btzf@

Lecture 10
Training Neural Networks |
University of Michigan | Department of Robotics

btt,)@

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

DR

Project 2—Updates

* |nstructions available on the website

* Here: deeprob.org/projects/project2/

e two-layer neural network and R-CNN/two-stage detectors

 Due Thursday, February 22th 11:59 PM EST

| bttfﬂg)

http://deeprob.org/projects/project2/

DR

Recap: Object Detection Ry Pregessonio

proposals —
R-CNN J z
Region Proposal Network .
rron -4
feat
Faster R-CNN RSN AL -

ey

Mask R-CNN

CNN

y 4

cagie Ly S & i

f bzzzz,:[@

Final Project Paper Selection Survey

» Published as a gradescope quiz, 1 point

— To gauge your areas of interest

— Used for forming teams

https://deeprob.org/w24/papers/

 Due February 22rd 11:59 PM EST
| bttpﬂ_a

DR

Components of Convolutional Networks

Convolution Layers Pooling Layers Fully-Connected Layers
l
224 downsampling=112 x Wl h WZ S
Activation Function Normalization
Aij T Hy
xi,j —
2
0; + €
N

f DEED Res

Overview

1. One time setup:

® Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:

® | earning rate schedules; large-batch training;
hyperparameter optimization

3. After training:
® Model ensembles, transfer learning

| bttfﬂ_a

Activation Functions

Dendrites

Axon

synapse
woLo

axon from a neuron

dendrite

cell body

Zwimi + b

w1

f (Z wW;T; + b)

output axon

activation
function

https://sefiks.com/2020/0

2/02/dance-moves-of-
deep-learning-activation-
functions/

Dance Moves of Deep Learning
Activation Functions

Cigmoid Tanh Step Function

= A 4}:

Y=1+." Y = tombh (x) s W0
source: sefiks
ReLU Softsign
A
O ®<0 o\(c -1) , %<0
X, %20 L1320
L’l*lx.l)
L ginc Leaky ReLLU

S

SN\(X) é-MGK(°1‘L x.)

Coftplus

/‘

=
' lw(/'*'e:‘)

[og of Sigmoid

~a=l-(1-,)

1+2

Mish

7 =X (+omi (sOftpluS ())

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Activation Functions: Sigmoid

1
7= T e

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

Activation Functions: Sigmoid

1
7= T e

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

Sigmoid 1. Saturated neurons “kill” the gradients

| btl:f Reb

10

Activation Functions: Sigmoid

1.0F

0.8 -

X L 06]
sigmoid -

- 10 -5 5 10

< gate < of|
dL (9o(oL #:
or Oo 73 g |

- What happens when x = -107?

- What happens when x = 10? “sigmoid saturation problem”

l DiipReb }

Activation Functions: Sigmoid

1
7= T e

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

Sigmoid 1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

| bttf@

12

Activation Functions: Sigmoid

Consider what happens when
nonlinearity Is always positive

(7)) — (£) (171 ()
h* = Zwij O'(hj) + b,

J

h%) is the ith element of the hidden layer at layer £

l
(before activation)
w@_ b are the weights and bias of layer £

What can we say about the gradients on w7

f bﬁf[@

13

Activation Functions: Sigmoid

Consider what happens when Local Upstream
nonlinearity is always positive gradient gradient
oL oh® 4L
) 4 £—1 4 -t .
hi() — Z wi(J_)o'(hj) + bi() OW,-(f) aWi(f) oh®)
J

h%) is the ith element of the hidden layer at layer £

l
(before activation)
w@_ b are the weights and bias of layer £

What can we say about the gradients on w7

f bﬁfl@ y

DR

Activation Functions: Sigmoid

Consider what happens when

. (s - Local Upstream
nonlinearity is always positive aradisnt arsdiset
h(®) = Z: wOe(h?=1) + b oL oh® oL
] I,J J l — -

; A 7 7

h'%) is the ith element of the hidden layer at layer 7 oL
i (Z-1)

