

Lecture 7

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Recap: Convolution

Padding

Stride = 2

dilation = 2

Recap: Convolution Layer Dimensions

Recap: Receptive Fields

With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Each successive convolution adds K – 1 to the receptive field size

Output

Solution: Downsample inside the network

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel size

Stride

Pooling function

V

Max Pooling

Max pooling with

2x2 kernel size

stride of 2

6	8
3	4

V

Max Pooling

Introduces invariance to small spatial shifts

No learnable parameters!

Pooling Summary

Input: C x H x W Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg) -
- **Output:** C x H' x W' where
- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings: max, K = 2, S = 2 max, K = 3, S = 2 (AlexNet)

Components of Convolutional Networks

 $\sigma_i^2 + \epsilon$

- Consider a single layer y = Wx
- The following could lead to tough optimization: • Inputs x are not centered around zero (need large bias) • Inputs x have different scaling per-element (entries in W will need to vary a lot)

- Idea: force inputs to be "nicely scaled" at each layer!

Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

- Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

This is a **differentiable function**, so we can use it as an operator in our networks and backdrop through it!

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
Per-channel
mean, shape is D
$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
Per-channel
std, shape is D
$$= \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
Normalized x,
Shape is N x D

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
Per-channel
mean, shape is D
$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
Per-channel
std, shape is
 $x_{i,i} - \mu_i$

Normalized x, Shape is N x D

Per-channel

std, shape is D

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Output, Shape is N x D

Batch Normalization

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
Per-channel
mean, shape is D
$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
Per-channel
std, shape is D
$$= \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
Normalized x,
Shape is N x D
$$= \gamma_j \hat{x}_{i,j} + \beta_j$$
Output,
Shape is N x D

Problem: Estimates depend on minibatch; can't run layer at test-time!

(Running) average of $\mu_j = \text{values seen during}$ training

Per-channel mean, shape is D

 $\sigma_j^2 = (Running)$ average of values seen during training

Per-channel std, shape is D

$$\frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Output, Shape is N x D

Input:
$$x \in \mathbb{R}^{N \times D}$$
 μ_j
Learnable scale and
shift parameters:
 $\gamma, \beta \in \mathbb{R}^D$ In practice

(Running) average of = values seen during training

Per-channel mean, shape is D

actice, usually momentum = 0.99

moving_mean = moving_mean * momentum + batch_mean * (1 - momentum) moving_var = moving_var * momentum + batch_var * (1 - momentum)

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

(Running) average of μ_i = values seen during

Per-channel mean, shape is D

t = 0

training

For each training iteration:

$$f = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$f^{est} = 0.99 \ \mu_j^{test} + 0.01 \ \mu_j$$

Similar for σ)

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

During testing batchnorm becomes a linear operator! Can be fused with the previous $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$ fully-connected or conv layer

- (Running) average of
- μ_i = values seen during training

Per-channel mean, shape is D

 $\sigma_j^2 = \frac{(\text{Running})}{\text{values seen during training}}$ Per-channel std, shape is D

Normalized x, Shape is N x D

Output, Shape is N x D

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

DeepRob

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

 $x : N \times C \times H \times W$ Normalize $\mu, \sigma : 1 \times C \times 1 \times 1$ $\gamma, \beta : 1 \times C \times 1 \times 1$ $y = \frac{(x - \mu)}{\sigma} \gamma + \beta$

Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

Batch Normalization

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv

ImageNet Classification Accuracy

Batch Normalization

- FC BN tanh FC BN tanh
- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv
- Not well-understood theoretically (yet, still lots of debate!)
- Behaves differently during training and testing: very common source of bugs!

Batch Normalization for fully-connected networks

Layer Normalization

Instance Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks

Group Normalization

Wu and He, "Group Normalization", ECCV 2018

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Problem: Deep Networks very hard to train

Activation Functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{aligned} \mathsf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{aligned}$

Summary: Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Summary: Components of Convolutional Network

Problem: What is the right way to combine all these components?

Convolutional Neural Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Lecun et al., "Gradient-based learning applied to document recognition", 1998

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Layer	Output Size	Weight Size			
Input	1 x 28 x 28				
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5			
ReLU	20 x 28 x 28				
MaxPool(K=2, S=2)	20 x 14 x 14				
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14 50 x 20 x 5 x				
ReLU	50 x 14 x 14				
MaxPool(K=2, S=2)	50 x 7 x 7				
Flatten	2450				
Linear (2450 -> 500)	500	2450 x 500			
ReLU	500				

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we progress through the network: Spatial size decreases

(using pooling or striped convolution) Number of channels **increases**

(total "volume" is preserved!)

