
Lecture 6
Convolutional Neural Networks
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

2

Recap: Backpropaga,on

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

!(#) = &!'(#(0,&"# + ,") + ,!

Forward pass
Backward pass
(Backprop)

Computational Graph

3

Recap: Backpropaga,on

!"
!#

!

"
#$

!"
!#
!"
!$Local

Gradients

Upstream
Gradient

!%
!$ =

!"
!$
!%
!"

!%
!# =

!"
!#
!%
!"

Downstream
Gradients

4

Recap: “The Chain Rule”

5

Recap: Universal Approxima,on

!
Approximate func0ons with bumps!

With 4K hidden units
we can build a sum of
K bumps

6

Spa,al Structure?

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

!(#) = &!'(#(0,&"# + ,") + ,!

Solution: Define new computational
nodes that operate on images!

Problem: So far our classifiers don’t
respect the spatial structure of images!

Components of Convolu,onal Networks

7

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

8

Fully-Connected Layer

Input Output

1
3072 10

1!"
10 x 3072

Weights

stretch to 3072x13x32x32 image

! !! !"ℎ #

Image Class

9

Fully-Connected Layer

Input Output

1
3072 10

1!"
10 x 3072

Weights

1 number:

The result of taking a dot product
between a row of W and the input

stretch to 3072x13x32x32 image

10

Fully-Connected Layer

Input Output

1
3072 10

1!"
10 x 3072

Weights

1 number:

The result of taking a dot product
between a row of W and the input

stretch to 3072x13x32x32 image

Components of Convolu,onal Networks

11

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

12

Convolu,on Opera,on

Kernel:0 1 2
2 2 0
0 1 2

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-
learning-1f6f42faee1

(3x3)

13

Convolu,on Opera,on

Padding Stride = 2 dilation = 2

14

Convolu,on Filters

15

Convolu,on Filters

16

Convolu,on Layer
3x32x32 image: preserve spatial structure

3x5x5 filter

Convolve the filter with the image
i.e., “slide over the image spatially,
computing dot products”

17

Convolu,on Layer
3x32x32 image

3x5x5 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full depth
of the input volume

18

Convolu,on Layer

1 number:

The result of taking a dot product between the
filter and a small 3x5x5 portion of the image

(i.e. 3*5*5=75-dimensional dot product + bias)"## + %

3x32x32 image L_out = (L_in + 2 * padding - dila4on * (kernel - 1) - 1) / stride + 1

19

Convolu,on Layer

convolve (slide) over all spatial locations

1x28x28 activation map3x32x32 image

20

Convolu,on Layer
3x32x32 image

convolve (slide) over all spatial locations

1x28x28 activation maptwo

Consider repeating with a
second (green) filter

21

Convolu,on Layer
3x32x32 image 1x28x28 activation mapsix

Consider 6 filters,

each 3x5x5

Stack activations to get
a 6x28x28 output image

6x3x5x5
filters

Convolution
Layer

22

Convolu,on Layer
3x32x32 image 1x28x28 activation mapsix

Also 6-dim bias vector

Stack activations to get
a 6x28x28 output image

6x3x5x5
filters

Convolution
Layer

23

Convolu,on Layer
3x32x32 image 28x28 grid, at each

point a 6-dim vector
Also 6-dim bias vector

Stack activations to get
a 6x28x28 output image

6x3x5x5
filters

Convolution
Layer

24

Convolu,on Layer
2x3x32x32

Also 6-dim bias vector

6x3x5x5
filters

Convolution
Layer

2x6x28x28
batch of outputsbatch of images

25

Convolu,on Layer: General dimensions
N x Cin x H xW

Also Cout-dim bias vector

Cout x Cin x Kh x Kw
filters

Convolution
Layer

batch of images batch of outputs
N x Cout x H’ x W’

Cout

26

Stacking Convolu,ons

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv…..

W%: 6x3x5x5
b%: 6

W&: 10x6x3x3
b&: 10

W': 12x10x3x3
b': 12

27

Stacking Convolu,ons

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv…..

W%: 6x3x5x5
b%: 6

W&: 10x6x3x3
b&: 10

W': 12x10x3x3
b': 12

Q: What happens if we stack
two convolution layers?

28

Stacking Convolu,ons

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv…..

W%: 6x3x5x5
b%: 6

W&: 10x6x3x3
b&: 10

W': 12x10x3x3
b': 12

Q: What happens if we stack
two convolution layers?

