

Lecture 6 **Convolutional Neural Networks University of Michigan I Department of Robotics**

DeepRob

Recap: Backpropagation

Recap: "The Chain Rule"

Chain rule

 $\frac{\partial L}{\partial x_0} = \left(\frac{\partial x_1}{\partial x_0}\right) \left(\frac{\partial x_2}{\partial x_1}\right) \left(\frac{\partial x_3}{\partial x_2}\right) \left(\frac{\partial L}{\partial x_2}\right)$

Recap: Universal Approximation

With 4K hidden units we can build a sum of K bumps

$f(x) = W_2 max(0, W_1 x + b_1) + b_2$

Input: 3072

Spatial Structure?

Problem: So far our classifiers don't respect the spatial structure of images!

Solution: Define new computational nodes that operate on images!

6

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Fully-Connected Layer

3x32x32 image -----> stretch to 3072x1

Input

Image

Fully-Connected Layer

3x32x32 image \longrightarrow stretch to 3072x1

The result of taking a dot product between a row of W and the input

Fully-Connected Layer

3x32x32 image -----> stretch to 3072x1

Input

1 number:

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Convolution Operation

 Kernel:
 2

 0
 1
 2

 2
 2
 0

 0
 1
 2

 (3x3)

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Convolution Operation

Stride = 2

dilation = 2

Convolution Filters

			-	

1					

3x32x32 image: preserve spatial structure

3x5x5 filter

Convolve the filter with the image i.e., "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

3x32x32 image $L_out = (L_in + 2 * padding - dilation * (kernel - 1) - 1) / stride + 1$

1 number:

The result of taking a dot product between the filter and a small 3x5x5 portion of the image

(i.e, 3*5*5=75-dimensional dot product + bias) $w^T x + b$

3x32x32 image

1x28x28 activation map

3x32x32 image

two 1x28x28 activation map

six 1x28x28 activation map

Stack activations to get a 6x28x28 output image

six 1x28x28 activation map

Stack activations to get a 6x28x28 output image

Convolution Layer: General dimensions

Stacking Convolutions: insert activation function

Linear classifier: One template per class

MLP: Bank of whole-image templates

* Global wrt. the entire image

First-layer conv filters: local image templates

(often learns oriented edges, opposing colors)

AlexNet: 96 filters, each 3x11x11

* Local

Feature visualization

Feature visualization

Edges

Textures

distill.pub

Patterns

Objects

Step 48

 \rightarrow

Step 2048

What do convolutional filters learn?

Activation mask

https://christophm.github.io/interpretable-ml-book/cnn-features.html

= Human annotated ground truth D = Top activated area = Area of Intersection = Area of Union

What d

Activation mask

0

Interpretable **Machine Learning**

A Guide for Making **Black Box Models Explainable**

Christoph Molnar

Second Edition

ithub.io/interpretable-ml-book/cnn-features.html

7

7

DeepRob

7

DeepRob

DeepRob

DeepRob

7

Input: 7x7 Filter: 3x3 Output: 5x5

DeepRob

7

Input: 7x7 Filter: 3x3 Output: 5x5

In general:Problem: FeatureInput: Wmaps "shrink"Filter: Kwith each layer!

Output: W – K + 1

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7 Filter: 3x3 Output: 5x5

In general:Problem: FeatureInput: Wmaps "shrink"Filter: Kwith each layer!Output: W - K + 1

Solution: **padding** Add zeros around the input

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7 Filter: 3x3 Output: 5x5

In general:Very common:Input: WSet P = (K - 1) / 2 toFilter: Kmake output havePadding: Psame size as input!Output: W - K + 1 + 2P

DR

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Input

Output

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Be careful – "receptive field in the input" vs "receptive field in the previous layer" Hopefully clear from context!

