
Lecture 7
CNN Architectures
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

Components of Convolu.onal Networks

2

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

3

Recap: Convolu.on

Padding Stride = 2 dilation = 2

4

Recap: Convolu.on Layer Dimensions
N x Cin x H xW

Also Cout-dim bias vector

Cout x Cin x Kh x Kw
filters

Convolution
Layer

batch of images batch of outputs
N x Cout x H’ x W’

Cout

5

Recap: Recep.ve Fields

Components of Convolu.onal Networks

6

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

7

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel size

Stride

Pooling function

8

Max Pooling

Max pooling with

2x2 kernel size

stride of 2

9

Max Pooling

Max pooling with

2x2 kernel size

stride of 2

Introduces invariance to
small spatial shifts
No learnable parameters!

10

Pooling Summary

Components of Convolu.onal Networks

11

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization Problem:
Deep
Networks
very hard to
train

Batch Normaliza.on

Consider a single layer ! = #$
The following could lead to tough op6miza6on:

• Inputs $ are not centered around zero (need large bias)
• Inputs $ have different scaling per-element

(entries in # will need to vary a lot)

Idea: force inputs to be “nicely scaled” at each layer!

12

13

Batch Normaliza.on

We can normalize a batch of activations using:

!̂ = ! − $[!]
'()[!]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

14

Batch Normaliza.on

We can normalize a batch of activations using:

!̂ = ! − $[!]
'()[!]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

This is a differentiable function, so
we can use it as an operator in our
networks and backdrop through it!

15

Batch Normaliza.on

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

16

Batch Normaliza.on

Problem: What if zero-mean, unit
variance is too hard of a constraint?

17

Batch Normaliza.on

Add

18

Batch Normaliza.on

Problem: Estimates depend on
minibatch; can’t run layer at test-time!

19

Batch Normaliza.on: Test-Time

20

Batch Normaliza.on: Test-Time

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

In practice, usually momentum = 0.99

21

Batch Normaliza.on: Test-Time

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

23

Batch Normaliza.on: Test-Time

24

Batch Normaliza.on for ConvNets

25

Batch Normaliza.on

Usually inserted after Fully Connected or
Convolutional layers, and before nonlinearity

!̂ = ! − $[!]
'()[!]

26

Batch Normaliza.on
• Makes deep networks much easier to train!

• Allows higher learning rates, faster convergence

• Networks become more robust to initialization

• Acts as regularization during training

• Zero overhead at test-time: can be fused with conv

ImageNet
Classification
Accuracy

Training Iterations

27

Batch Normaliza.on
• Makes deep networks much easier to train!

• Allows higher learning rates, faster convergence

• Networks become more robust to initialization

• Acts as regularization during training

• Zero overhead at test-time: can be fused with conv
• Not well-understood theoretically (yet, still lots of

debate!)

• Behaves differently during training and testing: very
common source of bugs!

28

Layer Normaliza.on

29

Instance Normaliza.on

30

Group Normaliza.on

Wu and He, “Group Normalization”, ECCV 2018

Components of Convolu.onal Networks

31

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization Problem:
Deep
Networks
very hard to
train

32

Ac#va#on Func#ons

Summary: Components of Convolu3onal Networks

33

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

34

Summary: Components of Convolu#onal Network

Problem: What is the right way to combine all these components?

35

Convolu.onal Neural Networks

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

36

Example: LeNet-5

37

Example: LeNet-5

38

Example: LeNet-5

39

Example: LeNet-5

40

Example: LeNet-5

41

Example: LeNet-5

42

Example: LeNet-5

43

Example: LeNet-5

44

Example: LeNet-5

As we progress through the network:
Spatial size decreases

(using pooling or striped convolution)
Number of channels increases

(total “volume” is preserved!)
Some modern architectures
break this trend—stay tuned!

ImageNet Classifica.on Challenge

45

AlexNet

46

• 227 x 227 inputs

• 5 Convolutional Layers

• Max pooling

• 3 Fully-connected Layers

• ReLU nonlinearities

• Used “Local response normalization”;
Not used anymore

• Trained on two GTX 580 GPUs - only
3GB of memory each! Model split over
two GPUs.

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.

AlexNet

47

AlexNet

48

AlexNet citations per year

Total citations: >120,000
Citation as of 1/31/2024: 124,651

Citation Counts:

• Darwin, “On the origin of species”, 1859: 60,117

• Shannon, “A mathematical theory of
communication,” 1948: 140,459

• Watson and Crick, “Molecular Structure of
Nucleic Acids,” 1953: 16,298

333 1018
2816

6087

10587

15951

20247 21622 22504 21463

1467
0

7500

15000

22500

30000

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

AlexNet

49

Recall: Output channels = number of filters

AlexNet

50

Recall: W’ = (W - K + 2P) / S + 1

 = (227 - 11 + 2 x 2) / 4 + 1

 = 220/ 4 + 1 = 56

AlexNet

51

Number of output elements = C x H’ x W’
 = 64 x 56 x 56 = 200,704

Bytes per element = 4 (for 32-bit floating point)
KB = (number of elements) x (bytes per elem) /1024

