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Recap: Convolu.on

Padding Stride = 2 dilation = 2 
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Recap: Convolu.on Layer Dimensions
N x Cin x H  xW

Also Cout-dim bias vector

Cout x Cin x Kh x Kw 
filters

Convolution 
Layer

batch of images batch of outputs
N x Cout x H’ x W’

Cout
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Recap: Recep.ve Fields
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Pooling Layers: Another way to downsample

Hyperparameters:

Kernel size

Stride

Pooling function
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Max Pooling

Max pooling with

2x2 kernel size

stride of 2
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Max Pooling

Max pooling with

2x2 kernel size

stride of 2

Introduces invariance to 
small spatial shifts
No learnable parameters!
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Pooling Summary



Components of Convolu.onal Networks
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Activation Function Normalization Problem: 
Deep 
Networks 
very hard to 
train



Batch Normaliza.on

Consider a single layer ! = #$
The following could lead to tough op6miza6on:

• Inputs $ are not centered around zero (need large bias)
• Inputs $ have different scaling per-element                

(entries in # will need to vary a lot)

Idea: force inputs to be “nicely scaled” at each layer!

12
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Batch Normaliza.on

We can normalize a batch of activations using:

!̂ = ! − $[!]
'()[!]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015
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Batch Normaliza.on

We can normalize a batch of activations using:

!̂ = ! − $[!]
'()[!]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

This is a differentiable function, so 
we can use it as an operator in our 
networks and backdrop through it!
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Batch Normaliza.on

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015
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Batch Normaliza.on

Problem: What if zero-mean, unit 
variance is too hard of a constraint?
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Batch Normaliza.on

Add
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Batch Normaliza.on

Problem: Estimates depend on 
minibatch; can’t run layer at test-time!
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Batch Normaliza.on: Test-Time
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Batch Normaliza.on: Test-Time

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

In practice, usually momentum = 0.99
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Batch Normaliza.on: Test-Time

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015
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Batch Normaliza.on: Test-Time
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Batch Normaliza.on for ConvNets
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Batch Normaliza.on

Usually inserted after Fully Connected or 
Convolutional layers, and before nonlinearity

!̂ = ! − $[!]
'()[!]
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Batch Normaliza.on
• Makes deep networks much easier to train!

• Allows higher learning rates, faster convergence

• Networks become more robust to initialization

• Acts as regularization during training

• Zero overhead at test-time: can be fused with conv

ImageNet 
Classification 
Accuracy

Training Iterations
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Batch Normaliza.on
• Makes deep networks much easier to train!

• Allows higher learning rates, faster convergence

• Networks become more robust to initialization

• Acts as regularization during training

• Zero overhead at test-time: can be fused with conv
• Not well-understood theoretically (yet, still lots of 

debate!)

• Behaves differently during training and testing: very 
common source of bugs!
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Layer Normaliza.on
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Instance Normaliza.on
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Group Normaliza.on

Wu and He, “Group Normalization”, ECCV 2018



Components of Convolu.onal Networks
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Ac#va#on Func#ons



Summary: Components of Convolu3onal Networks
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Summary: Components of Convolu#onal Network

Problem: What is the right way to combine all these components?
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Convolu.onal Neural Networks

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5
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Example: LeNet-5
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Example: LeNet-5
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Example: LeNet-5
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Example: LeNet-5
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Example: LeNet-5



41

Example: LeNet-5
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Example: LeNet-5
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Example: LeNet-5
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Example: LeNet-5

As we progress through the network:
Spatial size decreases

(using pooling or striped convolution)
Number of channels increases

(total “volume” is preserved!)
Some modern architectures 
break this trend—stay tuned!



ImageNet Classifica.on Challenge
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AlexNet
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• 227 x 227 inputs

• 5 Convolutional Layers

• Max pooling

• 3 Fully-connected Layers

• ReLU nonlinearities

• Used “Local response normalization”; 
Not used anymore

• Trained on two GTX 580 GPUs - only 
3GB of memory each! Model split over 
two GPUs. 