Some modern architectures break this trend—stay tuned!

ImageNet Classification Challenge

- 227 x 227 inputs
- 5 Convolutional Layers
- Max pooling
- 3 Fully-connected Layers
- ReLU nonlinearities

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.

 Used "Local response normalization"; Not used anymore

 Trained on two GTX 580 GPUs - only 3GB of memory each! Model split over two GPUs.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

AlexNet citations per year

Total citations: >120,000

Citation as of 1/31/2024: 124,651 DEEDROD

Citation Counts:

Darwin, "On the origin of species", 1859: 60,117 \bullet

Shannon, "A mathematical theory of communication," 1948: 140,459

Watson and Crick, "Molecular Structure of Nucleic Acids," 1953: 16,298

pooling

	Input size			Layer	Output size			
Layer	С	H/W	Filters	Kernel	Kernel Stride		C H/W	
Conv1	3	227	64	11	4	2		?

Recall: Output channels = number of filters

	Input	t size		Layer	Output size			
Layer	С	H/W	Filters	Kernel	Kernel Stride		С	H/W
Conv1	3	227	64	11	4	2	64	56

- Recall: W' = (W K + 2P) / S + 1
 - $= (227 11 + 2 \times 2) / 4 + 1$
 - = 220/4 + 1 = 56

	Input	t size		Layer		Outpu	ıt size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (k
Conv1	3	227	64	11	4	2	64	56	784

Number of output elements = C x H' x W'

Bytes per element = 4 (for 32-bit floating point) KB = (number of elements) x (bytes per elem) /1024 $= 200704 \times 4 / 1024$ = 784

AlexNet

- $= 64 \times 56 \times 56 = 200,704$

	Input size		Layer				Outpu	ıt size		
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)
Conv1	3	227	64	11	4	2	64	56	784	23

Weight shape = $C_{out} \times C_{in} \times K \times K$ $= 64 \times 3 \times 11 \times 11$

Bias shape = $C_{out} = 64$

Number of weights = $64 \times 3 \times 11 \times 11 + 64$ = 23,296

	Input	t size	Layer				Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73

Number of floating point operations (multiply + add) $= (C_{out} \times H' \times W') * (C_{in} \times K \times K)$ = (64 * 56 * 56) * (3 * 11 * 11) = 200,704 * 363 = 72,855,552

= (number of output elements) * (ops per output elem)

	Input	size	Layer				Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27			

For pooling layer:

#output channels = #input channels = 64

$$W' = floor((W-K)/S+1)$$

= floor(53/2 + 1) = floor(

(27.5) = 27

	Input	t size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	?	

#output elms = $C_{out} \times H' \times W'$ Bytes per elem = 4 $KB = C_{out} \times H' \times W' \times 4 / 1024$ = 64 * 27 * 27 * 4 / 1024 = 182.25

	Input	t size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	0

Pooling layers have no learnable parameters!

	Input	t size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	FI
Conv1	3	227	64	11	4	2	64	56	784	23	
Pool1	64	56		3	2	0	64	27	182	0	

Floating-point ops for pooling layer $= (C_{out} \times H' \times W') \times (K \times K)$ = (64 * 27 * 27) * (3 * 3)= 419,904= 0.4 MFLOP

AlexNet

= (numer of output positions) * (flops per output position)

DeepRob

AlexNet

	Input	t size		Layer Output size		ıt size					
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flo
Conv1	3	227	64	11	4	2	64	56	784	23	
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	
Conv4	384	13	256	3	1	1	256	13	169	885	
Conv5	256	13	256	3	1	1	256	13	169	590	
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	

- Flatten output size = $C_{in} \times H \times W$
 - = 256 * 6 * 6
 - **= 9216**

	Input	t size	Layer			Output size					
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	FI
Conv1	3	227	64	11	4	2	64	56	784	23	
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	
Conv4	384	13	256	3	1	1	256	13	169	885	
Conv5	256	13	256	3	1	1	256	13	169	590	
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37749	

FC params = $C_{in} * C_{out} + C_{out}$ **DeepReob** = 37.725.832

= 9216 * 4096 + 4096

FC flops = $C_{in} * C_{out}$ = 9216 * 4096 = 37.748.736

	Input	t size		Layer			Output size				
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flo
Conv1	3	227	64	11	4	2	64	56	784	23	
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	1
Conv4	384	13	256	3	1	1	256	13	169	885	1
Conv5	256	13	256	3	1	1	256	13	169	590	1
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37749	:
FC7	4096		4096				4096		16	16777	
FC8	4096		1000				1000		4	4096	

