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Recap: Activation Functions

Sigmoid:
1. saturated neurons “kill” the gradients
2. not zero centered
3. exp() computationally expensive

ReLU:
1. does not saturate (in + region)
2. not zero centered
3. computationally efficient

Leaky ReLU: solve “the dying ReLU” problem



Recap: Data Preprocessing



Recap: Weight initialization
“Just right”: Activations are 
nicely scaled for all layers!

Glorot and Bengio, “Understanding the di'culty of training deep feedforward neural networks”, AISTAT 2010 



Recap: Regularization-- Dropout

Forces the network to have a redundant
representation; prevents co-adaptation 
of features

Dropout is training a large ensemble of 
models (that share parameters).

Usually, dropout p=0.5



Data Augmentation

“Chocolate
Pretzels”



Data Augmentation: Horizontal Flips



Data Augmentation: Random Crops and 
Scales

Training: sample random crops / 
scales

ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a Axed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, 

+ Eips



Data Augmentation: Color Jitter

Simple: Randomize contrast and 
brightness More complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color oFset” 
along principal 
component directions

3. Add oFset to all pixels of 
a training image

(Used in AlexNet, ResNet, 
etc)



Data Augmentation: RandAugment

Apply random 
combinations of 
transforms:

• Geometric: Rotate, 
translate, shear

• Color: Sharpen, contrast, 
brightness, solarize, 
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020 



Data Augmentation: RandAugment

Apply random 
combinations of 
transforms:

• Geometric: Rotate, 
translate, shear

• Color: Sharpen, contrast, 
brightness, solarize, 
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020 



Data Augmentation: Get creative for your 
problem!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should 
not change the network output?

Maybe diFerent for diFerent tasks!



Regularization: A common pattern

Training: Add some randomness
Testing: Marginalize over randomness

Examples:
Dropout
Batch Normalization
Data Augmentation



Regularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections
Goal: prevent “co-adaptation” of features

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013 

Dropout Dropconnect



Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over diFerent samples

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014



Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over diFerent samples

Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014



Regularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016 

Starting to become common in 
recent architectures:

• Pham et al, “Very Deep Self-Attention Networks 
for End-to-End Speech Recognition”, 
INTERSPEECH 2019 

• Tan and Le, “E'cientNetV2: Smaller Models and 
Faster Training”, ICML 2021 

• Fan et al, “Multiscale Vision Transformers”, ICCV 
2021

• Bello et al, “Revisiting ResNets: Improved 
Training and Scaling Strategies”, NeurIPS 2021

• Steiner et al, “How to train your ViT? Data, 
Augmentation, and Regularization in Vision 
Transformers”, arXiv 2021 



Training: Set random image regions to 0
Testing: Use the whole image

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

Regularization: CutOut

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017 
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020 



Regularization: Mixup

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018 

Sample blend probability 
from a beta distribution 
Beta(a, b) with a=b=0 so 
blend weights are close to 
0/1

Randomly blend the pixels 
of pairs of training images, 
e.g. 60% pretzels, 40% 
robot

Target label:
Pretzels: 0.6
Robot: 0.4



Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix

Replace random crops of one 
image with another, e.g. 60% of 
pixels from pretzels, 40% from 
robot

Target label:
Pretzels: 0.6
Robot: 0.4

Regularization: CutMix

Yun et al, “CutMix: Regularization Strategies to Train Strong ClassiAers with Localizable Features”, ICCV 2019 



Regularization: Label Smoothing

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015 

Set target distribution to be             on the correct category and  
on all other categories, with K categories and 

Loss is cross-entropy between predicted and target distribution.

Standard Training
Pretzels: 100%
Robot: 0%
Sugar: 0%

Label Smoothing
Pretzels: 90%
Robot: 5%
Sugar: 5%



Regularization: Summary

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing

- Use DropOut for large fully-connected layers

- Data augmentation is always a good idea

- Use BatchNorm for CNNs (but not ViTs)

- Try Cutout, Mixup, CutMix, Stochastic Depth, Label 

Smoothing to squeeze out a bit of extra 

performance



Recap

1. One �me setup:

• Ac�va�on func�ons, data preprocessing, weight 

ini�aliza�on, regulariza�on

2. Training dynamics:

• Learning rate schedules; large-batch training; 

hyperparameter op�miza�on

3. A�er training:

• Model ensembles, transfer learning

Last time

Today



SGD, SGD+Momentum, Adagrad, RMSProp, Adam
all have learning rate as hyper parameter

Q: Which one of these learning rates 
is best to use?



