

W DEEpresob

Recap: CNN architectures for Classification

Object Detection: Task definition

Input: Single RGB image

Output: A set of detected objects;
For each object predict:

1. Category label (from a fixed set of labels)
2. Bounding box (four numbers: x, y, width, height)

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):


```
            Area of Intersection
IoU=
                        Area of Union
loU > 0.5 is "decent",
loU > 0.7 is "pretty good",
loU > 0.9 is "very good, almost perfect"
```


Detecting a single object

What??
Class scores: Chocolate Pretzels: 0.9

Granola Bar: 0.02
Potato Chips: 0.02 Water Bottle: 0.02 Popcorn: 0.01

Correct Label:

Chocolate Pretzels

Softmax Loss

Detecting a single object

Detecting a single object
 Class scores:

Detecting Multiple Objects

Hershey's: (x, y, w, h)
4 numbers

Hershey's: (x, y, w, h)
Flipz: (x, y, w, h)
Reese's (x, y, w, h)
12 numbers

Chips: (x, y, w, h)
Chips: (x, y, w, h)
..... Many numbers!

Need different numbers of output per image

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: No
Reese's: No
Background: Yes

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: Yes
Reese's: No
Background: No

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: No
Reese's: Yes
Background: No

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Question: How many possible boxes are there in an image of size $\mathrm{H} \times \mathrm{W}$? Total possible boxes:

Consider box of size $\mathrm{h} \times$ w:
Possible x positions: W-w+1 Possible y positions: H-h+1 Possible positions: (W-w+1) x (H-h+1)

$$
\begin{aligned}
& \sum_{\substack{h=1 \\
+1 \\
+1}}^{H=1} W(W-w+1)(H-h \\
& =\frac{H(H+1)}{2} \frac{W(W+1)}{2}
\end{aligned}
$$

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Question: How many possible boxes are there in an image of size $\mathrm{H} \times \mathrm{W}$?

Consider box of size $\mathrm{h} \times$ w:
Possible x positions: W-w+1
Possible y positions: H-h+1
Possible positions:
(W-w+1) x (H-h+1)
800×600 image has ~58M boxes. No way we can evaluate them all

Total possible boxes:

$$
\begin{aligned}
& \sum_{\substack{h=1 \\
+1 \\
+1}}^{n} \sum_{W=1}^{W}(W-w+1)(H-h \\
& =\frac{H(H+1)}{2} \frac{W(W+1)}{2}
\end{aligned}
$$

Region Proposals

- Find a small set of boxes that are likely to cover all objects
- Often based on heuristics: e.g. look for "blob-like" image regions
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

DEEPROG

R-CNN: Region-Based CNN

Input Image

Generate region proposals:
"selective search"

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

DEFpress

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

DEEPR

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Classify each region

DEFprob

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Classify each region

Bounding box regression:
Predict "transform" to correct the Rol: 4 numbers $\left(t_{x}, t_{y}, t_{h}, t_{w}\right)$

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by:
$b_{x}=p_{x}+p_{w} t_{x} \quad$ Shift center by amount
$b_{y}=p_{y}+p_{h} t_{y} \quad$ relative to proposal size
$b_{w}=p_{w} \exp \left(t_{w}\right)$ scale proposal; exp ensures
$b_{h}=p_{h} \exp \left(t_{h}\right) \quad$ that scaling factor is >0

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by:
$b_{x}=p_{x}+p_{w} t_{x}$
$b_{y}=p_{y}+p_{h} t_{y}$
$b_{w}=p_{w} \exp \left(t_{w}\right)$
$b_{h}=p_{h} \exp \left(t_{h}\right)$
When transform is 0 , output = proposal

L2 regularization encourages leaving proposal unchanged

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by: Scale / Translation invariance: $b_{x}=p_{x}+p_{w} t_{x}$
$b_{y}=p_{y}+p_{h} t_{y}$
$b_{w}=p_{w} \exp \left(t_{w}\right)$
$b_{h}=p_{h} \exp \left(t_{h}\right)$ Transform encodes relative difference between proposal and output; important since CNN doesn't see absolute size or position after cropping

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by
$b_{x}=p_{x}+p_{w} t_{x}$
$b_{y}=p_{y}+p_{h} t_{y}$
$b_{w}=p_{w} \exp \left(t_{w}\right)$
$b_{h}=p_{h} \exp \left(t_{h}\right)$