How	to ch	oose th	nis? Tri	ial and	error	:(
	Inpu	t size		Layer	•		Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop
Conv1	3	227	64	11	4	2	64	56	784	23	73
Pool1	64	56		3	2	0	64	27	182	0	C
Conv2	64	27	192	5	1	2	192	27	547	307	22
Pool2	192	27		3	2	0	192	13	127	0	C
Conv3	192	13	384	3	1	1	384	13	254	664	11
Conv4	384	13	256	3	1	1	256	13	169	885	14
Conv5	256	13	256	3	1	1	256	13	169	590	10
Pool5	256	13		3	2	0	256	6	36	0	C
Flatten	256	6					9216		36	0	C
FC6	9216		4096				4096		16	37749	38
FC7	4096		4096				4096		16	16777	1
FC8	4096		1000				1000		4	4096	4

	Input	t size	Layer				Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flo
Conv1	3	227	64	11	4	2	64	56	784	23	
Pool1	64	56		3	2	0	64	27	182	0	
Conv2	64	27	192	5	1	2	192	27	547	307	2
Pool2	192	27		3	2	0	192	13	127	0	
Conv3	192	13	384	3	1	1	384	13	254	664	-
Conv4	384	13	256	3	1	1	256	13	169	885	-
Conv5	256	13	256	3	1	1	256	13	169	590	
Pool5	256	13		3	2	0	256	6	36	0	
Flatten	256	6					9216		36	0	
FC6	9216		4096				4096		16	37749	
FC7	4096		4096				4096		16	16777	
FC8	4096		1000				1000		4	4096	

Interesting trends here!

Most of the **memory usage** in the early convolution layers

Nearly all **parameters** are in the fully-connected layers

Most floating-point ops occur in the convolution layers

MFLOP

ImageNet Classification Challenge

ImageNet Classification Challenge

ZFNet: A Bigger AlexNet

Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error :(

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

ImageNet top 5 error: 16.4% -> 11.7%

Conv1: change from (11x11 stride 4) to (7x7 stride 2)

ImageNet Classification Challenge

ImageNet Classification Challenge

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

4	ex	Ν	e	t
4	ex	N	e	t

Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
VGG16

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv. 512

3x3 conv. 512

3x3 conv, 512

FC 1000 FC 4096 FC 4096 Pool
FC 4096 FC 4096 Pool
FC 4096 FC 4096 Pool
FC 4096 Pool
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

VGG: Deeper Networks, Regular Design **VGG Design rules:**

- All conv are 3x3 stride 1 pad 1
- All max pool are 2x2 stride 2
- After pool, double #channels
- Network has 5 convolution **stages**: Stage 1: conv-conv-pool Stage 2: conv-conv-pool Stage 3: conv-conv-pool Stage 4: conv-conv-conv-[conv]-pool Stage 5: conv-conv-conv-[conv]-pool

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv. 256
3x3 conv. 256
Pool
3x3 copy 128
3x3 conv, 128
Bool
input

VGG19

AlexNet

DEPROSMONYAN and Zissermann, "Very Deep Convolutional Networks for La

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1:

Conv(5x5, C->C)

Params: 25C²

FLOPs: 25C²HW

DEPROSMONYAN and Zissermann, "Very Deep Convolutional Networks for La

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

Softmax FC 1000 FC 4096 FC 4096 FC 4096 Saxa conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	
FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	Softmax
FC 4096 FC 4096 Pool 3x3 conv, 512 900 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	FC 1000
FC 4096 Pool 3x3 conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	FC 4096
Pool 3x3 conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	FC 4096
3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	Pool
3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	3x3 conv, 512
3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 900 3x3 conv, 256 3x3 conv, 256 900 3x3 conv, 128 3x3 conv, 128 900 3x3 conv, 128 3x3 conv, 64	3x3 conv, 512
Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	3x3 conv, 512
3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64	Pool
3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 900 3x3 conv, 128 3x3 conv, 128 900 3x3 conv, 128 900 3x3 conv, 128 900 3x3 conv, 64	3x3 conv, 512
3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 128 3x3 conv, 64	3x3 conv, 512
Pool 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128	3x3 conv, 512
3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64	Pool
3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64	3x3 conv, 256
Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64	3x3 conv, 256
3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64	Pool
3x3 conv, 128 Pool 3x3 conv, 64	3x3 conv, 128
Pool 3x3 conv, 64	3x3 conv, 128
3x3 conv, 64	Pool
	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv. 128
Pool
3x3 conv. 64
3x3 conv. 64
Input

VGG19

AlexNet

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 2:

Option 1:

Conv(5x5, C->C)

Params: 25C²

FLOPs: 25C²HW

Conv(3x3, C->

Conv(3x3, C->C)