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.



AlexNet
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AlexNet
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AlexNet citations per year 

Total citations: >120,000
Citation as of 1/31/2024: 124,651

Citation Counts:

• Darwin, “On the origin of species”, 1859: 60,117

• Shannon, “A mathematical theory of 
communication,” 1948: 140,459

• Watson and Crick, “Molecular Structure of 
Nucleic Acids,” 1953: 16,298
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AlexNet
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Recall: Output channels = number of filters



AlexNet
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Recall: W’ = (W - K + 2P) / S + 1 

 = (227 - 11 + 2 x 2) / 4 + 1

 = 220/ 4 + 1 = 56



AlexNet
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Number of output elements = C x H’ x W’
                        = 64 x 56 x 56 = 200,704

Bytes per element = 4 (for 32-bit floating point)
KB = (number of elements) x (bytes per elem) /1024

 = 200704 x 4 / 1024
 = 784



AlexNet
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Weight shape = Cout x Cin x K x K
  = 64 x 3 x 11 x 11

Bias shape = Cout = 64

Number of weights = 64 x 3 x 11 x 11 + 64
           = 23,296



AlexNet
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Number of floating point operations (multiply + add)
= (number of output elements) * (ops per output elem)
= (Cout x H’ x W’) * (Cin x K x K)
= (64 * 56 * 56) * (3 * 11 * 11)
= 200,704 * 363
= 72,855,552



AlexNet
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For pooling layer:

#output channels = #input channels = 64

W’ = floor((W-K)/S+1)
= floor(53/2 + 1) = floor(27.5) = 27



AlexNet
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#output elms = Cout x H’ x W’
Bytes per elem = 4
KB = Cout x H’ x W’ x 4 / 1024

= 64 * 27 * 27 * 4 / 1024
= 182.25



AlexNet
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Pooling layers have no learnable parameters!



AlexNet
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AlexNet
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Flatten output size = Cin x H x W
= 256 * 6 * 6
= 9216



AlexNet
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AlexNet
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AlexNet
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AlexNet
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Interesting trends here!



AlexNet
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Most of the memory usage 
in the early convolution 
layers

Nearly all parameters are in 
the fully-connected layers

Most floating-point ops 
occur in the convolution 
layers



ImageNet Classifica.on Challenge
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ImageNet Classifica.on Challenge
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ZFNet: A Bigger AlexNet

66Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 

AlexNet but:

Conv1: change from (11x11 stride 4) to (7x7 stride 2)

Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error :(

ImageNet top 5 error: 16.4% -> 11.7%



ImageNet Classifica.on Challenge
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ImageNet Classifica.on Challenge
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VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015 



VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Network has 5 convolution stages:
Stage 1: conv-conv-pool
Stage 2: conv-conv-pool
Stage 3: conv-conv-pool
Stage 4: conv-conv-conv-[conv]-pool
Stage 5: conv-conv-conv-[conv]-pool



VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:

Conv(5x5, C->C)

Params: 25C2

FLOPs: 25C2HW



VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:

Conv(5x5, C->C)

Params: 25C2

FLOPs: 25C2HW

Option 2:

Conv(3x3, C->C)

Conv(3x3, C->C)

Params: 18C2

FLOPs: 18C2HW



VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:

Conv(5x5, C->C)

Params: 25C2

FLOPs: 25C2HW

Option 2:

Conv(3x3, C->C)

Conv(3x3, C->C)

Params: 18C2

FLOPs: 18C2HW

Two 3x3 conv has same 
receptive field as a single 5x5 
conv, but has fewer parameters 
and takes less computation!



VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 1:
Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C2

FLOPs: 36HWC2



VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 2:
Input: 2C x H x W
Layer: Conv(3x3, 2C->2C)

Memory: 2HWC
Params: 36C2

FLOPs: 36HWC2

Option 1:
Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C2

FLOPs: 36HWC2



VGG: Deeper Networks, Regular Design
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VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large

Option 2:
Input: 2C x H x W
Layer: Conv(3x3, 2C->2C)

Memory: 2HWC
Params: 36C2

FLOPs: 36HWC2

Option 1:
Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C2

FLOPs: 36HWC2

Conv layers at each spatial 
resolution take the same 
amount of computation!



AlexNet vs VGG-16: Much bigger network!
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AlexNet total: 1.9MB

VGG-16 total: 48.6MB (25x)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)



ImageNet Classifica.on Challenge
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ImageNet Classifica.on Challenge
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GoogLeNet: Focus on Efficiency

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 80

Many innovations for efficiency: reduce parameter 
count, memory usage, and computation 



GoogLeNet: Aggressive Stem

81

Stem network at the start aggressively downsamples input 
(Recall in VGG-16: Most of the compute was at the start)



GoogLeNet: Aggressive Stem
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Stem network at the start aggressively downsamples input 
(Recall in VGG-16: Most of the compute was at the start)

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

Input size Layer Output size

Layer C H/W Filters Kernel Strid
e Pad C H/W Memory 

(KB)
Params 

(k) Flop (M)

Conv
Poo 3 224 64 7 2 3 64 112 3136 9 118

Max-pool 64 112 3 2 1 64 56 784 0 2

Conv
Poo 64 56 64 1 1 0 64 56 784 4 13

Conv
Poo 64 56 192 3 1 1 192 56 2352 111 347

Max-pool 192 56 3 2 1 192 28 588 0 1



GoogLeNet: Aggressive Stem
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Stem network at the start aggressively downsamples input 
(Recall in VGG-16: Most of the compute was at the start)



GoogLeNet: Inception Module
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Inception module: Local unit with parallel branches

Local structure repeated 
many times throughout 
the network

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 



GoogLeNet: Inception Module
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Inception module: Local unit with parallel branches

Local structure repeated 
many times throughout 
the network

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 

Uses 1x1 “Bottleneck” 
layers to reduce channel 
dimension before 
expensive conv (we will 
revisit this with ResNet!)



GoogLeNet: Global Average Pooling
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GoogLeNet: Auxiliary Classifiers
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Training using loss at the end of the network didn’t work well: Network is 
too deep, gradients don’t propagate cleanly

As a hack, attach “auxiliary classifiers” at several intermediate points in 
the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm, we no 
longer need to use this trick



ImageNet Classifica.on Challenge
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ImageNet Classifica.on Challenge
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Residual Networks

90He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016 

Once we have Batch Normalization, we can train networks with 10+ layers. 

What happens as we go deeper? 

Deeper model does worse than shallow model! 

Initial guess: Deep model is overfitting since 
it is much bigger than the other model 



Residual Networks
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Once we have Batch Normalization, we can train networks with 10+ layers. 

What happens as we go deeper? 

In fact the deep model seems to be underfitting since it also performs 
worse than the shallow model on the training set! It is actually underfitting 



Residual Networks
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A deeper model can emulate a shallower model: copy layers from shallower model, set 
extra layers to identity 

Thus deeper models should do at least as good as shallow models 

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in 
particular don’t learn identity functions to emulate shallow models 



Residual Networks
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A deeper model can emulate a shallower model: copy layers from shallower model, set 
extra layers to identity 

Thus deeper models should do at least as good as shallow models 

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in 
particular don’t learn identity functions to emulate shallow models 

Solution: Change the network so learning identity functions with extra layers is easy! 



Residual Networks
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Solution: Change the network so learning identity functions with extra layers is easy! 



Residual Networks
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Solution: Change the network so learning identity functions with extra layers is easy! 

