

Recap: Convolutional Neural Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Recap: Classic CNN Architectures

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Lecun et al., "Gradient-based learning applied to document recognition", 1998

Recap: ImageNet Classification Challenge

Example: AlexNet

	Input	t size	Layer		Output size						
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flo
Conv1	3	227	64	11	4	2	64	56	784	23	
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	1
Conv4	384	13	256	3	1	1	256	13	169	885	1
Conv5	256	13	256	3	1	1	256	13	169	590	1
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37749	
FC7	4096		4096				4096		16	16777	
FC8	4096		1000				1000		4	4096	

Example: ZFNet (a larger AlexNet)

Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error :(

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

ImageNet top 5 error: 16.4% -> 11.7%

Conv1: change from (11x11 stride 4) to (7x7 stride 2)

ImageNet Classification Challenge

VGG: Deeper Networks, Regular Design

DEEPROS and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Softmax

FC 1000

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

A	lex	Ν	e	t

VGG16

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv. 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 51
Pool
3x3 conv, 51
Pool
3x3 conv, 28
3x3 conv, 28
3x3 conv, 2
3x3 conv, 2
Pool
3x3 conv, 1
3x3 conv, 1
Pool
3x3 conv, 6
3x3 conv, 6
Input

VGG: Deeper Networks, Regular Design

Network has 5 convolution **stages**: Stage 1: conv-conv-pool Stage 2: conv-conv-pool Stage 3: conv-conv-conv-[conv]-pool Stage 4: conv-conv-conv-[conv]-pool Stage 5: conv-conv-conv-[conv]-pool

There are other variations, see Simonyan and Zissermann paper

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

A	lex	Ν	e	t

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv. 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv. 512

3x3 conv, 512

Pool

3x3 conv. 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 6

3x3 conv. 64

Input

3x3 conv. 2

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 5 ⁻	1
Pool	
3x3 conv, 5 ⁻	
3x3 conv, 51	
3x3 conv, 51	
3x3 conv, 5 ⁻	
Pool	
3x3 conv, 2	
Pool	
3x3 conv, 1	
3x3 conv, 1	
Pool	
3x3 conv, 6	
3x3 conv. 6	
Input	
	ĺ

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1:

Conv(5x5, C->C)

Params: 25C²

FLOPs: 25C²HW

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
3x3 conv, 64 Input

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 51
Pool
3x3 conv, 51
Pool
3x3 conv, 25
3x3 conv. 25
3x3 conv, 28
3x3 conv. 25
Pool
3x3 conv. 12
3x3 conv 12
Pool
3x3 conv 6
input

VGG: Deeper Networks, Regular Design **VGG Design rules:**

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 2:

Option 1:

Conv(5x5, C->C)

Params: 25C²

FLOPs: 25C²HW

DeepRob

Conv(3x3, C->

Conv(3x3, C->C)

Params: $9C^2 + 9C^2 = 18C^2$

FLOPs: 18C²HW

(11
)

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 copy 51
2x2 conv, 51
3x3 conv, 51
3x3 conv, 51
Pool
3x3 conv, 51
Pool
3x3 conv, 25
3x3 conv, 25
3x3 conv, 2
3x3 conv, 2
Pool
3x3 conv, 12
3x3 conv. 12
Pool
3x3 conv, 6
Input

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels **Option 2: Option 1:** Conv(3x3, C->C) Conv(5x5, C->C) Conv(3x3, C->C) Params: 25C² Params: 18C² FLOPs: 25C²HW FLOPs: 18C²HW

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax
EC 1000
EC 4096
FC 4096
FC 4090
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv. 512
Pool
5x5 conv, 250
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64

VGG16

	Softmax
	FC 1000
	FC 4096
i	FC 4096
ì	Pool
	3x3 conv. 51
	3x3 conv, 51
	3x3 conv, 51
	Pool
	3x3 conv, 51
	Pool
	3x3 conv, 25
	Pool
	3x3 conv, 12
	3x3 conv, 12
	Pool
	3x3 conv, 6
	3x3 conv, 6
	Input