(before activation) — O'(hj) ‘ ?)
w@ b are the weights and bias of layer £ ahi

What can we say about the gradients on w7

Gradients on all wi(j) have the same sign as upstream

gradient oL/ 6hi(f)
! btt{)[@

DR

Activation Functions: Sigmoid

Consider what happens when O ol
nonlinearity is always positive 2\ *

B = wOs(h!=") + b®
j A i
/ |
hl.(f) is the ith element of the hidden layer at layer

(before activation) —
w@ b are the weights and bias of layer £ \

°
Start

~
—

%

What can we say about the gradients on w2

. f E €c__" . .)
Gradients on all wl.(,j) have the same sign as upstream ZIg-zagging dynam|cs

gradient oL/ 0hl.(f)
| bttfﬂ_a)

DR

Consider what happens when
nonlinearity Is always positive

— Zw(f)a.(hf 1) + b(f)

A

Activation Functions: Sigmoid

h®

(before activation)

w) b are the weights and bias of layer ¢

What can we say about the gradients on w ()7

4 .
Gradients on all W() have the same sign as upstream

gradient 8L/ (”)‘h(f)

Lo
/
s

I

el

IS tlée ith element of the hidden layer at layer £

allowed
gradient
update
,directions
allowed
gradient
update
directions hypothetical
optimal w
vector

Gradients on rows of w can only point

IN some directions; needs to “zigzag”
to move In other directions

17

DR

Activation Functions: Sigmoid

Consider what happens when nonlinearity is

always positive

A D
— Zw(f)a.(hf 1) 4 b(f)

A

(before activation)

IS the ith element of the hidden layer at layer £

w) b are the weights and bias of layer ¢

What can we say about the gradients on w ()7

Gradients on all W(f)
gradient AL/ Oh(f)

| bttfﬂg)

have the same sign as upstream

allowed
gradient
update
,directions
allowed
gradient
update
directions
hypothetical
optimal w

vector

Not that bad In practice:

- Only true for a single example, mini
batches help

- BatchNorm can also avoid this18

Activation Functions: Sigmoid

1
7= T e

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

Sigmoid

2. Sigmoid outputs are not zero-centered

l bttr@ 3. exp() is a bit compute expensive

19

Activation Functions: Sigmoid

1
7= T e

- Squashes numbers to range [0, 1]

- Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

-10 10 Main issue in practice

Sigmoid 1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive

| bttpﬂ_a

20

Activation Functions: tanh

- Squashes numbers to range [-1, 1]

~10 10 - Zero centered (nice)

- Still kills gradients when saturated :(

tanh(x)

l DiipReb)

Activation Functions: RelLU

10- f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

~10 10

Rel U

(Rectified Linear Unit)
l DiipReb §

Activation Functions: RelLU

10- f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

_10 10 - Not zero-centered output
RelLU - An annoyance:
(Rectified Linear Unit) what is the gradient when x<07?

| btt,)ﬂ_a

23

X

oL _ 07 0L
Oxr Ox Oo

Activation Functions: RelLU

oo
ox

RelLU
gate

o(z) = max(0, x)

oL
oo

—10

1K g

10

- What happens when x = -107?
- What happens when x = 10?

| bttfﬂg)

DR

RelLU units could “die”...

Active RelLU

Data cloud

ead RelLLU will never
activate

=> never update

| bttfﬂg)

25

Active RelLU

Data cloud

=> Sometimes initialize
Rel.U neurons with slightly
positive biases (e.g. 0.01)

ead RelLLU will never
activate

=> never update

| btzfﬂé)

26

Activation Functions: Leaky RelLU

i - Does not saturate
- Computationally efficient

- Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

- Will not “die”
Leaky RelL U

f(x) = max(ax,x)

& IS a hyperparameter, often @ =

0.1

Maas et al, “Rectifier Nonlinearities Improve Neural Network

— Acoustic Models”, ICML 2013
‘DrrpRolb §

Activation Functions: Leaky RelLU

10

Leaky RelLU
f(x) = max(ax, x)
a is a hyperparameter, often o = 0.1

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

btt,)ll_a

Does not saturate
Computationally efficient

Converges much faster than sigmoid
and tanh in practice (e.g. 6x)

Will not “die”