If you set these to 
0, the whole block 
will compute the 
identity function!
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A residual network is a stack of many 
residual blocks 

Residual Networks

Regular design, like VGG: each residual 
block has two 3x3 conv 

Network is divided into stages: the first 
block of each stage halves the resolution 
(with stride-2 conv) and doubles the 
number of channels 
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Uses the same aggressive stem as GoogleNet to downsample 
the input 4x before applying residual blocks: 

Residual Networks

Input size Layer Output size

Layer C H/W Filters Kernel Stride Pad C H/W Memory (KB) Params 
(k) Flop (M)

Conv
Poo 3 224 64 7 2 3 64 112 3136 9 118

Max-pool 64 112 3 2 1 64 56 784 0 2
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Like GoogLeNet, no big fully-connected-layers: Instead use 
global average pooling and a single linear layer at the end

Residual Networks
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Error rates are 224x224 single-crop testing, reported by torchvision 

ResNet-18:
Stem: 1 conv layer
Stage 1 (C=64): 2 res. block = 4 conv 

Stage 2 (C=128): 2 res. block = 4 conv 

Stage 3 (C=256): 2 res. block = 4 conv 

Stage 4 (C=512): 2 res. block = 4 conv 

Linear

ImageNet top-5 error: 10.92 

GFLOP: 1.8 

Residual Networks
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He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Error rates are 224x224 single-crop testing, reported by torchvision 

ResNet-18:
Stem: 1 conv layer
Stage 1 (C=64): 2 res. block = 4 conv 
Stage 2 (C=128): 2 res. block = 4 conv 
Stage 3 (C=256): 2 res. block = 4 conv 
Stage 4 (C=512): 2 res. block = 4 conv 
Linear
ImageNet top-5 error: 10.92 
GFLOP: 1.8 

Residual Networks

ResNet-34:
Stem: 1 conv layer
Stage 1: 3 res. block = 6 conv 
Stage 2: 4 res. block = 8 conv 
Stage 3: 6 res. block = 12 conv 
Stage 4: 3 res. block = 6 conv 
Linear
ImageNet top-5 error: 8.58 
GFLOP: 3.6

VGG-16:

ImageNet top-5 error: 9.62 

GFLOP: 13.6



Residual Networks: Basic Block
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FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs: 

18HWC2
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FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs: 

18HWC2

Residual Networks: BoUleneck Block
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FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs: 

18HWC2

FLOPs: 4HWC2

FLOPs: 9HWC2

Total FLOPs: 

17HWC2

FLOPs: 4HWC2

More layers, less computational cost! 

Residual Networks: Bottleneck Block
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Residual Networks
ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck 
Blocks. This is a great baseline architecture for many tasks even today! 
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Residual Networks

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

• Able to train very deep networks

• Deeper networks do better than 
shallow networks (as expected)

• Swept 1st place in all ILSVRC and 
COCO 2015 competitions

• Still widely used today 



Improving Residual Networks: Block Design
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Note ReLU after residual:

Cannot actually learn identity 
function since outputs are 
nonnegative!

Note ReLU inside residual:

Can learn identity function 
by setting Conv weights to 
zero

He et al, ”Identity mappings in deep residual networks”, ECCV 2016 



Improving Residual Networks: Block Design
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Slight improvement in accuracy 
(ImageNet top-1 error)

ResNet-152: 21.3 vs 21.1

ResNet-200: 21.8 vs 20.7

Not actually used that much in 
practice

He et al, ”Identity mappings in deep residual networks”, ECCV 2016 



Comparing Complexity

108Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 



Comparing Complexity
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Inception-v4: ResNet + Inception!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 



Comparing Complexity
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VGG: 

Highest memory, 

most operations

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 



Comparing Complexity
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GoogLeNet:

Very efficient!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 



Comparing Complexity
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AlexNet: Low 
compute, lots of 
parameters

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 



Comparing Complexity
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ResNet: Simple design, 
moderate efficiency, high 
accuracy

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 



ImageNet Classification Challenge
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CNN architectures have 
continued to evolve!
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