

$\sqrt{4}$
 DEEPROG

Recap：Convolutional Neural Networks

Fully－Connected Layers
$x W_{1} \quad h \quad W_{2} \quad s$

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\epsilon}}
$$

D朗p家e易

Recap: Classic CNN Architectures

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC
Example: LeNet-5

Lecun et al., "Gradient-based learning applied to document recognition", 1998
D

Recap: ImageNet Classification Challenge

Example: AlexNet

| | Input size | | | Layer | | | | Output size | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Layer | C | H/W | Filters | Kernel | Stride | Pad | C | H/W | Memory (KB) | Params (k) | Flop (M) |
| Conv1 | 3 | 227 | 64 | 11 | 4 | 2 | 64 | 56 | 784 | 23 | 73 |
| Pool1 | 64 | 56 | | 3 | 2 | 0 | 64 | 27 | 182 | 0 | 0 |
| Conv2 | 64 | 27 | 192 | 5 | 1 | 2 | 192 | 27 | 547 | 307 | 224 |
| Pool2 | 192 | 27 | | 3 | 2 | 0 | 192 | 13 | 127 | 0 | 0 |
| Conv3 | 192 | 13 | 384 | 3 | 1 | 1 | 384 | 13 | 254 | 664 | 112 |
| Conv4 | 384 | 13 | 256 | 3 | 1 | 1 | 256 | 13 | 169 | 885 | 145 |
| Conv5 | 256 | 13 | 256 | 3 | 1 | 1 | 256 | 13 | 169 | 590 | 100 |
| Pool5 | 256 | 13 | | 3 | 2 | 0 | 256 | 6 | 36 | 0 | 0 |
| Flatten | 256 | 6 | | | | | 9216 | | 36 | 0 | 0 |
| FC6 | 9216 | | 4096 | | | | 4096 | | 16 | 37749 | 38 |
| FC7 | 4096 | | 4096 | | | | 4096 | | 16 | 16777 | 17 |
| FC8 | 4096 | | 1000 | | | | 1000 | | 4 | 4096 | 4 |

Example: ZFNet (a larger AlexNet)

ImageNet top 5 error: 16.4\% -> 11.7\%

Conv1: change from (11×11 stride 4) to (7×7 stride 2)
Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512
More trial and error :(
DEFPROG

ImageNet Classification Challenge

VGG: Deeper Networks, Regular Design

convolution+ReLU
max pooling
softm connected+ReLU
soft

Softmax FC 1000 FC 4096 FC 4096 Pool 3×3 conv, 256 3×3 conv, 384 Pool 3×3 conv, 384 Pool 5×5 conv, 256 11×11 conv, 96 Input AlexN Net Alen

${ }^{\text {cosemax }}$
\%ace
5
$5360.0{ }^{512}$
\%
$\begin{array}{\|c\|} \hline 3 \times 3 \text { conv, } 128 \\ \hline 3 \times 3 \text { conv, } 128 \\ \hline \end{array}$
VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3×3 conv, 512
Pool
3×3 conv, 512
Pool
3×3 conv, 256
Pool
3×3 conv, 128
3×3 conv, 128
Pool
3×3 conv, 64
3×3 conv, 64
Input
VGG1

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3×3 stride 1 pad 1
All max pool are 2×2 stride 2
After pool, double \#channels

DEEprers

VGG: Deeper Networks, Regular Design

Network has 5 convolution stages:
Stage 1: conv-conv-pool
Stage 2: conv-conv-pool
Stage 3: conv-conv-conv-[conv]-pool
Stage 4: conv-conv-conv-[conv]-pool
Stage 5: conv-conv-conv-[conv]-pool

There are other variations, see Simonyan and Zissermann paper

AlexNet

VGG16

DEEprerse

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3×3 stride 1 pad 1

All max pool are 2×2 stride 2
After pool, double \#channels

Option 1:

$\operatorname{Conv}(5 \times 5, \mathrm{C}->\mathrm{C})$
Params: 25C²
FLOPs: 25C²HW

AlexNet

VGG16

DEEpren

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3×3 stride 1 pad 1

All max pool are $2 x 2$ stride 2
After pool, double \#channels

> Option 2:

Option 1:

$\operatorname{Conv}(5 \times 5, C->C)$
Params: 25C ${ }^{2}$
FLOPs: 25C²HW
Conv(3x3, C->C)

$$
\operatorname{Conv}(3 \times 3, C->C)
$$

$$
\text { Params: } 9 C^{2}+9 C^{2}=18 C^{2}
$$

FLOPs: 18C²HW

DEEpReg

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3×3 stride 1 pad 1

All max pool are 2×2 stride 2
After pool, double \#channels
Option 2:

Option 1:

Conv(5x5, C->C)
Params: 25C ${ }^{2}$
FLOPs: 25C²HW

$$
\operatorname{Conv}(3 \times 3, C->C)
$$

Conv($3 \times 3, \mathrm{C}->\mathrm{C}$)
Params: 18C²
FLOPs: 18C²HW

Two 3×3 conv has same receptive field as a single 5×5 conv, but has fewer parameters and takes less computation!

AlexNet

VGG16

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3×3 stride 1 pad 1
All max pool are 2×2 stride 2
After pool, double \#channels

```
Option 1:
Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C2
FLOPs: 36HWC
```


AlexNet

VGG16

DEEPR®ロ

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3×3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double \#channels

Option 1:

Input: C x $2 \mathrm{H} \times 2 \mathrm{~W}$
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C²
FLOPs: $36 \mathrm{HWC}^{2}$

```
Option 2:
Input: 2C x H x W
Layer: Conv(3x3, 2C->2C)
Memory: 2HWC
Params: 36C
    FLOPs: 36HWC
```


AlexNet

VGG16

DEFPR®ロ

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3×3 stride 1 pad 1
All max pool are 2x2 stride 2

Conv layers at each spatial resolution take the same amount of computation!

After pool, double \#channels

Option 1:

Input: C x $2 \mathrm{H} \times 2 \mathrm{~W}$
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C²
FLOPs: $36 \mathrm{HWC}^{2}$

Option 2:
 Input: 2C x H x W
 Layer: Conv(3x3, 2C->2C)

Memory: 2HWC
Params: 36C²
FLOPs: 36HWC ${ }^{2}$

AlexNet

VGG16

DEEpres

AlexNet vs VGG-16: Much bigger network!

ImageNet Classification Challenge

GoogLeNet: Focus on Efficiency

"Inception v1"

Many innovations for efficiency: reduce parameter count, memory usage, and computation

GoogLeNet: Aggressive Stem

Multi-Branch Networks

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Input size				Layer				Output size		
Layer	C	H/W	Filters	Kernel	Strid	Pad	C	H/W	Memory	Params	Flop (M)
Conv	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv	64	56	64	1	1	0	64	56	784	4	13
Conv	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution:
Memory: 7.5 MB
Params: 124K
MFLOP: 418

Compare VGG-16:
Memory: 42.9 MB (5.7x)
Params: 1.1M (8.9x)
MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

DEEPROG

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

Fig. 8.4.1 Structure of the Inception block.

D Ekpren

GoogLeNet: Inception Module

Inception modules throughout the network

Fig. 8.4.2 The GoogLeNet architecture.

DEEprerob

GoogLeNet: Global Average Pooling

No large FC layers at the end!
Instead use global average pooling to collapse spatial dimensions, and one linear layer to produce class scores
(Recall VGG-16: Most parameters were in the FC layers!)

	Input size		Layer				Output size				
Layer	C	H/W	Filters	Kernel	Stride	Pad	C	H/W	Memory (KB)	Params	Flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000	0	0	1025	1

Compare with VGG-16:

	Input size		Layer					Output size			
Layer	C	H/W	Filters	Kernel	Stride	Pad	C	H/W	Memory (KB)	Params	Flop (M)
Flatten	512	7					25088		98		
FC6	25088			4096			4096		16	102760	103
FC7	4096			4096			4096		16	16777	17
FC8	4096			1000			1000		4	4096	4

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm, we no longer need to use this trick

ImageNet Classification Challenge

Residual Networks

Once we have Batch Normalization, we can train networks with 10+ layers.
What happens as we go deeper?

