020[1] Ma et al., RSS 2018
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Dynamic Graph Applications

[1] Karkus et al., RSS 2019

[1] Peter Karkus, Xiao Ma, David Hsu, Leslie Pack Kaelbling, Wee Sun Lee, Tomas Lozano-Perez. 
“Differentiable Algorithm Networks for Composable Robot Learning” RSS, 2019
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Dynamic Graph Applications

Final Project
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TensorFlow: Versions
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TensorFlow 1.0: Static Graphs
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TensorFlow 1.0: Static Graphs
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TensorFlow 2.0: Dynamic Graphs
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TensorFlow 2.0: Dynamic Graphs
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TensorFlow 2.0: Dynamic Graphs
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TensorFlow 2.0: Dynamic Graphs
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TensorFlow 2.0: Dynamic Graphs
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TensorFlow 2.0: Static Graphs
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TensorFlow 2.0: Static Graphs
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TensorFlow 2.0: Static Graphs
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Keras: High-level API
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Keras: High-level API
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Keras: High-level API
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Keras: High-level API
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TensorBoard



Summary: PyTorch vs TensorFlow

• Pytorch
• Clean, imperative API
• Dynamic graphs for easy debugging
• JIT allows static graphs for production
• Hard/inefficient to use on TPUs
• Not easy to deploy on mobile

• Tensorflow 1.0: static graphs by default; can be confusing to debug;
API could be messy

• Tensorflow 2.0: dynamic by default; standardized on Keras API
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