 = 200704 x 4 / 1024
 = 784

AlexNet

52

Weight shape = Cout x Cin x K x K
 = 64 x 3 x 11 x 11

Bias shape = Cout = 64

Number of weights = 64 x 3 x 11 x 11 + 64
 = 23,296

AlexNet

53

Number of floating point operations (multiply + add)
= (number of output elements) * (ops per output elem)
= (Cout x H’ x W’) * (Cin x K x K)
= (64 * 56 * 56) * (3 * 11 * 11)
= 200,704 * 363
= 72,855,552

AlexNet

54

For pooling layer:

#output channels = #input channels = 64

W’ = floor((W-K)/S+1)
= floor(53/2 + 1) = floor(27.5) = 27

AlexNet

55

#output elms = Cout x H’ x W’
Bytes per elem = 4
KB = Cout x H’ x W’ x 4 / 1024

= 64 * 27 * 27 * 4 / 1024
= 182.25

AlexNet

56

Pooling layers have no learnable parameters!

AlexNet

57

AlexNet

58

Flatten output size = Cin x H x W
= 256 * 6 * 6
= 9216

AlexNet

59

AlexNet

60

AlexNet

61

AlexNet

62

Interesting trends here!

AlexNet

63

Most of the memory usage
in the early convolution
layers

Nearly all parameters are in
the fully-connected layers

Most floating-point ops
occur in the convolution
layers

ImageNet Classifica.on Challenge

64

ImageNet Classifica.on Challenge

65

ZFNet: A Bigger AlexNet

66Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

AlexNet but:

Conv1: change from (11x11 stride 4) to (7x7 stride 2)

Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error :(

ImageNet top 5 error: 16.4% -> 11.7%

ImageNet Classifica.on Challenge

67

ImageNet Classifica.on Challenge

68

VGG: Deeper Networks, Regular Design

69

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015

VGG: Deeper Networks, Regular Design

70

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Network has 5 convolution stages:
Stage 1: conv-conv-pool
Stage 2: conv-conv-pool
Stage 3: conv-conv-pool
Stage 4: conv-conv-conv-[conv]-pool
Stage 5: conv-conv-conv-[conv]-pool

VGG: Deeper Networks, Regular Design

71

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:

Conv(5x5, C->C)

Params: 25C2

FLOPs: 25C2HW

VGG: Deeper Networks, Regular Design

72

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:

Conv(5x5, C->C)

Params: 25C2

FLOPs: 25C2HW

Option 2:

Conv(3x3, C->C)

Conv(3x3, C->C)

Params: 18C2

FLOPs: 18C2HW

VGG: Deeper Networks, Regular Design

73

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:

Conv(5x5, C->C)

Params: 25C2

FLOPs: 25C2HW

Option 2:

Conv(3x3, C->C)

Conv(3x3, C->C)

Params: 18C2

FLOPs: 18C2HW

Two 3x3 conv has same
receptive field as a single 5x5
conv, but has fewer parameters
and takes less computation!

VGG: Deeper Networks, Regular Design

74

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:
Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C2

FLOPs: 36HWC2

VGG: Deeper Networks, Regular Design

75

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 2:
Input: 2C x H x W
Layer: Conv(3x3, 2C->2C)

Memory: 2HWC
Params: 36C2

FLOPs: 36HWC2

Option 1:
Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C2

FLOPs: 36HWC2

VGG: Deeper Networks, Regular Design

76

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 2:
Input: 2C x H x W
Layer: Conv(3x3, 2C->2C)

Memory: 2HWC
Params: 36C2

FLOPs: 36HWC2

Option 1:
Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C2

FLOPs: 36HWC2

Conv layers at each spatial
resolution take the same
amount of computation!

AlexNet vs VGG-16: Much bigger network!

77

AlexNet total: 1.9MB

VGG-16 total: 48.6MB (25x)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)

ImageNet Classifica.on Challenge

78

ImageNet Classifica.on Challenge

79

GoogLeNet: Focus on Efficiency

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 80

Many innovations for efficiency: reduce parameter
count, memory usage, and computation

GoogLeNet: Aggressive Stem

81

Stem network at the start aggressively downsamples input
(Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Aggressive Stem

82

Stem network at the start aggressively downsamples input
(Recall in VGG-16: Most of the compute was at the start)

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

Input size Layer Output size

Layer C H/W Filters Kernel Strid
e Pad C H/W Memory

(KB)
Params

(k) Flop (M)

Conv
Poo 3 224 64 7 2 3 64 112 3136 9 118

Max-pool 64 112 3 2 1 64 56 784 0 2

Conv
Poo 64 56 64 1 1 0 64 56 784 4 13

Conv
Poo 64 56 192 3 1 1 192 56 2352 111 347

Max-pool 192 56 3 2 1 192 28 588 0 1

GoogLeNet: Aggressive Stem

83

Stem network at the start aggressively downsamples input
(Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Inception Module

84

Inception module: Local unit with parallel branches

Local structure repeated
many times throughout
the network

Szegedy et al, “Going deeper with convolutions”, CVPR 2015

GoogLeNet: Inception Module

85

Inception module: Local unit with parallel branches

Local structure repeated
many times throughout
the network

Szegedy et al, “Going deeper with convolutions”, CVPR 2015

Uses 1x1 “Bottleneck”
layers to reduce channel
dimension before
expensive conv (we will
revisit this with ResNet!)