Parametric ReLU (PRelLU)
f(x) = max(ax, x)
a IS learned via backprop

into Rectifiers: Surpassing Human- Level Performance on ImageNet Classification”, ICCV 2015

28

Die

Activation Functions: Exponential Linear Unit (ELU)

10
- All benefits of ReLU

- Closer to zero means outputs

- Negative saturation regime compared

with Leaky RelLLU adds some
robustness to noise

10
] x if x>0
f(x) = a(e—1) ifx<0 - Computation requires exp()
(Default a = 1)

Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), ICLR 2016

| btt,;ﬂ_a

29

P® Activation Functions: Scale Exponential Linear Unit
(SELU)

10

- Scaled version of ELU that works
better for deep networks _Self-

Normalizing™ property; can train deep
SELU networks without BatchNorm

10 10

selu(x) = AX fx>0
| Aae*=1) ifx<0

a = 1.67326324235437772848170429916717
A =1.0507009873554804934193349852946

derivation see original
paper (91 pages...)

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

l DiipReb §

PR Activation Functions: Gaussian Error Linear Unit
(GELU)

- ldea: Multiply input by O or 1 at
random; large values more likely to be
multiplied by 1, small values more
likely to be multiplied by 0 (data-

dependent dropout)
. - lake expectation over randomness
X ~N@O,1) - Very common in Transformers (BERT,

gelu(x) = xP(X < x) = %(1 + erf(x/\/i)) GPT, ViT)
~ x6(1.702x)

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

l DiipReb)

-3

| btt,;ﬂ_a

Activation Functions

— Sish
— SELU
8 -
ELU
- - RELUB
B 6~ —— Leaky RELU
- RELU
s 4~ = softplus
= Tanh
— 2 -
0
_2 -

_‘

e —

| |
-2.5 00 2.5
Neuron Activity

5.0

1.5

10.0

32

Accuracy on CIFAR10

B RelLU mLeaky ReLU m Parametric ReLU m Softplus m ELU m SELU m GELU B Swish

96
95.5 95.5

95 94.8 g4, 7,
94
93
92
91
90

ResNet Wide ResNet

2oL
' b zkr Ramachandran et al, “Searching for activation functions”, ICLR Workshop 2018

DenseNet

94.8 94.8

33

Activation Functions: Summary

- Don’t think too hard. Just use RelLU

- Try out Leaky ReLU / ELU / SELU / GELU if you
need to squeeze that last 0.1%

- Don’t use sigmoid or tanh

Some (very) recent architectures use GelLU instead of RelLU,
but the gains are minimal

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Liu et al, “A ConvNet for the 2020s”, arXiv 2022

| btzfﬂé)

34

Data preprocessing

original data zero-centered data normalized data

10 : . 10 , 10

., ;.
.“ %
e
e Lo - 5

-10 L -10 v :
1G -10 -5 0 5 10 -10 =5 0 5 10

See batchnorm X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0) |

(Assume X|NxD] is data matrix, each example in a row)

l DiipReb }

DR

Data preprocessing

In practice, you may also see PCA and Whitening of the data

original data

10

19

~10 : -10

decorrelated data whitened data

10

10

-10 -3 0 S 1§ ~10 -3 0 S 10

(Covariance matrix

(Data has diagonal
is the identity matrix)

covariance matrix)
36

Data preprocessing

Before normalization: Classification
loss very sensitive to changes in
weight matrix; hard to optimize

' bLsz,JU@E)B

After normalization: less sensitive to
small changes in weights; easier to
optimize

37

Data preprocessing for Images

e.g. consider CIFAR-10 example with [32, 32, 3] images

- Subtract the mean image (e.g. AlexNet)
(Mmean image = (32, 32, 3| array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and Divide by per-

channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

| bttpﬂ_a

Not common to do
PCA or whitening

38

Weight initialization

Q: What happens if we
initialize all W=0, b=07?

A: All outputs are O, all gradients are
the same!