Output

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Output

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Output

Solution: Downsample inside the network

https://github.com/Fangyh09/pytorch-receptive-field

Layer 0 | Receptive Field 1

Input: 7x7 Filter: 3x3 Stride: 2

Input: 7x7 Filter: 3x3 Stride: 2

Input: 7x7 Filter: 3x3 Stride: 2

Output: 3x3

Input: 7x7 Output: 3x3 Filter: 3x3 Stride: 2

In general: Input: W Filter: K Padding: P Stride: S Output: (W – K + 2P) / S + 1

Dilated Convolution

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Convolution Example

Input volume: 3 x 32 x 32

Deepreob

10 5x5 filters with stride 1, pad 2

Q: What is the output volume size?

Input: W Filter: K Padding: P Stride: S Output: (W – K + 2P) / S + 1

Convolution Example

Input volume: 3 x 32 x 32

DEEPROD

10 5x5 filters with stride 1, pad 2

Q: What is the output volume size? (32-5+2*2) / 1 + 1 = 32 spatially So, 10 x 32 x 32 output

> Input: W Filter: K Padding: P Stride: S Output: (W – K + 2P) / S + 1

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 **Q:** What is the number of learnable parameters?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 **Q:** What is the number of learnable parameters? Parmeters per filter: (3*5*5) + 1 = 76**10** filters, so total is 10*76 = 760

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 **Q:** What is the number of multiply-add operations?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$ Number of learnable parameters: 760 **Q:** What is the number of multiply-add operations? 10*32*32=10,240 outputs, each from inner product of two 3x5x5 tensors, so total = 75 * 10,240 = **768,000**

Example: 1x1 Convolution

Lin et al., "Network in Network", ICLR 2014

Example: 1x1 Convolution

Deepreob

Stacking 1x1 conv layers gives MLP operating on each input position

Lin et al., "Network in Network", ICLR 2014

Convolution Summary

- Input: C_{in} x H x W
- Hyperparameters: Kernel size: K_H x K_W
- Number filters: C_{out} -
- Padding: P
- Stride: S
- Weight matrix: C_{out} x C_{in} x K_H x K_W giving C_{out} filters of size C_{in} x K_H x K_W
- **Bias vector**: C_{out}

- **Output size**: C_{out} x H' x W' where: - H' = (H - K + 2P) / S + 1- W' = (W - K + 2P) / S + 1

Deeprob

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- Kernel size: K_H x K_W
- **Number filters**: Cout
- **Padding**: P
- Stride: S

Weight matrix: C_{out} x C_{in} x K_H x K_W giving C_{out} filters of size C_{in} x K_H x K_W **Bias vector**: C_{out} **Output size**: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings: $K_{H} = K_{W}$ (Small square filters) P = (K - 1) / 2 ("Same" padding) C_{in} , C_{out} = 32, 64, 128, 256 (powers of 2) K = 3, P = 1, S = 1 (3x3 conv) K = 5, P = 2, S = 1 (5x5 conv) K = 1, P = 0, S = 1 (1x1 conv) K = 3, P = 1, S = 2 (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W Weights: C_{out} x C_{in} x K

Other types of convolution

So far: 2D Convolution

3D Convolution

Input: C_{in} x H x W x D Weights: C_{out} x C_{in} x K x K x K

C_{in}-dim vector at each point in the volume

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(*in_channels*, *out_channel*, *dilation=1*, *groups=1*, *bias=True*, *padding_m*

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, C_{in}, H, W) and output $(N, C_{out}, H_{out}, W_{out})$ can be precisely described as:

 $\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j})$

[SOURCE]

$$+\sum_{k=0}^{C_{ ext{in}}-1} ext{weight}(C_{ ext{out}_j},k) \star ext{input}(N_i,k)$$

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(*in_channels*, *out_channel dilation=1*, *groups=1*, *bias=True*, *padding_m*

Conv1d

CLASS torch.nn.Conv1d(*in_channels*, *out_channel dilation=1*, *groups=1*, *bias=True*, *padding_m*

Conv3d

ls, kernel_size, stride=1, padding=0, node='zeros')	[SOURCE]
ls, kernel_size, stride=1, padding=0, node='zeros')	[SOURCE] S
ls, kernel_size, stride=1, padding=0,	[SOURCE]

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel size

Stride

Pooling function

V

Max Pooling

Max pooling with

2x2 kernel size 6 8 stride of 2 3 4

V

Max Pooling

Introduces invariance to small spatial shifts No learnable parameters!