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1: Input: C x 2H x 2W Layer: Conv(3x3, C->C) Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
3x3 conv, 64 Input

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Peol
P001
3x3 conv, 51
Pool
3x3 conv, 51
3x3 conv, 51
3x3 conv, 51
3x3 conv. 51
Pool
3x3 conv, 25
3x3 conv, 25
3x3 conv, 2
3x3 conv, 28
Pool
3x3 conv, 12
3x3 conv, 12
Pool
3x3 conv 6
Input

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1: Input: C x 2H x 2W Layer: Conv(3x3, C->C) Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Option 2: Input: 2C x H x W Layer: Conv(3x3, 2C->2C)

Memory: 2HWC Params: 36C² FLOPs: 36HWC²

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 copy 51
2x2 conv, 51
3x3 conv, 51
3x3 conv, 51
Pool
3x3 conv, 51
Pool
3x3 conv, 25
222 0002
Pool
3x3 conv, 12
3x3 conv, 12
Pool
3x3 conv, 6
3x3 conv, 6
Input

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1: Input: C x 2H x 2W Layer: Conv(3x3, C->C) Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Option 2: Input: 2C x H x W Layer: Conv(3x3, 2C->2C)

Memory: 2HWC Params: 36C² FLOPs: 36HWC²

Conv layers at each spatial resolution take the same amount of computation!

Softmax
OUIIIIAA
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax										
FC 1000										
FC 4096										
FC 4096										
Pool										
3x3 conv, 512										
3x3 conv, 512										
3x3 conv, 512										
Pool										
3x3 conv, 512										
3x3 conv, 512										
3x3 conv, 512										
Pool										
3x3 conv, 256										
3x3 conv, 256										
3x3 conv, 256										
Pool										
3x3 conv, 128										
3x3 conv, 128										
Pool										
3x3 conv, 64										
3x3 conv, 64										
Input										

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 51
Pool
3x3 conv, 51
Pool
3x3 conv, 28
3x3 conv, 25
3x3 conv, 2
3x3 conv, 2
Pool
3x3 conv, 12
3x3 conv, 12
Pool
3x3 conv, 6
3x3 conv, 6
Input

AlexNet vs VGG-16: Much bigger network!

AlexNet vs VGG-16 (MFLOPs)

ImageNet Classification Challenge

GoogLeNet: Focus on Efficiency

"Inception v1"

Many innovations for efficiency: reduce parameter count, memory usage, and computation

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Aggressive Stem

Multi-Branch Networks

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inpu	ut size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Strid	Pad	С	H/W	Memory	Params	Flop (M)
Conv	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv	64	56	64	1	1	0	64	56	784	4	13
Conv	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution: Memory: 7.5 MB Params: 124K MFLOP: 418

<u>Compare VGG-16:</u> Memory: 42.9 MB (5.7x) Params: 1.1M (8.9x) MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

GoogLeNet: Inception Module

GoogLeNet: Inception Module

Inception modules throughout the network

Fig. 8.4.2 The GoogLeNet architecture.

https://d2l.ai/chapter_convolutional-modern/googlenet.html

GoogLeNet: Global Average Pooling

No large FC layers at the end!

Instead use global average pooling to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Inpu	ut size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000	0	0	1025	1

Compare with VGG-16:

	Inpu	ut size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
Flatten	512	7					25088		98		
FC6	25088			4096			4096		16	102760	103
FC7	4096			4096			4096		16	16777	17
FC8	4096			1000			1000		4	4096	4

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm, we no longer need to use this trick

ImageNet Classification Challenge

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Residual Networks

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

Deepreob

Training error

In fact the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting**

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Block

Solution: Change the network so learning identity functions with extra layers is easy!