“symmetry breaking” problem

Input layer

Hidden layer

https.//www.pinecone.io/learn/weight-
initialization/

l DiipReb }

https://www.pinecone.io/learn/weight-initialization/
https://www.pinecone.io/learn/weight-initialization/

Weight initialization

Next idea: small random numbers (Gaussian with zero
mean, std=0.01)

W= 0.01 * np.random.randn(Din, Dout)

Works ~okay for small networks, but
problems with deeper networks.

“vanishing gradient” problem

| bttpﬂ_a

40

DR

Weight initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer

hs = [] net with hidden size 4096

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):

W= 0.01 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))
hs.append(Xx)

| bttfﬂ_a

41

DR

Weight initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero for
hs = [] net with hidden size 4096 deeper network |ayers
X = np.random.randn(1l6, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]): i .
W= 0.01 * np.random.randn(Din, Dout) Q: What do the_ gradients
X = np.tanh(x.dot(W)) dL/dW IOOk Ilke?
hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

0 1 -1 0 1

D

42

z,;

DR

Weight initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to be zero

hs = [] net with hidden size 4096 for deeper network |ayers
X = np.random.randn(1l6, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]): i .
W= 0.01 * np.random.randn(Din, Dout) Q: What do the gradients

X = np.tanh(x.dot(W)) dL/dW look like?
hs.append(x)

A: All zero, no learning :(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

0 1 -1 0 1

z,;

D

43

DR

Weight initialization: Activation statistics

dims = [4096] * 7 Increase std of initial weights

hs = [] from 0.01 to 0.05
X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]

Q: What do the gradients look

All activations saturate

X = np.tanh(x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.8/ std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

0 1 -1 0 1 -] 0 1 -1 0 1 -1 0 1

lbzz,;n_a)

DR

Weight initialization: Activation statistics

dims = [4096] * 7 Increase std of initial weights

hs = [] from 0.01 to 0.05
X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]

Q: What do the gradients look

All activations saturate

X = np.tanh(x.dot(W))

18 . append(x) A: Local gradients all zero, no
learning :(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.8/ std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

l DiipReb .

Weight initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!
X = np.random.randn(1l6, dims[0])

for Din, Dout in zip(dims[:-1 dims|[1:

X = np.tanh(x.dot(W))
hs.append(Xx)

=)
I b tkr r@wd Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

46

Die

Weight initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(1l6, dims[0])
for Din, Dout in zip(dims[:-1 dims[1:

W = np.random.randn(Din, Dout) / np.sqrt(Din)

X = np.tanh(x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

btzf"@ .

Die

Weight initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization:
hs = [] std = 1/sqgrt(Din)

X = np.random.randn(1l6, dims[0])
for Din, Dout in zip(dims[:-1 dims[1:

W = np.random.randn(Din, Dout) / np.sqrt(Din)

X = np.tanh(x.dot(W))
hs.append(x)

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din Is
kernel_size? x input_channels

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

bttfﬂ_a

48

DR

Weight initialization: Xavier Initialization

L. | | | “Xavier” initialization:
Derivation: Variance of output = Variance of input std=1/ JDin

y =Wx =

Var(y;) = DinxVar(x;, w;) [Assume X, W are
Al = pinx(E[x?|E[w?] — E[x;]?E[w;]?) [Assume x, w are
independent]

= DinXVar(x;)XVar(w;) [Assume X, W are zero-mean]

if Var(w;) = 1/Din then Var(y;) = Var(x;)
f bﬁzz,;[@

DR

Weight initialization: What about RelLU?

dims = [4096] * 7 Change from tanh to RelLU Xavier assumes zero centered

hs = [] activation function

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din)

X np.maximum(0, x.dot(W))

hs.append(x)

| bttf@

50

DR

Weight initialization: What about RelLU?

dims = [4096] * 7 Change from tanh to RelLU Xavier assumes zero centered
hg = [] activation function

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]):

W = np.random.randn(Din, Dout) / np.sqrt(Din) Activations Collapse to zero
again, no leaming [
hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10

| btt,;ﬂ_a

51

DR

Weight initialization: Kaiming / MSRA initialization

dims = [4096] * 7 RelU correction: std = sqrt(2 / Din) “Just right” - activations nicely

ng = |[] | scaled for all layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqgrt(Din)
X np.maximum(0, x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

0 1 -1

-1 0 1 -1
| brrpReL
2 et ing Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015 52

DR

Weight initialization: Residual Networks

If we initialize with MSRA:

| relu thenVar(F(x)) = Var(x)
F(x)+x

F(x) I ol But then VC}T(F(X) + x) >
Var(x)variance grows with each block!