Given proposal and target output, we can solve for the transform the network should output:
$t_{x}=\left(b_{x}-p_{x}\right) / p_{w}$
$t_{y}=\left(b_{y}-p_{y}\right) / p_{h}$
$t_{w}=\log \left(b_{w} / p_{w}\right)$
$t_{h}=\log \left(b_{h} / p_{h}\right)$

R-CNN: Training

Input Image

R-CNN: Training

Input Image

Ground Truth

Region Proposals

R-CNN: Training

R-CNN: Training

Input Image

Categorize each region proposal as positive, negative or neutral based on overlap with the Ground truth boxes:

Positive: > 0.5 IoU with a GT box
Negative: < 0.3 IoU with all GT boxes
Neutral: between 0.3 and 0.5 loU with GT boxes

R-CNN: Training

R-CNN: Training

R-CNN: Test time

Region Proposals

Run proposal method:

1. Run CNN on each proposal to get class scores, transforms
2. Threshold class scores to get a set of detections

2 Problems:

1. CNN often outputs overlapping boxes
2. How to set thresholds?

Overlapping Boxes

Problem: Object detectors often output many overlapping detections

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

$$
\begin{aligned}
& \operatorname{IoU}(\square, \square)=0.8 \\
& \operatorname{loU}(\square, \square)=0.03 \\
& \operatorname{loU}(\square,)=0.05
\end{aligned}
$$

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

$$
\operatorname{IoU}(\square, \square)=0.85
$$

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections
Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1 Problem: NMS may eliminate "good" boxes when objects are highly overlapping... no good solution

Evaluating Object Detectors: Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) $=$ area under Precision vs Recall Curve

DEEPREG

Evaluating Object Detectors: Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)

All pretzel detections sorted by score
0.99
0.95
0.90
0.5
0.10

All ground-truth pretzel boxes

Evaluating Object Detectors: Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative

All pretzel detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{loU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR curve

$$
\text { Precision }=\frac{T P}{T P+F P}
$$

$$
\text { Recall }=\frac{T P}{T P+F N}
$$

All pretzel detections sorted by score

All ground-truth pretzel boxes

Precision $=1 / 1=1.0$ Recall $=1 / 3=0.33$

Evaluating Object Detectors:

Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision $(A P)=$ area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{IoU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR curve

All pretzel detections sorted by score

All ground-truth pretzel boxes

Precision $=2 / 2=1.0$
Recall $=2 / 3=0.67$

Evaluating Object Detectors:

Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest

All pretzel detections sorted by score

No match $>0.5 \mathrm{loU}$ with GT score)

1. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR curve

Precision $=2 / 3=0.67$
Recall $=2 / 3=0.67$

Evaluating Object Detectors:

Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{loU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR curve

All pretzel detections sorted by score

No match $>0.5 \mathrm{loU}$ with GT

All ground-truth pretzel boxes

Precision $=2 / 4=0.5$ Recall $=2 / 3=0.67$

Evaluating Object Detectors:

Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{loU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR curve

All pretzel detections sorted by score
0.99
0.95
0.90
 0.10

Match: $>0.5 \mathrm{IoU}$

All ground-truth pretzel boxes

Precision $=3 / 5=0.6$ Recall $=3 / 3=1.0$

Evaluating Object Detectors: Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR curve
7. Average Precision (AP) = area under PR curve

All pretzel detections sorted by score

All ground-truth pretzel boxes

Evaluating Object Detectors:

Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR curve
7. Average Precision $(A P)=$ area under $P R$ curve

How to get AP = 1.0: Hit all GT boxes with IoU >
0.5 , and have no "false positive" detections
ranked above any "true positives"

All ground-truth pretzel boxes

Evaluating Object Detectors:

Mean Average Precision (mAP) and P-R Curve

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{loU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR curve
7. Average Precision (AP) = area under PR curve
8. Mean Average Precision (mAP) = average of AP for each category

Fast R-CNN

D

Fast R-CNN

"Backbone" network: AlexNet, VGG, ResNet, etc

"Slow" R-CNN
Process each region independently

Fast R-CNN

Regions of
Interest (Rols)
from a proposal
method
"Backbone" network:
AlexNet, VGG, ResNet, etc

"Slow" R-CNN
Process each region
independently

Fast R-CNN

Regions of
Interest (Rols)
from a proposal method
"Backbone" network: AlexNet, VGG, ResNet, etc

"Slow" R-CNN
Process each region independently

Fast R-CNN

Regions of Interest (Rols) from a proposal method
"Backbone" network: AlexNet, VGG, ResNet, etc