GoogLeNet: Global Average Pooling

86

GoogLeNet: Auxiliary Classifiers

87

Training using loss at the end of the network didn’t work well: Network is
too deep, gradients don’t propagate cleanly

As a hack, attach “auxiliary classifiers” at several intermediate points in
the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm, we no
longer need to use this trick

ImageNet Classifica.on Challenge

88

ImageNet Classifica.on Challenge

89

Residual Networks

90He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is overfitting since
it is much bigger than the other model

Residual Networks

91

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

In fact the deep model seems to be underfitting since it also performs
worse than the shallow model on the training set! It is actually underfitting

Residual Networks

92

A deeper model can emulate a shallower model: copy layers from shallower model, set
extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in
particular don’t learn identity functions to emulate shallow models

Residual Networks

93

A deeper model can emulate a shallower model: copy layers from shallower model, set
extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in
particular don’t learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Networks

94

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Networks

95

Solution: Change the network so learning identity functions with extra layers is easy!

If you set these to
0, the whole block
will compute the
identity function!

96

A residual network is a stack of many
residual blocks

Residual Networks

Regular design, like VGG: each residual
block has two 3x3 conv

Network is divided into stages: the first
block of each stage halves the resolution
(with stride-2 conv) and doubles the
number of channels

97

Uses the same aggressive stem as GoogleNet to downsample
the input 4x before applying residual blocks:

Residual Networks

Input size Layer Output size

Layer C H/W Filters Kernel Stride Pad C H/W Memory (KB) Params
(k) Flop (M)

Conv
Poo 3 224 64 7 2 3 64 112 3136 9 118

Max-pool 64 112 3 2 1 64 56 784 0 2

98

Like GoogLeNet, no big fully-connected-layers: Instead use
global average pooling and a single linear layer at the end

Residual Networks

99
Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18:
Stem: 1 conv layer
Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

Residual Networks

100

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18:
Stem: 1 conv layer
Stage 1 (C=64): 2 res. block = 4 conv
Stage 2 (C=128): 2 res. block = 4 conv
Stage 3 (C=256): 2 res. block = 4 conv
Stage 4 (C=512): 2 res. block = 4 conv
Linear
ImageNet top-5 error: 10.92
GFLOP: 1.8

Residual Networks

ResNet-34:
Stem: 1 conv layer
Stage 1: 3 res. block = 6 conv
Stage 2: 4 res. block = 8 conv
Stage 3: 6 res. block = 12 conv
Stage 4: 3 res. block = 6 conv
Linear
ImageNet top-5 error: 8.58
GFLOP: 3.6

VGG-16:

ImageNet top-5 error: 9.62

GFLOP: 13.6

Residual Networks: Basic Block

101

FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:

18HWC2

102

FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:

18HWC2

Residual Networks: BoUleneck Block

103

FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:

18HWC2

FLOPs: 4HWC2

FLOPs: 9HWC2

Total FLOPs:

17HWC2

FLOPs: 4HWC2

More layers, less computational cost!

Residual Networks: Bottleneck Block

104

Residual Networks
ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck
Blocks. This is a great baseline architecture for many tasks even today!

105

Residual Networks

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

• Able to train very deep networks

• Deeper networks do better than
shallow networks (as expected)

• Swept 1st place in all ILSVRC and
COCO 2015 competitions

• Still widely used today

Improving Residual Networks: Block Design

106

Note ReLU after residual:

Cannot actually learn identity
function since outputs are
nonnegative!

Note ReLU inside residual:

Can learn identity function
by setting Conv weights to
zero

He et al, ”Identity mappings in deep residual networks”, ECCV 2016

Improving Residual Networks: Block Design

107

Slight improvement in accuracy
(ImageNet top-1 error)

ResNet-152: 21.3 vs 21.1

ResNet-200: 21.8 vs 20.7

Not actually used that much in
practice

He et al, ”Identity mappings in deep residual networks”, ECCV 2016

Comparing Complexity

108Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

109

Inception-v4: ResNet + Inception!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

110

VGG:

Highest memory,

most operations

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

111

GoogLeNet:

Very efficient!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

112

AlexNet: Low
compute, lots of
parameters

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

113

ResNet: Simple design,
moderate efficiency, high
accuracy

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

ImageNet Classification Challenge

114

CNN architectures have
continued to evolve!

Lecture 7
CNN Architectures
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