X
Residual Block

SElS
' bEEP Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

DR

Weight initialization: Residual Networks

If we initialize with MSRA:

[relu thenVar(F(x)) = Var(x)
F(x)+x
F(x) I ol But then VQT(F(X) + x) >
Var(x)variance grows with each block!
Solution: Initialize first conv with MSRA,
X initialize second conv to zero.
Residual Block ThenVar(F(x) + x) = Var(x)

2B
l bttr Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

54

bR

Proper initialization is an active area of research

* Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

* Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

* Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

* Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
* Data-dependent Initializations of Convolutional Neural Networks by KrahenbuUhl et al., 2015

* All you need is a good init, Mishkin and Matas, 2015

* Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

* The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

f bzzzzfn;»

Now your model is training ... but it overfits!

Train Loss Accuracy
17.5 09 | —e— train
15.0 —e— val
12.5 0.8 1
100
0.7 -
15
50
0.6 1
25
00 05 -
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

Regularization

| bzzfn_a

Regularization: Add term to the loss

1 N
L=).) max(0, fix; W), — fix; W), + 1) + AR(W)

i=1 jFy;

In common use:

L2 regularization R(W) = Z 2 W,i ; (Weight decay)
ko1

L1 regularization R(W) = Z Z |Wk,z\
ko1

Elastic net (L1 + L2) RW)=) D> pWE + W

— ko1

_
' ” , Relbb 57

Regularization: Dropout

In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 iIs common

rpRebB
' b P E Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

58

Regularization: Dropout

p = 0.5 # probability of keeping a unit active. higher = less dropout Example fOrward paSS
with a 3-layer network

def train step(X): using dr()pout

" X contains the data """

H1 = np.maximum(©®, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # f7irs

H1 *= Ul # drop!

H2 = np.maximum(©®, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*Hz.shape) < p # second dropou
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

| 5

Regularization: Dropout

00000

Forces the network to have a redundant
representation; prevents co-adaptation of features

> has legs X
.is teal color sDigit

~ IS furry X
- has motors —

score
. has a velodyne _x /

robot

60

Regularization: Dropout

Another interpretation:

Dropout Is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~10% atoms in the universe...

61

Dropout: Test time

Dropout makes our output random! Random mask

y =1,&*,2)

Output label Input image

Want to “average out” the randomness at test-time

y = fix,2) = E,[f(x, 2)] = jp<z>f<x, Oz

But this integral seems hard...

62

Dropout: Test time

Want to approximate
he integral
e imes y =fx,2) = E[f(x,2)] = Jp(z)f(x, 2)dz

Consider a single neuron:

At test time we have: El[a] = wx + w,y

63

Dropout: Test time

Want to approximate
the integral
) y =fx,z) = E[f(x,2)] = Jp(z)f(x, z2)dz

Consider a single neuron:

At test time we have: E[a] = wix + w,y

. L 1 1
During training time - E[q] = —(w,x + w,y) + —(wx + Oy)
we have: 4 4

1

1
At test time, drop nothing +Z(Ox +0y) + Z(Ox + W,Y)

and multiply by dropout
probability 1

l btkf = E(Wlx + W,y))

Dropout: Test time

def predict(X):
ensembled forward pass
Hl = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, Hl) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always

=> \We must scale the activations so that for each neuron:

Output at test time = Expected output at training time

| bttfﬂ_a

65

Dropout Summary

""" Vanilla Dropout: Not recommended implementation (see notes below)
p=0.5# probability of keeping a unit active. higher = less dropout

def train step(X):
"X contains the data

forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # fFirst dropout mask

H1 *= Ul # drop!