Params: 18C²

FLOPs: 18C²HW

DEPROSMONYAN and Zissermann, "Very Deep Convolutional Networks for La

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

A	lex	Ν	et

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv. 512
3x3 conv. 512
2x2 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels **Option 2: Option 1:** Conv(3x3, C->C) Conv(5x5, C->C) Conv(3x3, C->C) Params: 25C² Params: 18C² FLOPs: 25C²HW FLOPs: 18C²HW

DEPROSMONYAN and Zissermann, "Very Deep Convolutional Networks for La

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv. 64 3x3 conv, 64 Input

Softmax

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

VGG: Deeper Networks, Regular Design **VGG Design rules:**

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1: Input: C x 2H x 2W Layer: Conv(3x3, C->C) Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

Softmax							
FC 1000							
FC 4096							
EC 4006							
104090							
Pool							
3x3 conv, 512							
3x3 conv, 512							
3x3 conv, 512							
Pool							
3x3 conv, 512							
3x3 conv, 512							
3x3 conv, 512							
Pool							
3x3 conv, 256							
3x3 conv, 256							
Pool							
3x3 conv, 128							
3x3 conv. 128							
Dool							
P001							
3x3 conv, 64							
3x3 conv, 64							
Input							

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

AlexNet

DEPROSMONYAN and Zissermann, "Very Deep Convolutional Networks for La

VGG: Deeper Networks, Regular Design **VGG Design rules:**

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1: Input: C x 2H x 2W Layer: Conv(3x3, C->C) Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Option 2: Input: 2C x H x W Layer: Conv(3x3, 2C->2C)

Memory: 2HWC Params: 36C² FLOPs: 36HWC²

DEPROSMONYAN and Zissermann, "Very Deep Convolutional Networks for La

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 512 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64	Softmax						
FC 4096 FC 4096 Pool 3x3 conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 1nput	FC 1000						
FC 4096 Pool 3x3 conv, 512 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64	FC 4096						
Pool 3x3 conv, 512 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 1nput	FC 4096						
3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64	Pool						
3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64	3x3 conv, 512						
3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 Input	3x3 conv, 512						
Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 128 3x3 conv, 128 3x3 conv, 64 3x3 conv, 64 Input	3x3 conv, 512						
3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 900 3x3 conv, 64 3x3 conv, 64 1nput	Pool						
3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input	3x3 conv, 512						
3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 900 3x3 conv, 128 3x3 conv, 128 900 3x3 conv, 128 900 3x3 conv, 64 3x3 conv, 64 1nput	3x3 conv, 512						
Pool 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input	3x3 conv, 512						
3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input	Pool						
3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input	3x3 conv, 256						
Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input	3x3 conv, 256						
3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input	Pool						
3x3 conv, 128Pool3x3 conv, 643x3 conv, 64Input	3x3 conv, 128						
Pool 3x3 conv, 64 3x3 conv, 64 Input	3x3 conv, 128						
3x3 conv, 64 3x3 conv, 64 Input	Pool						
3x3 conv, 64	3x3 conv, 64						
Input	3x3 conv, 64						
	Input						

VGG16

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

VGG19

VGG: Deeper Networks, Regular Design **VGG Design rules:**

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

Conv layers at each spatial resolution take the same amount of computation!

After pool, double #channels

Option 1: Input: C x 2H x 2W Layer: Conv(3x3, C->C) Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Option 2: Input: 2C x H x W Layer: Conv(3x3, 2C->2C)

Memory: 2HWC Params: 36C² FLOPs: 36HWC²

DEPROSMONYAN and Zissermann, "Very Deep Convolutional Networks for La

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512 Pool 3x3 conv. 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv. 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input

VGG16

Softmax								
FC 1000								
FC 4096								
FC 4096								
Pool								
3x3 conv. 512								
3x3 conv. 512								
3x3 conv. 512								
3x3 conv. 512								
Pool								
3x3 copy 512								
3x3 conv, 512								
3x3 conv, 512								
3x3 conv, 512								
Pool								
3x3 conv, 256								
3x3 conv, 256								
Pool								
3x3 conv, 128								
3x3 conv, 128								
Pool								
3x3 conv, 64								
3x3 conv, 64								
Input								

VGG19

AlexNet vs VGG-16: Much bigger network!

