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Project 2—Updates

• Instructions available on the website

• Here: deeprob.org/projects/project2/

• two-layer neural network and R-CNN/two-stage detectors

• Due Thursday, February 22th 11:59 PM EST
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http://deeprob.org/projects/project2/


Recap: Object Detec5on
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R-CNN

Fast R-CNN

Faster R-CNN

Mask R-CNN

…



Final Project Paper Selec5on Survey

• Published as a gradescope quiz, 1 point

– To gauge your areas of interest

– Used for forming teams

• Due February 22rd 11:59 PM EST
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https://deeprob.org/w24/papers/



Components of Convolutional Networks
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Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization
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Overview

1. One >me setup:
• Ac>va>on func>ons, data preprocessing, weight 

ini>aliza>on, regulariza>on
2. Training dynamics:

• Learning rate schedules; large-batch training; 
hyperparameter op>miza>on

3. AHer training:
• Model ensembles, transfer learning
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Ac5va5on Func5ons
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https://sefiks.com/2020/0
2/02/dance-moves-of-
deep-learning-activation-
functions/ 

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
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Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have 
nice interpretation as a saturating 
“firing rate” of a neuron
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Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have 
nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients
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Ac5va5on Func5ons: Sigmoid

- What happens when x = -10?

- What happens when x = 10? “sigmoid satura-on problem”



12

Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have 
nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered
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Ac5va5on Func5ons: Sigmoid



14

Activation Functions: Sigmoid
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Activation Functions: Sigmoid
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Activation Functions: Sigmoid

“zig-zagging dynamics”
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Activation Functions: Sigmoid

Gradients on rows of ! can only point 
in some directions; needs to “zigzag” 
to move in other directions

ℎ!
(ℓ)

= ∑
%
$!,%
(ℓ)%(ℎ%ℓ'() + )!

(ℓ)

Consider what happens when 
nonlinearity is always positive

Gradients on all !!,#
(ℓ) have the same sign as upstream 

gradient ∂#/ ∂ℎ!
(ℓ)

ℎ!
(ℓ) is the &th element of the hidden layer at layer ℓ 

(before activation)

!(ℓ), )(ℓ) are the weights and bias of layer ℓ
What can we say about the gradients on !(ℓ)?
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Activation Functions: Sigmoid
Consider what happens when nonlinearity is 
always positive

Gradients on all !!,#
(ℓ) have the same sign as upstream 

gradient ∂#/ ∂ℎ!
(ℓ)

Not that bad in practice:

- Only true for a single example, mini 
batches help

- BatchNorm can also avoid this

ℎ!
(ℓ)

= ∑
%
$!,%
(ℓ)%(ℎ%ℓ'() + )!

(ℓ)

ℎ!
(ℓ) is the &th element of the hidden layer at layer ℓ 

(before activation)

!(ℓ), )(ℓ) are the weights and bias of layer ℓ
What can we say about the gradients on !(ℓ)?
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Activation Functions: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have 
nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive
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Ac5va5on Func5ons: Sigmoid

Sigmoid

!(#) = 1
1 + (!"

- Squashes numbers to range [0, 1]

- Historically popular since they have 
nice interpretation as a saturating 
“firing rate” of a neuron

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive

Main issue in practice
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Ac5va5on Func5ons: tanh

tanh(x)

- Squashes numbers to range [-1, 1]

- Zero centered (nice)

- Still kills gradients when saturated :(
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Ac5va5on Func5ons: ReLU

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid 
and tanh in practice (e.g. 6x)

!(#) = &'#(0, #)
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Ac5va5on Func5ons: ReLU

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid 
and tanh in practice (e.g. 6x)

!(#) = &'#(0, #)

- Not zero-centered output
- An annoyance:

what is the gradient when x<0?
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Ac5va5on Func5ons: ReLU

- What happens when x = -10?

- What happens when x = 10?