(Recall y=W&W%x is
a linear classifier)

29

Stacking Convolu,ons

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv…..

W%: 6x3x5x5
b%: 6

W&: 10x6x3x3
b&: 10

W': 12x10x3x3
b': 12

Q: What happens if we stack
two convolution layers?

A: We get another
convolution!(Recall y=W&W%x is

a linear classifier)

30

Stacking Convolutions: insert activation function

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

W%: 6x3x5x5
b%: 6

W&: 10x6x3x3
b&: 10

W': 12x10x3x3
b': 12

Q: What happens if we stack
two convolution layers?

A: We get another
convolution!(Recall y=W&W%x is

a linear classifier)

ReLUConv ReLUConv ReLUConv

Non-linear relationships

31

What do convolu,onal filters learn?

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

W%: 6x3x5x5
b%: 6

W&: 10x6x3x3
b&: 10

W': 12x10x3x3
b': 12

ReLUConv ReLUConv ReLUConv

Linear classifier: One template per class

32

What do convolu,onal filters learn?

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

W%: 6x3x5x5
b%: 6

ReLUConv

33

What do convolu,onal filters learn?

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

W%: 6x3x5x5
b%: 6

ReLUConv

MLP: Bank of whole-image templates

* Global wrt. the entire image

34

What do convolu,onal filters learn?

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

W%: 6x3x5x5
b%: 6

ReLUConv

First-layer conv filters: local image templates

(often learns oriented edges, opposing colors)

AlexNet: 96 filters, each 3x11x11

* Local

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

35

What do convolu,onal filters learn?

Feature visualization

36

What do convolu,onal filters learn?
Feature visualization distill.pub

37

What do convolu,onal filters learn?
Activation mask https://christophm.github.io/interpretable-ml-book/cnn-features.html

38

What do convolu,onal filters learn?
Activation mask https://christophm.github.io/interpretable-ml-book/cnn-features.html

39

A closer look at spa,al dimensions

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

W%: 6x3x5x5
b%: 6

ReLUConv

40

A closer look at spa,al dimensions

41

A closer look at spa,al dimensions

42

A closer look at spa,al dimensions

43

A closer look at spa,al dimensions

44

A closer look at spa,al dimensions

45

A closer look at spa,al dimensions

46

A closer look at spa,al dimensions

47

A closer look at spa,al dimensions

48

Recep,ve Fields

49

Recep,ve Fields

50

Recep,ve Fields

51

Recep,ve Fields

52

Recep,ve Fields

https://github.com/Fangyh09/pytorch-receptive-field

https://github.com/Fangyh09/pytorch-receptive-field

53

Strided Convolu,on

54

Strided Convolution

55

Strided Convolu,on

56

Strided Convolu,on

57

Dilated Convolu,on

58

Convolution Example

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Q: What is the output volume size?

59

Convolu,on Example

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Q: What is the output volume size?
(32-5+2*2) / 1 + 1 = 32 spatially
So, 10 x 32 x 32 output

60

Convolu,on Example

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Q: What is the number of learnable parameters?

61

Convolu,on Example

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Q: What is the number of learnable parameters?
Parmeters per filter: (3*5*5) + 1 = 76
10 filters, so total is 10*76 = 760

62

Convolu,on Example

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Q: What is the number of multiply-add operations?

63

Convolu,on Example

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Q: What is the number of multiply-add operations?
10*32*32=10,240 outputs, each from inner product
of two 3x5x5 tensors, so total = 75 * 10,240 = 768,000

64

Example: 1x1 Convolu,on

1x1 Conv

with 32 filters

Each filter has size 1x1x64 and
performs a 64-dimensional dot product

Lin et al., “Network in Network”, ICLR 2014

65

Example: 1x1 Convolu,on

1x1 Conv

with 32 filters

Each filter has size 1x1x64 and
performs a 64-dimensional dot product

Stacking 1x1 conv layers gives MLP
operating on each input position

Lin et al., “Network in Network”, ICLR 2014

66

Convolu,on Summary

67

Convolu,on Summary

68

Other types of convolu,on

69

Other types of convolu,on

70

Other types of convolu,on

71

PyTorch Convolu,on Layer

72

PyTorch Convolu,on Layer

Components of Convolu,onal Networks

73

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

74

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel size

Stride

Pooling function

75

Max Pooling

Max pooling with

2x2 kernel size

stride of 2

76

Max Pooling

Max pooling with

2x2 kernel size

stride of 2

Introduces invariance to
small spatial shifts
No learnable parameters!