AlexNet vs VGG-16 (MFLOPs)

ImageNet Classification Challenge

ImageNet Classification Challenge

GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inpu	ut size		-		Output size					
Layer	С	H/W	Filters	Kernel	Strid e	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv Poo	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv Poo	64	56	64	1	1	0	64	56	784	4	13
Conv Poo	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inpu	ut size	Layer			Outpu	ıt size				
Layer	С	H/W	Filters	Kernel	Strid	Pad	С	H/W	Memory	Params	Flop (M)
Conv	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2
Conv	64	56	64	1	1	0	64	56	784	4	13
Conv	64	56	192	3	1	1	192	56	2352	111	347
Max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution: Memory: 7.5 MB Params: 124K MFLOP: 418

<u>Compare VGG-16:</u> Memory: 42.9 MB (5.7x) Params: 1.1M (8.9x) MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

GoogLeNet: Inception Module

Inception module: Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

GoogLeNet: Global Average Pooling

No large FC layers at the end!

Instead use global average pooling to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Inpu	Input size Layer			Input size Layer Output size				ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)	
avg-pool	1024	7		7	1	0	1024	1	4	0	0	
fc	1024		1000				1000	0	0	1025	1	

Compare with VGG-16:

	Input size		Layer				Outpu	ıt size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params	Flop (M)
Flatten	512	7					25088		98		
FC6	25088			4096			4096		16	102760	103
FC7	4096			4096			4096		16	16777	17
FC8	4096			1000			1000		4	4096	4

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm, we no longer need to use this trick

ImageNet Classification Challenge

ImageNet Classification Challenge

152
layers

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

DEEPROD

Residual Networks

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

Training error

In fact the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting**

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Block

Solution: Change the network so learning identity functions with extra layers is easy!

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

Input

Softmax

DeepRob

Residual Networks

Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

	Inpu	ut size		Layer	•		Outpu	ut size			
Layer	С	H/W	Filters	Kernel	Stride	Pad	С	H/W	Memory (KB)	Params (k)	Flop (M)
Conv Poo	3	224	64	7	2	3	64	112	3136	9	118
Max-pool	64	112		3	2	1	64	56	784	0	2

Like GoogLeNet, no big fully-connected-layers: Instead use **global average pooling** and a single linear layer at the end

ResNet-18: Residual Networks Stem: 1 conv layer Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18: Stem: 1 conv layer Stage 1 (C=64): 2 res. block = 4 convStage 2 (C=128): 2 res. block = 4 convStage 3 (C=256): 2 res. block = 4 convStage 4 (C=512): 2 res. block = 4 convLinear ImageNet top-5 error: 10.92 **GFLOP: 1.8**

VGG-16:

ImageNet top-5 error: 9.62

ResNet-34:

- Stem: 1 conv layer Stage 1: 3 res. block = 6 conv Stage 2: 4 res. block = 8 conv Stage 3: 6 res. block = 12 conv Stage 4: 3 res. block = 6 conv Linear ImageNet top-5 error: 8.58
- GFLOP: 3.6

- He et al, "Deep Residual Learning for Image Recurrent, JV
- Error rates are 224x224 single-crop testing, reported by torch

Residual Networks: Basic Block

FLOPs: 9HWC²

FLOPs: 9HWC²

"Basic" Residual block **Total FLOPs:**

18HWC²

Residual Networks: Bottleneck Block

FLOPs: 9HWC²

FLOPs: 9HWC²

"Basic" Residual block

DeepRob

Total FLOPs:

18HWC²

"Bottleneck" Residual block

Residual Networks: Bottleneck Block

More layers, less computational cost!

FLOPs: 9HWC²

FLOPs: 9HWC²

"Basic" Residual block **Total FLOPs:**

18HWC²

Deepreob

Residual Networks

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

			Stage 1		Stage 2		Stage 3		Stage 4				
	Block type	Stem layers	Block s	Layers	Block s	Layer s	Block s	Layer s	Block s	Layer s	FC Layers	GFLOP	Image Net
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	3.8	7.13
ResNet-101	Bottle	1	3	9	4	12	23	69	3	9	1	7.6	6.44
ResNet-152	Bottle	1	3	9	8	24	36	108	3	9	1	11.3	5.94

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today

MSRA @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

He et al, "Deep Residual Learning for Image Recognition", CV

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Conv ReLU Batch Norm Note ReLU **inside** residual: Conv ReLU Can learn identity function Batch Norm by setting Conv weights to He et al, "Identity mappings in deep residual networks", ECCV 106

Improving Residual Networks: Block Design

Original ResNet block

(ImageNet top-1 error)

ResNet-152: 21.3 vs 21.1

ResNet-200: 21.8 vs **20.7**

practice

He et al, "Identity mappings in deep residual networks", ECCV

"Pre-Activation" ResNet Block

Comparing Complexity

ImageNet Classification Challenge

CNN architectures have continued to evolve!

Lecture 7