ReLU units could “die”...
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Data cloud
Active ReLU

Dead ReLU will never 
activate

=> never update
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Data cloud
Active ReLU

Dead ReLU will never 
activate

=> never update

=> Sometimes initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)
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Activation Functions: Leaky ReLU

Leaky ReLU
!(#) = &'#(*#, #)
* is a hyperparameter, often * =
0.1

- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid 
and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network 
Acoustic Models”, ICML 2013 
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Activation Functions: Leaky ReLU
- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid 
and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013 

He et al, “Delving Deep into Rectifiers: Surpassing Human- Level Performance on ImageNet Classification”, ICCV 2015 
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Activation Functions: Exponential Linear Unit (ELU)

Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), ICLR 2016
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Activation Functions: Scale Exponential Linear Unit 
(SELU)

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017 

derivation see original 
paper (91 pages…)
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Ac9va9on Func9ons: Gaussian Error Linear Unit 
(GELU)

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016 
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Ac5va5on Func5ons
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Accuracy on CIFAR10

Ramachandran et al, “Searching for activation functions”, ICLR Workshop 2018 
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Ac5va5on Func5ons: Summary
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Data preprocessing

(Assume X[NxD] is data matrix, each example in a row)
See batchnorm
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Data preprocessing

(Data has diagonal 
covariance matrix)

(Covariance matrix 
is the identity matrix)

In practice, you may also see PCA and Whitening of the data
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Data preprocessing
Before normalization: Classification 
loss very sensitive to changes in 
weight matrix; hard to optimize

After normalization: less sensitive to 
small changes in weights; easier to 
optimize
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Data preprocessing for Images
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Weight initialization

Input layer
Hidden layer

Output layer

Q: What happens if we 
initialize all W=0, b=0?

A: All outputs are 0, all gradients are 
the same! 

“symmetry breaking” problem

https://www.pinecone.io/learn/weight-
initialization/

https://www.pinecone.io/learn/weight-initialization/
https://www.pinecone.io/learn/weight-initialization/
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Weight initialization

Next idea: small random numbers (Gaussian with zero 
mean, std=0.01)

Works ~okay for small networks, but 
problems with deeper networks.

“vanishing gradient” problem
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Weight ini5aliza5on: Ac5va5on sta5s5cs
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Weight ini5aliza5on: Ac5va5on sta5s5cs
All activations tend to zero for 
deeper network layers

Q: What do the gradients 
!"/!$ look like?
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Weight initialization: Activation statistics
All activations tend to be zero 
for deeper network layers

Q: What do the gradients 
!"/!$ look like?

A: All zero, no learning :(
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Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look 
like?
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Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look 
like?
A: Local gradients all zero, no 
learning :(
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Weight ini5aliza5on: Xavier Ini5aliza5on
“Just right”: Activations are 
nicely scaled for all layers!

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010 



47

Weight ini5aliza5on: Xavier Ini5aliza5on
“Just right”: Activations are 
nicely scaled for all layers!
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Weight initialization: Xavier Initialization
“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
kernel_size2 x input_channels
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Weight initialization: Xavier Initialization
“Xavier” initialization: 
std = 1/ *+,Derivation: Variance of output = Variance of input

! = #$ !! = ∑
"#$

%!&
$"%"

-./(1!) = *+,×-./(4! , 6!)                                     [Assume 4, 6 are 
iid] = *+,×(7[4!"]7[6!"] − 7[4!]"7[6!]")       [Assume 4, 6 are 
independent]

= *+,×-./(4!)×-./(6!)                         [Assume 4, 6 are zero-mean]

If  -./(6!) = 1/*+, then -./(1!) = -./(4!)
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Weight initialization: What about ReLU?
Xavier assumes zero centered 
activation function
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Weight ini5aliza5on: What about ReLU?
Xavier assumes zero centered 
activation function

Activations collapse to zero 
again, no learning :(
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Weight ini)aliza)on: Kaiming / MSRA ini)aliza)on
“Just right” - activations nicely 
scaled for all layers

He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015 
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Weight ini5aliza5on: Residual Networks
If we initialize with MSRA: 
then-./(;(4)) = -./(4)

But then -./(;(4) + 4) >
-./(4)variance grows with each block!

*(,) + ,

*(,)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019 
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Weight ini5aliza5on: Residual Networks
If we initialize with MSRA: 
then-./(;(4)) = -./(4)

But then -./(;(4) + 4) >
-./(4)variance grows with each block!

*(,) + ,

*(,)

Solution: Initialize first conv with MSRA, 
initialize second conv to zero. 
Then-./(;(4) + 4) = -./(4)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019 
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Proper initialization is an active area of research

• Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013 

• Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015 

• Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015 

• All you need is a good init, Mishkin and Matas, 2015

• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019 
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Now your model is training … but it overfits!

