
Lecture 10
Training Neural Networks I
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

Project 2—Updates

• Instructions available on the website

• Here: deeprob.org/projects/project2/

• two-layer neural network and R-CNN/two-stage detectors

• Due Thursday, February 22th 11:59 PM EST

2

http://deeprob.org/projects/project2/

Recap: Object Detec5on

3

R-CNN

Fast R-CNN

Faster R-CNN

Mask R-CNN

…

Final Project Paper Selec5on Survey

• Published as a gradescope quiz, 1 point

– To gauge your areas of interest

– Used for forming teams

• Due February 22rd 11:59 PM EST

4

https://deeprob.org/w24/papers/

Components of Convolutional Networks

5

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

6

Overview

1. One >me setup:
• Ac>va>on func>ons, data preprocessing, weight

ini>aliza>on, regulariza>on
2. Training dynamics:

• Learning rate schedules; large-batch training;
hyperparameter op>miza>on

3. AHer training:
• Model ensembles, transfer learning

7

Ac5va5on Func5ons

8

https://sefiks.com/2020/0
2/02/dance-moves-of-
deep-learning-activation-
functions/

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

9

Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

10

Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

11

Ac5va5on Func5ons: Sigmoid

- What happens when x = -10?

- What happens when x = 10? “sigmoid satura-on problem”

12

Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

13

Ac5va5on Func5ons: Sigmoid

14

Activation Functions: Sigmoid

15

Activation Functions: Sigmoid

16

Activation Functions: Sigmoid

“zig-zagging dynamics”

17

Activation Functions: Sigmoid

Gradients on rows of ! can only point
in some directions; needs to “zigzag”
to move in other directions

ℎ!
(ℓ)

= ∑
%
$!,%
(ℓ)%(ℎ%ℓ'() +)!

(ℓ)

Consider what happens when
nonlinearity is always positive

Gradients on all !!,#
(ℓ) have the same sign as upstream

gradient ∂#/ ∂ℎ!
(ℓ)

ℎ!
(ℓ) is the &th element of the hidden layer at layer ℓ

(before activation)

!(ℓ),)(ℓ) are the weights and bias of layer ℓ
What can we say about the gradients on !(ℓ)?

18

Activation Functions: Sigmoid
Consider what happens when nonlinearity is
always positive

Gradients on all !!,#
(ℓ) have the same sign as upstream

gradient ∂#/ ∂ℎ!
(ℓ)

Not that bad in practice:

- Only true for a single example, mini
batches help

- BatchNorm can also avoid this

ℎ!
(ℓ)

= ∑
%
$!,%
(ℓ)%(ℎ%ℓ'() +)!

(ℓ)

ℎ!
(ℓ) is the &th element of the hidden layer at layer ℓ

(before activation)

!(ℓ),)(ℓ) are the weights and bias of layer ℓ
What can we say about the gradients on !(ℓ)?

19

Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

20

Ac5va5on Func5ons: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive

Main issue in practice

21

Ac5va5on Func5ons: tanh

tanh(x)

- Squashes numbers to range [-1, 1]

- Zero centered (nice)

- Still kills gradients when saturated :(

22

Ac5va5on Func5ons: ReLU

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

!(#) = &'#(0, #)

23

Ac5va5on Func5ons: ReLU

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

!(#) = &'#(0, #)

- Not zero-centered output
- An annoyance:

what is the gradient when x<0?

24

Ac5va5on Func5ons: ReLU

- What happens when x = -10?

- What happens when x = 10?

ReLU units could “die”...

25

Data cloud
Active ReLU

Dead ReLU will never
activate

=> never update

26

Data cloud
Active ReLU

Dead ReLU will never
activate

=> never update

=> Sometimes initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

27

Activation Functions: Leaky ReLU

Leaky ReLU
!(#) = &'#(*#, #)
* is a hyperparameter, often * =
0.1

- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network
Acoustic Models”, ICML 2013

28

Activation Functions: Leaky ReLU
- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

He et al, “Delving Deep into Rectifiers: Surpassing Human- Level Performance on ImageNet Classification”, ICCV 2015

29

Activation Functions: Exponential Linear Unit (ELU)

Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), ICLR 2016

30

Activation Functions: Scale Exponential Linear Unit
(SELU)

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

derivation see original
paper (91 pages…)

31

Ac9va9on Func9ons: Gaussian Error Linear Unit
(GELU)

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

32

Ac5va5on Func5ons

33

Accuracy on CIFAR10

Ramachandran et al, “Searching for activation functions”, ICLR Workshop 2018

34

Ac5va5on Func5ons: Summary

35

Data preprocessing

(Assume X[NxD] is data matrix, each example in a row)
See batchnorm

36

Data preprocessing

(Data has diagonal
covariance matrix)

(Covariance matrix
is the identity matrix)

In practice, you may also see PCA and Whitening of the data

37

Data preprocessing
Before normalization: Classification
loss very sensitive to changes in
weight matrix; hard to optimize

After normalization: less sensitive to
small changes in weights; easier to
optimize

38

Data preprocessing for Images

39

Weight initialization

Input layer
Hidden layer

Output layer

Q: What happens if we
initialize all W=0, b=0?

A: All outputs are 0, all gradients are
the same!

“symmetry breaking” problem

https://www.pinecone.io/learn/weight-
initialization/

https://www.pinecone.io/learn/weight-initialization/
https://www.pinecone.io/learn/weight-initialization/

40

Weight initialization

Next idea: small random numbers (Gaussian with zero
mean, std=0.01)

Works ~okay for small networks, but
problems with deeper networks.

“vanishing gradient” problem

41

Weight ini5aliza5on: Ac5va5on sta5s5cs

42

Weight ini5aliza5on: Ac5va5on sta5s5cs
All activations tend to zero for
deeper network layers

Q: What do the gradients
!"/!$ look like?