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

Input

Softmax

DeepRob

Residual Networks

Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

	Inpu	ut size		Layer	•		Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv Poo	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2

Like GoogLeNet, no big fully-connected-layers: Instead use **global average pooling** and a single linear layer at the end

Residual Networks

ResNet-18:

Stem: 1 conv layer Stage 1 (C=64): 2 res. block = 4 conv Stage 2 (C=128): 2 res. block = 4 convStage 3 (C=256): 2 res. block = 4 convStage 4 (C=512): 2 res. block = 4 conv Linear

ImageNet top-5 error: 10.92 GFLOP: 1.8

Error rates are 224x224 single-crop testing, reported by torchvision

Residual Networks

ResNet-18: Stem: 1 conv layer Stage 1 (C=64): 2 res. block = 4 convStage 2 (C=128): 2 res. block = 4 convStage 3 (C=256): 2 res. block = 4 convStage 4 (C=512): 2 res. block = 4 convLinear ImageNet top-5 error: 10.92 GFLOP: 1.8

VGG-16: ImageNet top-5 error: 9.62 GFLOP: 13.6

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-34:

- Stem: 1 conv layer Stage 1: 3 res. block = 6 conv Stage 2: 4 res. block = 8 conv Stage 3: 6 res. block = 12 conv Stage 4: 3 res. block = 6 conv Linear
- ImageNet top-5 error: 8.58 **GFLOP: 3.6**

Softmax
FC 1000
Pool
222 0002 510
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512, /2
¢
↑
Ţ
3x3 conv 128
<u>3x3 conv, 128</u>
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128, / 2
3x3 conv, 64
3x3 conv, 64
\diamond
3x3 conv, 64
3x3 conv 64
3x3 conv. 64
3x3 conv 64
Deel
P001
7x7 conv, 64, / 2
Input

Residual Networks: Basic Block

FLOPs: 9HWC²

FLOPs: 9HWC²

"Basic" Residual block **Total FLOPs:**

18HWC²

Residual Networks: Bottleneck Block

FLOPs: 9HWC²

FLOPs: 9HWC²

"Basic" Residual block

DeepRob

Total FLOPs:

18HWC²

"Bottleneck" Residual block

Residual Networks: Bottleneck Block

More layers, less computational cost!

FLOPs: 9HWC²

FLOPs: 9HWC²

"Basic" Residual block **Total FLOPs:**

18HWC²

Deepreob

Residual Networks

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

			Stage 1		Stage 2		Stage 3		Stage 4				
	Block type	Stem layers	Block s	Layers	Block s	Layer s	Block s	Layer s	Block s	Layer s	FC Layers	GFLOP	Image Net
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	3.8	7.13
ResNet-101	Bottle	1	3	9	4	12	23	69	3	9	1	7.6	6.44
ResNet-152	Bottle	1	3	9	8	24	36	108	3	9	1	11.3	5.94

Residual Networks

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today

MSRA @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Conv ReLU Batch Norm Note ReLU **inside** residual: Conv ReLU Can learn identity function Batch Norm by setting Conv weights to He et al, "Identity mappings in deep residual networks", ECCV 2016

Improving Residual Networks: Block Design

Original ResNet block

(ImageNet top-1 error)

ResNet-152: 21.3 vs 21.1

ResNet-200: 21.8 vs **20.7**

practice

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

"Pre-Activation" ResNet Block

Comparing Complexity

ImageNet Classification Challenge

CNN architectures have continued to evolve!

So far: Image Classification

Geoffrey Hinton, 2012. Reproduced with permission.

Chocolate Pretzels

Granola Bar

Potato Chips

Water Bottle

Popcorn

Computer Vision Tasks

Semantic

Classification

"Chocolate Pretzels"

Chocolate Pretzels,

Shelf

DEEPROD

No objects, just pixels

Object

Instance

Detection

Flipz, Hershey's, Keese's

Multiple objects

P2 due date: Feb.22, 2024 Today: Object Detection (used in P2)

Semantic

Classification

"Chocolate Pretzels"

Segmentation

Shelf

DeepRob

No objects, just pixels

Object

Instance

Detection

Segmentation

Flipz, Hershey's, Keese's

Multiple objects

Object Detection: Task definition

Input: Single RGB image

Output: A set of detected objects; For each object predict:

- 1. Category label (from a fixed set of labels)
- Bounding box (four numbers: x, y, width, height)

Object Detection: Challenges

Multiple outputs: Need to output variable numbers of objects per image

Multiple types of output: Need to predict "what" (category label) as well as "where" (bounding box)

Large images: Classification works at 224x224; need higher resolution for detection, often ~800x600

Bounding Boxes

Bounding boxes are typically axisaligned

Bounding Boxes

Bounding boxes are typically axisaligned

Oriented boxes are much less common

Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the visible portion of the object

Zhu et al, "Semantic Amodal Segmentation", CVPR 2017

Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the visible portion of the object

<u>Amodal detection:</u> box covers the entire extent of the object, even occluded parts

Object Detection: Modal vs Amodal Boxes

<u>"Modal" detection:</u> Bounding boxes (usually) cover only the visible portion of the object

<u>Amodal detection:</u> box covers the entire extent of the object, even occluded parts

How can we compare our prediction to the ground-truth box?

Evaluation Metric

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

IoU > 0.5 is "decent", IoU > 0.7 is "pretty good",

IoU > 0.9 is "almost perfect"

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

IoU > 0.5 is "decent", IoU > 0.7 is "pretty good",

IoU > 0.9 is "almost perfect"

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

IoU > 0.5 is "decent", IoU > 0.7 is "pretty good",

IoU > 0.9 is "almost perfect"

Detecting a single object

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Treat localization as a regression problem!

Vector: 4096

Loss

DR

Detecting a single object

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Treat localization as a regression problem!

What??

Class scores: Chocolate Pretzels: 0.9 Granola Bar: 0.02 Potato Chips: 0.02 Water Bottle: 0.02 Popcorn: 0.01

Vector: 4096

Detecting a single object

regression problem!

Where??

(x', y', w', h')

Correct coordinates:

Detecting a single object **Class scores:**

Detecting Multiple Objects

Hershey's: (x, y, w, h) 4 numbers

Chips: (x, y, w, h) Chips: (x, y, w, h) **Many numbers!**

Need different numbers of output per image

Ders

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: No

Reese's: No

Background: Yes

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: Yes

Reese's: No

Background: No

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Hershey's: No

Flipz: No

Reese's: Yes

Background: No

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Question: How many possible boxes are there in an image of size H x W? **Total possible boxes:** $\sum (W - w + 1)(H - h)$ **Consider box of size h x w:** h=1w=1**Possible x positions: W - w + 1** +1)**Possible y positions: H - h + 1**

Possible positions: $(W-w+1) \times (H-h+1)$

H(H + 1) W(W + 1)

of the image, CNN classifies each crop as object or background

Consider box of size h x w: Possible x positions: W - w + 1 Possible y positions: H - h + 1 Possible positions: $(W-w+1) \times (H-h+1)$

- Apply a CNN to many different crops
- **Question: How many possible boxes** are there in an image of size H x W?

800 x 600 image has ~58M boxes. No way we can evaluate them all

Total possible boxes: H W $\sum (W - w + 1)(H - h)$ h=1w=1+1)

H(H + 1) W(W + 1)2

- Find a small set of boxes that are likely to cover all objects
- proposals in a few seconds on CPU

Alexe et al, "Measuring the objectness of image windows", TPAMI 2012 Uijlings et al, "Selective Search for Object Recognition", IJCV 2013 Cheng et al, "BING: Binarized normed gradients for objectness estimation at 300fps", CVPR 2014

Region Proposals

 Often based on heuristics: e.g. look for "blob-like" image regions Relatively fast to run; e.g. Selective Search gives 2000 region

R-CNN: Region-Based CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Input Image

Generate region proposals:

Deeprob

"selective search"

R-CNN: Region-Based CNN

Classify each region

- Consider a region proposal with center (p_x, p_y) , width p_w , height p_h
- Model predicts a transform (t_x, t_y, t_w, t_h) to correct the region proposal