77

Pooling Summary

78

Components of Convolu.onal Neural Networks

Convolution Layers Pooling Layers Normalization

! !! !"ℎ #

Fully-Connected Layers Activation Functions

,

79

Convolu,onal Neural Networks

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

80

Example: LeNet-5

81

Example: LeNet-5

82

Example: LeNet-5

83

Example: LeNet-5

84

Example: LeNet-5

85

Example: LeNet-5

86

Example: LeNet-5

87

Example: LeNet-5

88

Example: LeNet-5

As we progress through the network:
Spatial size decreases

(using pooling or striped convolution)
Number of channels increases

(total “volume” is preserved!)

89

Example: LeNet-5

As we progress through the network:
Spatial size decreases

(using pooling or striped convolution)
Number of channels increases

(total “volume” is preserved!)
Some modern architectures
break this trend—stay tuned!

Components of Convolu,onal Networks

90

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization Problem:
Deep
Networks
very hard to
train

91

Batch Normaliza,on

We can normalize a batch of activations using:

!̂ = ! − $[!]
'()[!]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

92

Batch Normaliza,on

We can normalize a batch of activations using:

!̂ = ! − $[!]
'()[!]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

This is a differentiable function, so
we can use it as an operator in our
networks and backdrop through it!

Components of Convolu,onal Networks

109

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization Problem:
Deep
Networks
very hard to
train

110

Ac#va#on Func#ons

Summary: Components of Convolu7onal Networks

111

! !! !"ℎ #

!̂ ",$ =
!",$ − $$
%$% + '

Convolution Layers Pooling Layers Fully-Connected Layers

Activation Function Normalization

112

Summary: Components of Convolu#onal Network

Problem: What is the right way to combine all these components?

Project 1—Reminder
• Instructions and code available on the website

• Here: deeprob.org/projects/project1/

• Implement KNN, linear classifier, and fully connected NN

• Due Thursday, Feb.1, 11:59 PM EST

• Discussion section: Your Thoughts?

• Late policy: 3 late tokens (24hrs each with no penalty); 25% deduction for every

day the submission was late after using all three late tokens

113

http://deeprob.org/projects/project1/

Helpful References

• h"ps://cs231n.github.io/linear-classify/
• h"ps://cs231n.github.io/op:miza:on-1/
• h"ps://cs231n.github.io/op:miza:on-2/
• h"ps://pytorch.org/tutorials/beginner/deep_learning_60min_bli

tz.html

114

https://cs231n.github.io/linear-classify/
https://cs231n.github.io/optimization-1/
https://cs231n.github.io/optimization-2/
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Final Project Overview

• Research-oriented final project

• ObjecAves

• Gain experience reading literature

• Reproduce published results

• Propose a new idea and test the results!

115

completed in teams

Final Project Deliverables

1. A wri(en paper review

2. In-class paper presenta5on

3. Reproduce published results

4. Extend results with new idea, technique or dataset

5. Document results in wri(en report

116

Final project teams will be based on overlapping interest

117

(1) Paper Review and (2) Presenta,on

Students will choose from the ‘core’ list
of papers on course website

The 1-page paper review will be due 1-
week before the scheduled presentation

Each team will be assigned one of the ‘core’
papers to review and present in-class

Presenta>on schedule will be based on
paper topic as shown in course calendar

More details on review and presenta>on
criteria in following lectures

https://deeprob.org/papers/
https://deeprob.org/calendar/

(3) Paper Reproduc,on and (4) Extension

118

Each team will choose a paper rela>ng to
deep learning and robot percep>on

Then reimplement and reproduce at least one of the paper’s
published results (not necessarily all the results)

Then, each team will test one of their own ideas!

Doesn’t have to be same paper you presented in class

By extending the paper’s model using new architecture or technique or dataset
Your chance to experiment with deep learning and contribute to the field!

More details on reproduc>on and extension
in following lectures

(5) Project Report

• The final deliverable for your final project

• A report/paper
• What problem within robot percep1on or manipula1on?

• What work has been done in this area?

• What approach did you inves1gate?

• What ques1ons and direc1ons exist for future work?

119

More details on report in following lectures

Lecture 6
Convolutional Neural Networks
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