Deeper model does worse than shallow model!
Initial guess: Deep model is overfitting since it is much bigger than the other model

Residual Networks

Once we have Batch Normalization, we can train networks with 10+ layers.
What happens as we go deeper?
Training error

In fact the deep model seems to be underfitting since it also performs worse than the shallow model on the training set! It is actually underfitting

Residual Networks

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models
Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Residual Networks

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models
Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Networks

Solution: Change the network so learning identity functions with extra layers is easy!

"Plain" block

Residual Block

D Ekprent

Residual Networks

Solution: Change the network so learning identity functions with extra layers is easy!

"Plain" block
Residual Block
D

Residual Networks

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3×3 conv

Network is divided into stages: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

Residual Networks

Uses the same aggressive stem as GoogleNet to downsample the input $4 x$ before applying residual blocks:

	Input size			Layer				Output size			
Layer	C	H/W	Filters	Kernel	Stride	Pad	C	H/W	Memory (KB)	Params (k)	Flop (M)
Conv Poo	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2

Residual Networks

Like GoogLeNet, no big fully-connected-layers: Instead use global average pooling and a single linear layer at the end

D 郎prere

Residual Networks

ResNet-18:

Stem: 1 conv layer
Stage 1 ($\mathrm{C}=64$): 2 res. block = 4 conv
Stage $2(\mathrm{C}=128)$: 2 res. block $=4$ conv
Stage 3 ($\mathrm{C}=256$): 2 res. block $=4$ conv
Stage 4 ($\mathrm{C}=512$): 2 res. block = 4 conv
Linear

ImageNet top-5 error: 10.92
GFLOP: 1.8

DEEPROG

Residual Networks

ResNet-18:

Stem: 1 conv layer
Stage 1 (C=64): 2 res. block = 4 conv
Stage 2 ($\mathrm{C}=128$): 2 res. block $=4$ conv
Stage 3 ($\mathrm{C}=256$): 2 res. block $=4$ conv
Stage 4 ($\mathrm{C}=512$): 2 res. block $=4$ conv Linear
ImageNet top-5 error: 10.92
GFLOP: 1.8

ResNet-34:

Stem: 1 conv layer
Stage 1: 3 res. block $=6$ conv
Stage 2: 4 res. block $=8$ conv
Stage 3: 6 res. block = 12 conv
Stage 4: 3 res. block $=6$ conv Linear
ImageNet top-5 error: 8.58 GFLOP: 3.6


```
VGG-16:
ImageNet top-5 error: 9.62
GFLOP: 13.6
```


Residual Networks: Basic Block

Residual Networks: Bottleneck Block

Residual Networks: Bottleneck Block

More layers, less computational cost!

FLOPs: $4 \mathrm{HWC}^{2}$	Conv(1x1, C->4C)
FLOPs: $9 \mathrm{HWC}^{2}$	$\operatorname{Conv}(3 \times 3, \mathrm{C}->\mathrm{C})$
FLOPs: $4 \mathrm{HWC}^{2}$	$\operatorname{Conv}(1 \times 1,4 \mathrm{C}->\mathrm{C})$
Total FLOPs:	"Bottleneck" Residual block

Residual Networks

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

| | | | Stage 1 | | Stage 2 | | Stage 3 | | Stage 4 | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Block
 type | Stem
 layers | Block
 \mathbf{s} | Layers | Block
 \mathbf{s} | Layer
 \mathbf{s} | Block
 \mathbf{s} | Layer
 \mathbf{s} | Block
 \mathbf{s} | Layer
 \mathbf{s} | FC
 Layers | GFLOP | Image
 Net |
| ResNet-18 | Basic | 1 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 1 | 1.8 | 10.92 |
| ResNet-34 | Basic | 1 | 3 | 6 | 4 | 8 | 6 | 12 | 3 | 6 | 1 | 3.6 | 8.58 |
| ResNet-50 | Bottle | 1 | 3 | 9 | 4 | 12 | 6 | 18 | 3 | 9 | 1 | 3.8 | 7.13 |
| ResNet-101 | Bottle | 1 | 3 | 9 | 4 | 12 | 23 | 69 | 3 | 9 | 1 | 7.6 | 6.44 |
| ResNet-152 | Bottle | 1 | 3 | 9 | 8 | 24 | 36 | 108 | 3 | 9 | 1 | 11.3 | 5.94 |

M| DEpRotr

Residual Networks

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today

MSRA @ ILSVRC \& COCO 2015 Competitions

- 1st places in all five main tracks
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16\% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

Improving Residual Networks: Block Design

Original ResNet block
Note ReLU after residual:

Cannot actually learn identity function since outputs are nonnegative!