- Consider a region proposal with center (p_x, p_y) , width p_w , height p_h
- Model predicts a transform (t_x, t_y, t_w, t_h) to correct the region proposal

- The output box is defined by:
- $b_x = p_x + p_w t_x$ $b_y = p_y + p_h t_y$ $b_w = p_w \exp(t_w)$ $b_h = p_h \exp(t_h)$

Shift center by amount relative to proposal size

Scale proposal; exp ensures that scaling factor is > 0

- Consider a region proposal with center (p_x, p_y) , width p_w , height p_h
- Model predicts a <u>transform</u> (t_x, t_y, t_w, t_h) to correct the region proposal

- The output box is defined by: $b_x = p_x + p_w t_x$ $b_y = p_y + p_h t_y$ $b_w = p_w \exp(t_w)$ $b_h = p_h \exp(t_h)$
- When transform is 0, output = proposal
- L2 regularization encourages leaving proposal unchanged

- Consider a region proposal with center (p_x, p_y) , width p_w , height p_h
- Model predicts a <u>transform</u> (t_x, t_y, t_w, t_h) to correct the region proposal

- The output box is defined by: $b_x = p_x + p_w t_x$ $b_{y} = p_{y} + p_{h}t_{y}$ $b_w = p_w \exp(t_w)$ $b_h = p_h \exp(t_h)$
- Scale / Translation invariance: Transform encodes *relative* difference between proposal and output; important since CNN doesn't see absolute size or position after cropping

- Consider a region proposal with center (p_x, p_y) , width p_w , height p_h
- Model predicts a <u>transform</u> (t_x, t_y, t_w, t_h) to correct the region proposal

The output box is defined by: $b_x = p_x + p_w t_x$ $b_y = p_y + p_h t_y$ $b_{w} = p_{w} \exp(t_{w})$ $b_h = p_h \exp(t_h)$

Given proposal and target output, we can solve for the transform the network should output:

$$t_x = (b_x - p_x)/p_w$$

$$t_y = (b_y - p_y)/p_h$$

$$t_w = \log(b_w/p_w)$$

$$t_h = \log(b_h/p_h)$$

Input Image

Ground Truth

R-CNN: Training

Input Image

Ground Truth

Region Proposals

R-CNN: Training

Input Image

R-CNN: Training

R-CNN: Training

Input Image

Negative: < 0.3 IoU with all GT boxes

Neutral: between 0.3 and 0.5 loU with GT boxes

Ground Truth	Positive
Neutral	Negative

Categorize each region proposal as positive, negative or neutral based on overlap with the Ground truth boxes:

Positive: > 0.5 IoU with a GT box

R-CNN: Training

Input Image

Run each region through CNN Positive regions: predict class and transform Negative regions: just predict class

R-CNN: Training

Input Image

Run each region through CNN Positive regions: predict class and transform Negative regions: just predict class

Box target:

Class target: Reese's

Box target:

Class target: Background

Box target: None

R-CNN: Test time

Input Image

Region Proposals

Run proposal method:

1. Run CNN on each proposal to get class scores, transforms

2. Threshold class scores to get a set of detections

2 Problems:

1. CNN often outputs overlapping boxes

2. How to set thresholds?

Overlapping Boxes

Problem: Object detectors often output many overlapping detections

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS) 1. Select next highest-scoring box

- 2. Eliminate lower-scoring boxes with IoU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS) 1. Select next highest-scoring box

- 2. Eliminate lower-scoring boxes with IoU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

DeepRob

IoU(,) = 0.8 IoU(,) = 0.03 IoU(,) = 0.05

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS) 1. Select next highest-scoring box

- 2. Eliminate lower-scoring boxes with IoU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS) 1. Select next highest-scoring box

- 2. Eliminate lower-scoring boxes with IoU> threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections

Solution: Post-process raw detections using Non-Max Suppression (NMS) 1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with IoU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1 **Problem:** NMS may eliminate "good" boxes when objects are highly overlapping... no good solution