Learning Rate Decay: Step

Step: Reduce learning rate at a few 
Axed points. E.g. for ResNets, multiply 
LR by 0.1 after epochs 30, 60, and 90.



Learning Rate Decay: Cosine

Step: Reduce learning rate at a few 
Axed points. E.g. for ResNets, multiply 
LR by 0.1 after epochs 30, 60, and 90.

Cosine: 

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019 
Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019 
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 



Learning Rate Decay: Linear

Step: Reduce learning rate at a few 
Axed points. E.g. for ResNets, multiply 
LR by 0.1 after epochs 30, 60, and 90.

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL 2018 
Liu et al, “RoBERTa: A Robustly Optimized BERT Pretraining Approach”, 2019

Yang et al, “XLNet: Generalized Autoregressive Pretraining for Language Understanding”, NeurIPS 2019 



Learning Rate Decay: Inverse Sqrt

Step: Reduce learning rate at a few 
Axed points. E.g. for ResNets, multiply 
LR by 0.1 after epochs 30, 60, and 90.

Vaswani et al, “Attention is all you need”, NIPS 2017 



Learning Rate Decay: Constant!

Step: Reduce learning rate at a few 
Axed points. E.g. for ResNets, multiply 
LR by 0.1 after epochs 30, 60, and 90.

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019 
Donahue and Simonyan, “Large Scale Adversarial Representation Learning”, NeurIPS 2019 



How long to train? Early Stopping

Stop training the model when accuracy on the validation set 
decreases Or train for a long time, but always keep track of the 
model snapshot that worked best on val. Always a good idea to 
do this!



Choosing Hyperparameters: Grid 
Search

Choose several values for each hyper parameter 
(Often space choices log-linearly)

Example:
Weight decay: [1x10-4, 1x10-3, 1x10-2, 1x10-1]
Learning rate: [1x10-4, 1x10-3, 1x10-2, 1x10-1]

Evaluate all possible choices on this hyperparameter grid



Choosing Hyperparameters: Random 
Search

Choose several values for each hyper parameter 
(Often space choices log-linearly)

Example:
Weight decay: log-uniform on [1x10-4, 1x10-1]
Learning rate: log-uniform on [1x10-4, 1x10-1]

Run many diFerent trials



Hyperparameters: Random vs Grid 
Search

Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”, JMLR 2012 



Choosing Hyperparameters: Random 
Search

Radosavovic et al, “On Network Design Spaces for Visual Recognition”, ICCV 2019 



Step 1: Check ini�al loss

Choosing Hyperparameters

Turn oF weight decay, sanity check loss at initialization 
e.g. log(C) for softmax with C classes



Step 1: Check ini�al loss

Step 2: Over"t a small sample

Choosing Hyperparameters

Try to train to 100% training accuracy on a small sample of training data
(~5-10 mini batches); Addle with architecture, learning rate, weight 
initialization. Turn oF regularization.

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization



Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Choosing Hyperparameters

Use the architecture from the previous step, use all training data, turn on 
small weight decay, And a learning rate that makes the loss drop 
signiAcantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4



Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choosing Hyperparameters

Choose a few values of learning rate and weight decay around what 
worked from Step 3, train a few models for ~1-5 epochs

Good learning rates to try: 1e-4, 1e-5, 0



Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Re"ne grid, train longer

Choosing Hyperparameters

Pick best models from Step 4, train them for longer (~10-20 epochs) 
without learning rate decay



Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Re"ne grid, train longer

Step 6: Look at learning curves

Choosing Hyperparameters



Look at Learning Curves!

Losses may be noisy, use a 
scatter plot and also plot 
moving average to see trends 
better















Step 1: Check ini�al loss

Step 2: Over"t a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Re"ne grid, train longer

Step 6: Look at learning curves loss curves

Step 7: GOTO step 5

Choosing Hyperparameters



• Network architecture

• Learning rate, its decay schedule, update type

• Regulariza�on (L2/ Dropout strength)

Hyperparameters to play with:

Neural networks practitioner
Music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/


Cross-validation “command center”

https://wandb.ai/ 

Save all losses and plot

Tensorboard 
(tensorflow)

https://wandb.ai/


Track ratio of weight update / weight 
magnitude

Ratio between the updates and values: ~0.0002 / 0.02 = 0.01 
(about okay) want this to be somewhere around 0.001 or so



Overview

1. One �me setup:

• Ac�va�on func�ons, data preprocessing, weight 

ini�aliza�on, regulariza�on

2. Training dynamics:

• Learning rate schedules; hyperparameter op�miza�on

3. A�er training:

• Model ensembles, transfer learning, large-batch training



Model Ensembles

1. Train mul�ple independent models

2. At test �me average their results:

(Take average of predicted probability distribu�ons, then choose 

argmax)

Enjoy 2% extra performance



Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple 
snapshots of a single model during training!