"Pre-Activation" ResNet Block

[^0]
Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Slight improvement in accuracy (ImageNet top-1 error)

ResNet-152: 21.3 vs 21.1
ResNet-200: 21.8 vs 20.7

Not actually used that much in practice

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Comparing Complexity

Comparing Complexity

Comparing Complexity

VGG:
Highest memory,
most operations

Comparing Complexity
 GoogLeNet:

Comparing Complexity

AlexNet: Low compute, lots of parameters

Comparing Complexity

ResNet: Simple design, moderate efficiency, high accuracy

ImageNet Classification Challenge

So far: Image Classification

Fully connected:

Chocolate Pretzels Granola Bar Potato Chips Water Bottle

Popcorn

Computer Vision Tasks

Flipz, Hershey's, Keese's

Multiple objects

Today: Object Detection (used in P2)

[^1][^2]Multiple objects
D 䤠prerer

Object Detection: Task definition

Input: Single RGB image

Output: A set of detected objects;
For each object predict:

1. Category label (from a fixed set of labels)
2. Bounding box (four numbers: x, y, width, height)

Object Detection: Challenges

Multiple outputs: Need to output variable numbers of objects per image

Multiple types of output: Need to predict "what" (category label) as well as "where" (bounding box)

Large images: Classification works at 224×224; need higher resolution for detection, often $\sim 800 \times 600$

DEEPROG

Bounding Boxes

Bounding boxes are typically axisaligned

Bounding Boxes

Bounding boxes are typically axisaligned

Oriented boxes are much less common

Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the visible portion of the object

Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the visible portion of the object

Amodal detection: box covers the entire extent of the object, even occluded parts

Object Detection: Modal vs Amodal Boxes

"Modal" detection: Bounding boxes (usually) cover only the visible portion of the object

Amodal detection: box covers the entire extent of the object, even occluded parts

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?
Evaluation Metric

D

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union
loU > 0.5 is "decent", loU >0.7 is "pretty good",

IoU >0.9 is "almost perfect"

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union
$\mathrm{loU}>0.5$ is "decent", loU >0.7 is "pretty good",

IoU >0.9 is "almost perfect"

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union
$\mathrm{loU}>0.5$ is "decent", loU >0.7 is "pretty good",

IoU >0.9 is "almost perfect"

Detecting a single object

DEFPROG

Detecting a single object

What??
Class scores: Chocolate Pretzels: 0.9

Granola Bar: 0.02
Potato Chips: 0.02 Water Bottle: 0.02 Popcorn: 0.01

Detecting a single object

Detecting a single object
 Class scores:

Detecting Multiple Objects

Hershey's: (x, y, w, h)
4 numbers

Hershey's: (x, y, w, h)
Flipz: (x, y, w, h)
Reese's (x, y, w, h)
12 numbers

Chips: (x, y, w, h)
Chips: (x, y, w, h)
..... Many numbers!

Need different numbers of output per image

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: No
Reese's: No
Background: Yes

DEEprers

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: Yes
Reese's: No
Background: No

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: No
Reese's: Yes
Background: No

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Question: How many possible boxes are there in an image of size $\mathrm{H} \times \mathrm{W}$? Total possible boxes:

Consider box of size $\mathrm{h} \times$ w:
Possible x positions: W-w+1 Possible y positions: H-h+1 Possible positions: (W-w+1) x (H-h+1)

$$
\begin{aligned}
& \sum_{\substack{h=1 \\
+1 \\
+1}}^{H=1} W(W-w+1)(H-h \\
& =\frac{H(H+1)}{2} \frac{W(W+1)}{2}
\end{aligned}
$$

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Question: How many possible boxes are there in an image of size $\mathrm{H} \times \mathrm{W}$?