43

Weight initialization: Activation statistics
All activations tend to be zero
for deeper network layers

Q: What do the gradients
!"/!$ look like?

A: All zero, no learning :(

44

Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look
like?

45

Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look
like?
A: Local gradients all zero, no
learning :(

46

Weight ini5aliza5on: Xavier Ini5aliza5on
“Just right”: Activations are
nicely scaled for all layers!

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

47

Weight ini5aliza5on: Xavier Ini5aliza5on
“Just right”: Activations are
nicely scaled for all layers!

48

Weight initialization: Xavier Initialization
“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
kernel_size2 x input_channels

49

Weight initialization: Xavier Initialization
“Xavier” initialization:
std = 1/ *+,Derivation: Variance of output = Variance of input

! = #$!! = ∑
"#$

%!&
$"%"

-./(1!) = *+,×-./(4! , 6!) [Assume 4, 6 are
iid] = *+,×(7[4!"]7[6!"] − 7[4!]"7[6!]") [Assume 4, 6 are
independent]

= *+,×-./(4!)×-./(6!) [Assume 4, 6 are zero-mean]

If -./(6!) = 1/*+, then -./(1!) = -./(4!)

50

Weight initialization: What about ReLU?
Xavier assumes zero centered
activation function

51

Weight ini5aliza5on: What about ReLU?
Xavier assumes zero centered
activation function

Activations collapse to zero
again, no learning :(

52

Weight ini)aliza)on: Kaiming / MSRA ini)aliza)on
“Just right” - activations nicely
scaled for all layers

He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

53

Weight ini5aliza5on: Residual Networks
If we initialize with MSRA:
then-./(;(4)) = -./(4)

But then -./(;(4) + 4) >
-./(4)variance grows with each block!

*(,) + ,

*(,)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

54

Weight ini5aliza5on: Residual Networks
If we initialize with MSRA:
then-./(;(4)) = -./(4)

But then -./(;(4) + 4) >
-./(4)variance grows with each block!

*(,) + ,

*(,)

Solution: Initialize first conv with MSRA,
initialize second conv to zero.
Then-./(;(4) + 4) = -./(4)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

55

Proper initialization is an active area of research

• Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

• Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

• Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

• All you need is a good init, Mishkin and Matas, 2015

• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

56

Now your model is training … but it overfits!

Regulariza5on

57

Regularization: Add term to the loss

58

Regularization: Dropout
In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

59

Regulariza5on: Dropout
Example forward pass
with a 3-layer network
using dropout

60

Regulariza5on: Dropout

Forces the network to have a redundant
representation; prevents co-adaptation of features

has legs
is teal color
is furry
has motors
has a velodyne

Digit

robot

score

61

Regularization: Dropout

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~1082 atoms in the universe…

62

Dropout: Test 5me

63

Dropout: Test time

64

Dropout: Test time

65

Dropout: Test time

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

Output at test time = Expected output at training time

66

Dropout Summary

Drop in forward pass

Scale at test time

67

More common: “Inverted dropout”

68

Dropout architectures

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

Later architectures (GoogLeNet, ResNet, etc) use
global average pooling instead of fully-connected
layers: they don’t use dropout at all!

69

Regulariza5on: A common paVern

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

! = #!(%, ')

* = +(,, .) = /)[+(,, .)] = ∫ 3(.)+(,, .)4.

70

Regularization: A common pattern

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch Normalization

Training: Normalize using stats
from random mini batches

Testing: Use fixed stats to
normalize

For ResNet and later,
often L2 and Batch
Normalization are the
only regularizers!! = #!(%, ')

* = +(,, .) = /)[+(,, .)] = ∫ 3(.)+(,, .)4.

71

Data augmenta5on

72

Data augmenta5on

73

Data augmenta5on: Horizontal Flips

74

Data augmentation: Random Crops and Scales
Training: sample random crops / scales

ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

75

Data augmenta5on: Color JiVer

Simple: Randomize contrast and brightness
More complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(Used in AlexNet, ResNet, etc)

76

Data augmentation: RandAugment

Apply random combinations
of transforms:

• Geometric: Rotate,
translate, shear

• Color: Sharpen, contrast,
brightness, solarize,
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020

77

Data augmenta5on: RandAugment

Apply random combinations
of transforms:

• Geometric: Rotate,
translate, shear

• Color: Sharpen, contrast,
brightness, solarize,
posterize, color

78

Data augmenta*on: Get crea*ve for your problem!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should not
change the network output?

Maybe different for different tasks!

Regulariza5on: A common paVern
Training: Add some randomness
Testing: Marginalize over randomness

Examples:
Dropout
Batch Normalization
Data Augmentation

79

Regulariza5on: DropConnect
Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

80Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Regularization: Fractional Pooling
Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

81
Graham, “Fractional Max Pooling”, arXiv 2014

Regulariza5on: Stochas5c Depth
Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

82
Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Regularization: CutOut
Training: Set random image regions to 0
Testing: Use the whole image

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

83

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020

Regulariza5on: Mixup
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

84Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Sample blend probability from a
beta distribution Beta(a, b) with
a=b=0 so blend weights are
close to 0/1

Regulariza5on: Mixup
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

85Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Another example

Regularization: CutMix
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix

86

Yun et al, “CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features”, ICCV 2019

Regularization: Label Smoothing
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing

87

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015

Regularization: Summary
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing

88

89

Summary

1. One >me setup:
• Ac>va>on func>ons, data preprocessing, weight

ini>aliza>on, regulariza>on
2. Training dynamics:

• Learning rate schedules; large-batch training;
hyperparameter op>miza>on

3. AHer training:
• Model ensembles, transfer learning

Lecture 10
Training Neural Networks I
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