"H2 = np.maximum(©, np.dot(W2, H1) + b2)
U2 = np.random.rand(*H2.shape) < p # second dropout mask

H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

def predict(X):
ensembled forward pass

Hl = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, Hl1l) + b2) * p # NOTE: scale the activations

out = np.dot(W3, HZ) + b3

| btt,;ﬂ_a

Drop In forward pass

Scale at test time

66

More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train step(X):
forward pass for example 3-layer neural network
H1 = np.maximum(©®, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, Hl) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

Drop and scale
during training

/ test time is unchanged!
def predict(X):
ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(®, np.dot(W2, Hl) + b2)
out = np.dot(W3, H2) + b3

| btt,;ﬂ_a

6/

Dropout architectures

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

AlexNet vs VGG-16
(Params, M) Dropout here!

120000 l

100000

Later architectures (GoogleNet, ResNet, etc) use
global average pooling instead of fully-connected
layers: they don’t use dropout at all!

80000
60000

40000

20000 I
: 1 1

convl conv2 conv3 conv4 convs fceé fc7 fc8

L
/
e
5

H AlexNet mVGG-16

68

Regularization: A common pattern

Training: Add some kind of
randomness

y = fw(X, z)

Testing: Average out randomness
(sometimes approxmate

y = f(x,2) = E,[f(x,2)] = | p(2)f (x,2)dz

f bzzzz,:[@

Regularization: A common pattern

Training: Add some kind of
randomness

Example: Batch Normalization

For ResNet and later,
often L2 and Batch

Normalization are the
y E— ﬁ/V (X) Z) only regularizers!
Training: Normalize using stats

Testing: Average out randomness
(sometimes approxmate

y =f(x2) = Ezlf (x,2)]

f bzzzzf[@

from random mini batches

— f 'P(Z) f (x; Zbed»ﬁng: Use fixed stats to

normalize

Load image
and label

Data augmentation

o

14
\;\ .“ — /,/
» §"‘:"'i~;f /
8
' —

/

CNN

\

Compute

loss

/1

Load image
and label

| bzzpn_a

Data augmentation

Transform image

/

CNN

\

~—

Compute
loss

/2

Data augmentation: Horizontal Flips

/3

Data augmentation: Random Crops and Scales

Training: sample random crops / scales

ResNet:
1. Pick random L in range [256, 480]

2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

lbzz,;ﬂ_a ’

Data augmentation: Color Jitter

Simple: Randomize contrast and briahtness

S 1. Apply PCA to all [R, G, B]
B W e N
\ ‘|: wr .”"/)7--”)

More complex:

pixels in training set

2. Sample a “color offset”
along principal component

directions

3. Add offset to all pixels of a
training image

(Used in AlexNet, ResNet, etc)

/5

DR

Data augmentation: RandAugment

transforms = |

"Identity’, ’'AutoContrast’, ’'Equalize’, . .
'Rotate’, ’Solarize’, ’Color’, ’Posterize’. Apply random combinations
’Contrast’, ’'Brightness’, ’Sharpness’, of transforms:

ShearX’, ’'"ShearY’, "TranslateX’, ’'TranslateY’]

def randaugment (N, M) :
"NPWGenerate a set of distortions.

* Geometric: Rotate,

Args: translate, shear

N: Number of augmentation transformations to
apply sequentially.

M: Magnitude for all the transformations. e Color: Sharpen, COntraSt,
— brightness, solarize,
sampled_ops = np.random.choice(transforms, N) pOSterlze, color

return [(op, M) for op in sampled_ops]

l btt P@ Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurlPS 2020

/76

Data augmentation: RandAugment

Magnitude: 9
Apply random combinations
of transforms:
Original ShearX AutoContrast

Magnitude: 17

- -~ -
—_— —_—
~ * _ ~—~y . ~— -

Original ShearX AutoContrast

* Geometric: Rotate,
translate, shear

* Color: Sharpen, contrast,
Magnitude: 25 brightness, solarize,

; - : posterize, color
. T

Original ShearX AutoContrast

| bzzfn_a

DR

Data augmentation: Get creative for your problem!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should not
change the network output?