"Slow" R-CNN
Process each region
independently

Fast R-CNN

Fast R-CNN

Fast R-CNN

Fast R-CNN

Regions of Interest (Rols) from a proposal method

Bbox	Bbox	Bbox	Category and box
Class	Class	Class	transform per region

Example:
For ResNet, last stage is used as per-region network; the rest of the network is used as backbone

Fast R-CNN

Recall: Receptive Fields

Input Image: 8×8

Every position in the output feature map depends on a 3×3 receptive field in the input

Output Image: 8×8

Recall: Receptive Fields

Input Image: 8 x 8

Every position in the output feature map depends on a 3×3 receptive field in the input
3×3 Conv
Stride 1, pad 1

Output Image: 8×8

Recall: Receptive Fields

Input Image: 8×8

Every position in the output feature map depends on a 5x5 receptive field in the input
3×3 Conv Stride 1, pad 1
3×3 Conv
Stride 1, pad 1

Output Image: 8×8

Recall: Receptive Fields

Input Image: 8×8

Moving one unit in the output space also moves the receptive field by one

3×3 Conv Stride 1, pad 1	3×3 Conv Stride 1, pad 1

Output Image: 8×8

Recall: Receptive Fields

$$
(0,0)
$$

Input Image: 8×8
(0, 0)
Moving one unit in the output space also moves the receptive field by one

3×3 Conv
Stride 1, pad 1

3×3 Conv
Stride 1, pad 1

There is a correspondence between the coordinate system of the input and the coordinate system of $(1,1)$ the output

Output Image: 8×8

Projecting Points

$(0,0)$

Input Image: 8×8

We can align arbitrary points between coordinate system of input and output
3×3 Conv Stride 1, pad 1

There is a correspondence between the coordinate system of the input and the coordinate system of
$(1,1)$ the output
$(0,0)$

Output Image: 8×8
$(1,1)$

Projecting Points

$(0,0)$
Same logic holds for more complicated CNNs, even if spatial resolution of input and output are different

We can align arbitrary points between coordinate system of input and output

3×3 Conv
Stride 1, pad 1

There is a correspondence between the coordinate system of the input and the coordinate system of the output
$(0,0)$

Projecting Points

$(0,0)$
We can align arbitrary points between coordinate system of input and output 3×3 Conv

Stride 1, pad 1 | 4×4 MaxPool |
| :---: |
| Stride 4 |

There is a correspondence between the coordinate system of the input and the coordinate system of the output

Same logic holds for more complicated CNNs, even if spatial resolution of input and output are different

Projecting Points

$(0,0)$

We can align arbitrary points between coordinate system of input and output

3×3 Conv
Stride 1, pad 1

4×4 MaxPool
Stride 4

There is a correspondence between the coordinate system of the input and the coordinate system of the output

We can use this idea to project bounding boxes between an input image and a feature map

$(0,0)$

Output Image: 8×8
$(1,1)$

Cropping Features: Rol Pool

Input Image
(e.g. $3 \times 640 \times 480$)

Image features
(e.g. $512 \times 20 \times 15$)

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Pool

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Pool

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Pool

Divide into 2×2

Input Image
(e.g. $3 \times 640 \times 480$)
"Snap" to grid of (roughly) grid cells equal subregions

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Pool

Divide into 2×2

grid of (roughly) equal subregions

Max-pool within each subregion

(here $512 \times 2 \times 2$; In practice $512 \times 7 \times 7$)

Input Image
(e.g. $3 \times 640 \times 480$)

Image features
(e.g. $512 \times 20 \times 15$)

Region features always the same size even if input regions have different sizes!

Cropping Features: Rol Pool

Divide into 2×2

Input Image
(e.g. $3 \times 640 \times 480$)
grid of (roughly) equal subregions

Max-pool within each subregion
 (here $512 \times 2 \times 2$; In practice $512 \times 7 \times 7$)

Region features always the same size even if input regions have different sizes!

Problem: Slight misalignment due to snapping; different-sized subregions is weird

Cropping Features: Rol Align
Divide into equal-sized subregions (may not be aligned to grid!)