Regulariza5on
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Regularization: Add term to the loss
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero 

Probability of dropping is a hyperparameter; 0.5 is common 

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014 
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Regulariza5on: Dropout
Example forward pass 
with a 3-layer network 
using dropout
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Regulariza5on: Dropout

Forces the network to have a redundant 
representation; prevents co-adaptation of features

has legs
is teal color
is furry
has motors
has a velodyne

Digit 

robot

score
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Regularization: Dropout

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~1082 atoms in the universe…
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Dropout: Test 5me
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Dropout: Test time
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Dropout: Test time
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Dropout: Test time

At test time all neurons are active always 

=> We must scale the activations so that for each neuron:

Output at test time = Expected output at training time
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Dropout Summary

Drop in forward pass

Scale at test time
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More common: “Inverted dropout”
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Dropout architectures

Recall AlexNet, VGG have most of their 
parameters in fully-connected layers; 
usually Dropout is applied there

Later architectures (GoogLeNet, ResNet, etc) use 
global average pooling instead of fully-connected 
layers: they don’t use dropout at all!
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Regulariza5on: A common paVern

Training: Add some kind of 
randomness

Testing: Average out randomness 
(sometimes approximate) 

! = #!(%, ')

* = +(,, .) = /)[+(,, .)] = ∫ 3(.)+(,, .)4.
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Regularization: A common pattern

Training: Add some kind of 
randomness

Testing: Average out randomness 
(sometimes approximate) 

Example: Batch Normalization

Training: Normalize using stats 
from random mini batches

Testing: Use fixed stats to 
normalize

For ResNet and later, 
often L2 and Batch 
Normalization are the 
only regularizers!! = #!(%, ')

* = +(,, .) = /)[+(,, .)] = ∫ 3(.)+(,, .)4.



71

Data augmenta5on
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Data augmenta5on
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Data augmenta5on: Horizontal Flips
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Data augmentation: Random Crops and Scales
Training: sample random crops / scales

ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data augmenta5on: Color JiVer

Simple: Randomize contrast and brightness
More complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(Used in AlexNet, ResNet, etc)
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Data augmentation: RandAugment

Apply random combinations 
of transforms:

• Geometric: Rotate, 
translate, shear

• Color: Sharpen, contrast, 
brightness, solarize, 
posterize, color

Cubuk et al, “RandAugment: Practical augmented data augmentation with a reduced search space”, NeurIPS 2020 
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Data augmenta5on: RandAugment

Apply random combinations 
of transforms:

• Geometric: Rotate, 
translate, shear

• Color: Sharpen, contrast, 
brightness, solarize, 
posterize, color



78

Data augmenta*on: Get crea*ve for your problem!

Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should not 
change the network output?

Maybe different for different tasks!



Regulariza5on: A common paVern
Training: Add some randomness
Testing: Marginalize over randomness

Examples:
Dropout
Batch Normalization
Data Augmentation

79



Regulariza5on: DropConnect
Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

80Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013 



Regularization: Fractional Pooling
Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

81
Graham, “Fractional Max Pooling”, arXiv 2014



Regulariza5on: Stochas5c Depth
Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

82
Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016 



Regularization: CutOut
Training: Set random image regions to 0
Testing: Use the whole image

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing

83

DeVries and Taylor, “Improved Regularization of Convolutional Neural Networks with Cutout”, arXiv 2017 
Zhong et al, “Random Erasing Data Augmentation”, AAAI 2020 



Regulariza5on: Mixup
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

84Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018 

Sample blend probability from a 
beta distribution Beta(a, b) with 
a=b=0 so blend weights are 
close to 0/1



Regulariza5on: Mixup
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup

85Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018 

Another example



Regularization: CutMix
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix

86

Yun et al, “CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features”, ICCV 2019 



Regularization: Label Smoothing
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing
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Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, CVPR 2015 



Regularization: Summary
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Erasing
Mixup / CutMix
Label Smoothing

88
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Summary

1. One >me setup:
• Ac>va>on func>ons, data preprocessing, weight 

ini>aliza>on, regulariza>on
2. Training dynamics:

• Learning rate schedules; large-batch training; 
hyperparameter op>miza>on

3. AHer training:
• Model ensembles, transfer learning
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