Maybe different for different tasks!

f bzzzz,;[@

DR

Regularization: A common pattern

Training: Add some randomness
Testing: Marginalize over randomness

Examples:

Dropout

Batch Normalization
Data Augmentation

f bﬁf[@

79

DR

Regularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

l btzP@ Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

80

DR

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

' bEP[E») Graham, “Fractional Max Pooling”, arXiv 2014

31

DR

Regularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Examples: _ _
Dropout Starting to become common in recent
Batch Normalization architectures:
Data Augmentation * Pham et al, “Very Deep Self-Attention Networks for
End-to-End Speech Recognition”, INTERSPEECH
DropConnect 2019
Fractional Max PQQling e Tan and Le, “EfficientNetV2: Smaller Models and
Stochastic Depth Faster Training”, ICML 2021
P Fan et al, “Multiscale Vision Transformers”, ICCV 2021
* Bello et al, “Revisiting ResNets: Improved Training and
Scaling Strategies”, NeurlPS 2021
e Steiner et al, “How to train your ViT? Data,
Augmentation, and Regularization in Vision
Transformers”, arXiv 2021

l btt P@ Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Die

Regularization: CutOut

Training: Set random image regions to 0
Testing: Use the whole image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth

Cutout / Random Erasing

Replace random regions with
mean value or random values

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017

Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020
p—

33

Die

Regularization: Mixup

Training: Irain on random blends of images
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth

Cutout / Random Erasing
Mixup

1.0}

0.8}

0.6

0.4}

40% cat, 60% dog

Sample blend probability from a
beta distribution Beta(a, b) with
a=b=0 so blend weights are

close to 0/1

/

CNN

\

i Randomly blend the pixels of
- pairs of training images, e.g.

2ob
I bzzr Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Target label:

cat: 0.4
dog: 0.6

34

Die

Regularization: Mixup

Training: Irain on random blends of images
Testing: Use original images Another example

Examples:
Dropout
Batch Normalization

/

Data Augmentation Target label:
DropConnect CNN Pretzels: 0.6
Fractional Max Pooling Robot: 0.4

\

Stochastic Depth
Cutout / Random Erasing
Mixup

Randomly blend the pixels of
pairs of training images, e.g.
60% pretzels, 40% robot

85

2ob
I bzzr Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Die

Regularization: CutMix

Training: Irain on random blends of images
Testing: Use original images

Examples:

Dropout . Tk Tabel
. arget label:

Batch Normallzqtlon CNN Pretzels: 0.6

Data Augmentation Robot: 0 4

DropConnect

Fractional Max Pooling
Stochastic Depth

Cutout / Random Erasing
Mixup / CutMix

\

Replace random crops of one image
with another, e.g. 60% of pixels
from pretzels, 40% from robot

Yun et al, “CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features”, ICCV 2019

| btt,;ﬂ_a

36

DR

Regularization: Label Smoothing

Training: Irain on random blends of images
Testing: Use original images

Examples:

Br(,zpr? llj\f iat Standard Training Label Smoothing
ateh Normaization Pretzels: 100% Pretzels: 90%

Data Augmentation Robot: 0% Robot: 5%

DropConnect . P

Fractional Max Pooling R T o Sugar: 0% sugar: 9%

Stochastic Depth - , K-1

Cutout / Random Erasing Set target distribution to be 1 — X e on the correct category and ¢/K

Mixup / CutMix on all other categories, with K categories and € € (0,1).

Label Smoothing
Loss is cross-entropy between predicted and target distribution.

37

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015
F pr— :

bR

Regularization: Summary

Training: Train on random blends of images
Testing: Use original images

Examples:

Dropout - Use DropOut for large fully-connected layers
Batch Normalization

Data Augmentation - Data augmentation is always a good idea

- Use BatchNorm for CNNs (but not ViTs)

Stochastic Depth - Try Cutout, Mixup, CutMix, Stochastic Depth, Label

Cutout / Random Erasing

Mixup / CutMix Smoothing to squeeze out a bit of extra performance
Label Smoothing

f bzzzzf[@

Summary

1. One time setup:

® Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:

® | earning rate schedules; large-batch training;
hyperparameter optimization

3. After training:
® Model ensembles, transfer learning

| bttfﬂ_a

39

btzf@

Lecture 10
Training Neural Networks |
University of Michigan | Department of Robotics

btt,)@

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