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Sample features at regularly-spaced points in each subregion using bilinear interpolation

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Feature $f_{x y}$ for point (x, y) is a linear combination of features at its four neighboring grid cells:
DEEprers

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

$$
\begin{array}{r}
f_{x y}=\sum_{i, j} f_{i, j} \max \left(0,1-\left|x-x_{i}\right|\right) \max \left(0,1-\left|y-y_{i}\right|\right) \\
f_{6.5,5.8}=\left(f_{6,5} * 0.5 * 0.2\right)+\left(f_{7,5} * 0.5 * 0.2\right) \\
+\left(f_{6,6} * 0.5 * 0.8\right)+\left(f_{7,6} * 0.5 * 0.8\right)
\end{array}
$$

Feature $f_{x y}$ for point (x, y) is a linear combination of features at its four neighboring grid cells:
He et al, "Mask R-CNN", ICCV 2017

Cropping Features: Rol Align

$$
\begin{aligned}
& f_{x y}=\sum_{i, j} f_{i, j} \max \left(0,1-\left|x-x_{i}\right|\right) \max \left(0,1-\left|y-y_{i}\right|\right) \\
& \mathrm{f}_{6.5,5.8}=\left(\mathrm{f}_{6,5} * 0.5 * 0.2\right)+\left(\mathrm{f}_{7,5} * 0.5 * 0.2\right) \\
&+\left(\mathrm{f}_{6,6} * 0.5 * 0.8\right)+\left(\mathrm{f}_{7,6} * 0.5 * 0.8\right)
\end{aligned}
$$

Feature $f_{x y}$ for point (x, y) is a linear combination of features at its four neighboring grid cells:
He et al, "Mask R-CNN", ICCV 2017

Cropping Features: Rol Align

$f_{6.5,5.8}=\left(f_{6,5} * 0.5 * 0.2\right)+\left(f_{7,5} * 0.5 * 0.2\right)$
$+\left(f_{6,6} * 0.5 * 0.8\right)+\left(f_{7,6} * 0.5 * 0.8\right)$
Feature $f_{x y}$ for point (x, y) is a linear combination of features at its four neighboring grid cells:
He et al, "Mask R-CNN", ICCV 2017

Cropping Features: Rol Align

$f_{6.5,5.8}=\left(f_{6,5} * 0.5 * 0.2\right)+\left(f_{7,5} * 0.5 * 0.2\right)$

$$
+\left(f_{6,6} * 0.5 * 0.8\right)+\left(f_{7,6} * 0.5 * 0.8\right)
$$

Feature $f_{x y}$ for point (x, y) is a linear combination of features at its four neighboring grid cells:
DEEDRCOS

Cropping Features: Rol Align

$$
\begin{aligned}
f_{6.5,5.8} & =\left(f_{6,5} * 0.5 * 0.2\right)+\left(f_{7,5} * 0.5 * 0.2\right) \\
& +\left(f_{6,6} * 0.5 * 0.8\right)+\left(f_{7,6} * 0.5 * 0.8\right) \\
& =0.0
\end{aligned}
$$ linear combination of features at itss four neighboring grid cells: DEEpleral

Cropping Features: Rol Align

Sample features at regularly-spaced points in each subregion using bilinear interpolation

After sampling, maxpool in each subregion

Region features
(here $512 \times 2 \times 2$;
In practice e.g $512 \times 7 \times 7$)

Fast R-CNN vs "Slow" R-CNN

Fast R-CNN: Apply differentiable cropping to shared image features

"Slow" R-CNN: Apply differentiable cropping to shared image features

Fast R-CNN vs "Slow" R-CNN

Girshick et al, "Rich feature hierarchies for accurate object detection ar DEEPRode

He et al, "Spatial pyramid pooling in deep convolutional networks for vi

Fast R-CNN vs "Slow" R-CNN

Girshick et al, "Rich feature hierarchies for accurate object detection ar DEEPR

He et al, "Spatial pyramid pooling in deep convolutional networks for vi

Fast R-CNN vs "Slow" R-CNN

Test time (seconds)

Recall: Region proposals computed by heuristic "Selective search" algorithm on CPU - let's learn them with a CNN

Faster R-CNN: Learnable Region Proposals

Insert Region Proposal Network (RPN) to predict proposals from features

Otherwise same as Fast R-CNN: Crop features for each proposal, classify each one

DEEPREG

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Image features (e.g. $512 \times 5 \times 6$)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds
to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

DEEPR

Region Proposal Network (RPN)

Region Proposal Network (RPN)

Region Proposal Network (RPN)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Imagine an anchor box
of fixed size at each point in the feature map

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Imagine an anchor box
of fixed size at each point in the feature map

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Imagine an anchor box
of fixed size at each point in the feature map

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

\qquad

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Predict object vs not object scores for all anchors with a conv layer (512 input filters, 2 output filters)

Classify each anchor as positive (object) or negative (no object)

M | D 卧prese et al, "Faster R-NN: Towards Real-Time Object Detection with Res

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

For positive anchors, also predict a transform that converting the anchor to the GT box (like R-CNN)

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

For positive anchors, also predict a transform that converting the anchor to the GT box (like R-CNN)
Conv \(\left.\longrightarrow \begin{array}{c}Anchor is

object?