Consider box of size $\mathrm{h} \times$ w:
Possible x positions: W-w+1
Possible y positions: H-h+1
Possible positions:
(W-w+1) x (H-h+1)
800×600 image has ~58M boxes. No way we can evaluate them all

Total possible boxes:

$$
\begin{aligned}
& \sum_{\substack{h=1 \\
+1 \\
+1}}^{n} \sum_{W=1}^{W}(W-w+1)(H-h \\
& =\frac{H(H+1)}{2} \frac{W(W+1)}{2}
\end{aligned}
$$

Region Proposals

- Find a small set of boxes that are likely to cover all objects
- Often based on heuristics: e.g. look for "blob-like" image regions
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

DEEPROG

R-CNN: Region-Based CNN

Input Image

Generate region proposals:
"selective search"

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

DEEPROG

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

DEEPR

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Classify each region

DEFprob

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Classify each region

Bounding box regression:
Predict "transform" to correct the Rol: 4 numbers $\left(t_{x}, t_{y}, t_{h}, t_{w}\right)$

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

> Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by:
$b_{x}=p_{x}+p_{w} t_{x} \quad$ Shift center by amount
$b_{y}=p_{y}+p_{h} t_{y} \quad$ relative to proposal size
$b_{w}=p_{w} \exp \left(t_{w}\right)$ scale proposal; exp ensures
$b_{h}=p_{h} \exp \left(t_{h}\right) \quad$ that scaling factor is >0

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by:
$b_{x}=p_{x}+p_{w} t_{x}$
$b_{y}=p_{y}+p_{h} t_{y}$
$b_{w}=p_{w} \exp \left(t_{w}\right)$
$b_{h}=p_{h} \exp \left(t_{h}\right)$
When transform is 0 , output = proposal

L2 regularization encourages leaving proposal unchanged

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by: Scale / Translation invariance: $b_{x}=p_{x}+p_{w} t_{x}$
$b_{y}=p_{y}+p_{h} t_{y}$
$b_{w}=p_{w} \exp \left(t_{w}\right)$
$b_{h}=p_{h} \exp \left(t_{h}\right)$ Transform encodes relative difference between proposal and output; important since CNN doesn't see absolute size or position after cropping

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by
$b_{x}=p_{x}+p_{w} t_{x}$
$b_{y}=p_{y}+p_{h} t_{y}$
$b_{w}=p_{w} \exp \left(t_{w}\right)$
$b_{h}=p_{h} \exp \left(t_{h}\right)$

Given proposal and target output, we can solve for the transform the network should output:
$t_{x}=\left(b_{x}-p_{x}\right) / p_{w}$
$t_{y}=\left(b_{y}-p_{y}\right) / p_{h}$
$t_{w}=\log \left(b_{w} / p_{w}\right)$
$t_{h}=\log \left(b_{h} / p_{h}\right)$

R-CNN: Training

Input Image

R-CNN: Training

Input Image

Ground Truth

Region Proposals

R-CNN: Training

R-CNN: Training

Input Image

Categorize each region proposal as positive, negative or neutral based on overlap with the Ground truth boxes:

Positive: > 0.5 IoU with a GT box
Negative: < 0.3 IoU with all GT boxes
Neutral: between 0.3 and 0.5 loU with GT boxes

R-CNN: Training

R-CNN: Training

R-CNN: Test time

Region Proposals

Run proposal method:

1. Run CNN on each proposal to get class scores, transforms
2. Threshold class scores to get a set of detections

2 Problems:

1. CNN often outputs overlapping boxes
2. How to set thresholds?

Overlapping Boxes

Problem: Object detectors often output many overlapping detections

DEEPRO白

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

$$
\begin{aligned}
& \operatorname{IoU}(\square, \square)=0.8 \\
& \operatorname{loU}(\square, \square)=0.03 \\
& \operatorname{loU}(\square,)=0.05
\end{aligned}
$$

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

$$
\operatorname{IoU}(\square, \square)=0.85
$$

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections
Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1 Problem: NMS may eliminate "good" boxes when objects are highly overlapping... no good solution

$\sqrt{4}$
 DEEPROG

[^0]: He et al, "Identity mappings in deep residual networks", ECCV 2016

[^1]: Flipz, Hershey's, Keese's

[^2]: No spatial extent