Pooling Summary

Input: C x H x W Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg) -
- **Output:** C x H' x W' where
- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings: max, K = 2, S = 2 max, K = 3, S = 2 (AlexNet)

Components of Convolutional Neural Networks

Fully-Connected Layers

Convolution Layers

224x224x64

Activation Functions

Pooling Layers

Convolutional Neural Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Lecun et al., "Gradient-based learning applied to document recognition", 1998

Layer	Output Size	Weight Size
Input	1 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we progress through the network: Spatial size decreases

(using pooling or striped convolution) Number of channels increases

(total "volume" is preserved!)

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we progress through the network: Spatial size **decreases**

(using pooling or striped convolution) Number of channels **increases**

(total "volume" is preserved!)

Some modern architectures break this trend—stay tuned!

Components of Convolutional Networks

Batch Normalization

Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Batch Normalization

Why? Helps reduce "internal covariate shift", improves optimization results

We can normalize a batch of activations using:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

- Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

This is a **differentiable function**, so we can use it as an operator in our networks and backdrop through it!

Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Problem: Deep Networks very hard to train

Activation Functions

Leaky ReLU max(0.1x, x)

 $\begin{aligned} \mathsf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{aligned}$

Summary: Components of Convolutional Networks

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Summary: Components of Convolutional Network

Problem: What is the right way to combine all these components?

Project 1—Reminder

- Instructions and code available on the website
 - Here: <u>deeprob.org/projects/project1/</u>
- Implement KNN, linear classifier, and fully connected NN
- Due Thursday, Feb.1, 11:59 PM EST
- Discussion section: Your Thoughts?
- Late policy: 3 late tokens (24hrs each with no penalty); 25% deduction for every day the submission was late after using all three late tokens

- https://cs231n.github.io/linear-classify/
- https://cs231n.github.io/optimization-1/
- https://cs231n.github.io/optimization-2/
- https://pytorch.org/tutorials/beginner/deep_learning_60min_bli tz.html

Helpful References

Final Project Overview

• Research-oriented final project

- Objectives
 - Gain experience reading literature
 - Reproduce published results
 - Propose a new idea and test the results!

completed in teams

Final Project Deliverables

- 1. A written paper review
- 2. In-class paper presentation
- 3. Reproduce published results
- 4. Extend results with new idea, technique or dataset
- 5. Document results in written report

(1) Paper Review and (2) Presentation

Final project teams will be based on overlapping interest

Students will choose from the 'core' list of papers on course website

Each team will be assigned one of the 'core' papers to review and present in-class

The 1-page paper review will be due **1week before** the scheduled presentation

Presentation schedule will be based on paper topic as shown in <u>course calendar</u>

More details on review and presentation criteria in following lectures

(3) Paper Reproduction and (4) Extension

Each team will choose a paper relating to deep learning and robot perception

Doesn't have to be same paper you presented in class

Then reimplement and reproduce at least one of the paper's published results (not necessarily all the results)

Then, each team will test one of their own ideas!

in following lectures

- By extending the paper's model using new architecture or technique or dataset Your chance to experiment with deep learning and contribute to the field!
 - More details on reproduction and extension

(5) Project Report

- The final deliverable for your final project
- A report/paper
 - What problem within robot perception or manipulation?
 - What work has been done in this area?
 - What approach did you investigate?
 - What questions and directions exist for future work?

More details on report in following lectures

Lecture 6 **Convolutional Neural Networks University of Michigan I Department of Robotics**

DeepRob