2 \times 5 \times 6\end{array}\right\}\)| Anchor |
| :---: |
| transforms |
| $4 \times 5 \times 6$ |

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Image features
(e.g. $512 \times 5 \times 6$)

Each feature corresponds to a point in the input

Region Proposal Network (RPN)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

During training, supervised positive / negative anchors and box transforms like R-CNN

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Run backbone CNN to get features aligned to input image

(e.g. $3 \times 640 \times 480$)

Region Proposal Network (RPN)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Positive anchors: >= 0.7 loU with some GT box (plus highest loU to each GT)

Region Proposal Network (RPN)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Negative anchors: < 0.3 loU with all GT boxes. Don't supervised transforms for negative boxes.

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Region Proposal Network (RPN)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Run backbone CNN to get features aligned to input image

(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Neutral anchors: between 0.3 and 0.7 IoU with all GT boxes; ignored during training

Region Proposal Network (RPN)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

At test-time, sort all K*5*6 boxes by their positive score, take top 300 as our region proposals

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Faster R-CNN: Learnable Region Proposals

Jointly train four losses:

1. RPN classification: anchor box is object / not an object
2. RPN regression: predict transform from anchor box to proposal box
3. Object classification: classify proposals as background / object class
4. Object regression: predict transform from
 proposal box to object box
DEEPROG

Faster R-CNN: Learnable Region Proposals

R-CNN Test-Time Speed (s)

DENPROG

Extend Faster R-CNN
to Image Segmentation: Mask R-CNN

"Chocolate Pretzels"

No spatial extent

Semantic

Shelf

Object
Detection

Instance
Segmentation

Multiple objects

Extend Faster R-CNN to Instance Segmentation: Mask R-CNN

Instance Segmentation

Detect all objects in the image and identify the pixels that belong to each object (Only things!)

Approach

Perform object detection then predict a segmentation mask for each object detected!

Extend Faster R-CNN into Mask R-CNN

Faster R-CNN

1. Feature Extraction at the image-level
2. Regions of Interest proposal from feature map
3. In Parallel
4. Object classification: classify proposals
5. Object regression: predict transforr from proposal box to object box

Extend Faster R-CNN into Mask R-CNN

Faster R-CNN

Mask R-CNN

1. Feature Extraction at the image-level
2. Regions of Interest proposal from feature map
3. In Parallel
a. Object Classification: classify proposals
b. Object Regression: predict transform from proposal box to object box
c. Mask Prediction: predict a binary

Mask R-CNN

 Box coordinates (per class):

Predict a mask for each of C classes:

C $\times 28 \times 28$

Mask R-CNN: Very Good Results!

, DEEpreqle et al., "Mask R-CNN", ICCV 2017

Mask R-CNN for Human Pose Estimation

Maqkequfe
2. Regions of Interest proposal from feature map
3. In Parallel

d. Keypoint Prediction: predict binary

SEE
c. Mask Prediction: predict a binary mask for every region
a. Object Classification: classify proposals
b. Object Regression: predict transform from proposal box to object box Beteree fee et al., "Mask R-CNN", ICCV 2017

Mask R-CNN for Human Pose Estimation

Classification Scores: C

Box coordinates (per class): $4^{*} \mathrm{C}$
Segmentation mask: C x 28×28

One mask for each of the K different keypoints

Ground-truth has one "pixel" turned on per keypoint. Train with softmax loss

Mask R-CNN for Human Pose Estimation

| DEEPRerle et al., "Mask R-CNN", ICCV 2017

Two Stage vs One Stage Detectors

Faster R-CNN is a two-stage object detector

Fiisistage. nulionlue per illaye

- Backbone Network

O Dapiahn+Dmanmonh Antwmotkn womion

- Crop features: Rol pool / align
- Predict Object Class

- Prediction bbox offset

W DEEpresob