Cyclic learning rate schedules 
can make this work even 
better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and GeoF Pleiss, 2017. Reproduced with permission. 



Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a 
moving average of the parameter vector and use that 
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992. 
Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 201 



Transfer Learning

“You need a lot of data if you want 
to train / use CNNs”

What if data is limited?



Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 



Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 



Transfer Learning with CNNs

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 



Transfer Learning with CNNs

Razavian et al, “CNN Features OF-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014 



Transfer Learning with CNNs

Razavian et al, “CNN Features OF-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014 



Transfer Learning with CNNs



Transfer Learning with CNNs

Some tricks:
• Train with feature extraction 

Arst before Ane-tuning
• Lower the learning rate: use 

~1/10 of LR used in original 
training

• Sometimes freeze lower 
layers to save computation

• Train with BatchNorm in “test” 
mode



Transfer Learning with CNNs



Transfer Learning with CNNs: Architecture 
Matters!

Improvements in CNN 
architectures lead to 
improvements in many 
downstream tasks thanks to 
transfer learning!



Transfer Learning with CNNs: Architecture 
Matters!

Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition 



Transfer Learning with CNNs

Dataset similar to 
ImageNet

Dataset very 
diFerent from 

ImageNet

Very little data (10s 
to 100s)

? ?

Quite a lot of data 
(100s to 1000s)

? ?



Transfer Learning with CNNs

Dataset similar to 
ImageNet

Dataset very 
diFerent from 

ImageNet

Very little data (10s 
to 100s)

Use Linear ClassiAer 
on top layer

?

Quite a lot of data 
(100s to 1000s)

Finetune a few 
layers

?



Transfer Learning with CNNs

Dataset similar to 
ImageNet

Dataset very 
diFerent from 

ImageNet

Very little data (10s 
to 100s)

Use Linear ClassiAer 
on top layer

?

Quite a lot of data 
(100s to 1000s)

Finetune a few 
layers

Finetune a larger 
number of layers



Transfer Learning with CNNs

Dataset similar to 
ImageNet

Dataset very 
diFerent from 

ImageNet

Very little data (10s 
to 100s)

Use Linear ClassiAer 
on top layer

You’re in trouble…
Try linear classiAer 

from diFerent stages

Quite a lot of data 
(100s to 1000s)

Finetune a few 
layers

Finetune a larger 
number of layers



Transfer Learning is pervasive!
Its the norm, not the exception

Karpathy and Fei-Fei, “Deep Visual-Semantic 
Alignments for Generating Image Descriptions”, 
CVPR 2015 

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced 
with permission. 



Transfer Learning is pervasive!
Its the norm, not the exception

Word vectors 
pretrained with 
word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic 

Alignments for Generating Image Descriptions”, 
CVPR 2015 

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced 
with permission. 



Transfer Learning is pervasive!
Its the norm, not the exception

Zhou et al, “UniAed Vision-Language Pre-Training for 
Image Captioning and VQA”, arXiv 2019 

1. Train CNN on ImageNet

2. Fine-Tune (1) for object detection on 

Visual Genome

3. Train BERT language model on lots of 

text

4. Combine (2) and (3), train for joint 

image / language modeling

5. Fine-tune (5) for image captioning, 

visual question answering, etc.



Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 
2019 

Training from scratch can work as well as 

pertaining on ImageNet!

… if you train for 3x as long



Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 
2019 

Pretraining + Finetuning beats training 
from scratch when dataset size is very 
small

Collecting more data is more eFective 
than pretraining



Transfer Learning is pervasive!
Some very recent results have questioned it

He et al, ”Rethinking ImageNet Pre-Training”, ICCV 
2019 

My current view on transfer learning: 

• Pretrain + Anetune makes your training 
faster, so practically very useful

• Training from scratch works well once 
you have enough data

• Lots of work left to be done



Summary

1. One �me setup:

• Ac�va�on func�ons, data preprocessing, weight 

ini�aliza�on, regulariza�on

2. Training dynamics:

• Learning rate schedules; hyperparameter op�miza�on

3. A�er training:

• Model ensembles, transfer learning



Next Time: Deep Learning Software
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