

W DEEpresob

Recap: Regularization

Loss Function

$$
\begin{gathered}
\text { Data Loss } L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right) \\
+ \\
\text { Regullarization }
\end{gathered}
$$

Simple examples:
"Ridge regression" L2 regularization: $\quad R(W)=\sum_{k, l} W_{k, l}^{2}$
"LASSO regression" L1 regularization: $\quad R(W)=\sum_{k, l}\left|W_{k, l}\right|$
DEEPREG

Recap: Regularization

Example:

$$
\begin{aligned}
& x=[1,1,1,1] \\
& w_{1}=[1,0,0,0] \\
& w_{2}=[0.25,0.25,0.25,0.25]
\end{aligned}
$$

L2 Regularization

$$
R(W)=\sum_{k, l} W_{k, l}^{2}
$$

Tend to shrink coefficients Evenly

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

Same predictions, so data loss will always be the same

Recap: Regularization

Loss Function

$$
\begin{gathered}
\text { Data Loss } \left.L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)\right] \\
\text { Regullarization }
\end{gathered}
$$

Simple examples:

"Ridge regression" L2 regularization: $\quad R(W)=\sum_{k, l} W_{k, l}^{2}$
Useful for feature selection
"LASSO regression"

How to find a good W^{*} ?

Optimization

$$
w^{*}=\arg \min L(w)
$$

Numeric gradient: approximate, slow, easy to write
Analytic gradient: exact, fast, error-prone

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

DEEPREGG

Recap: Optimization

$\underbrace{\text { w_1 }}_{\text {w_2 }}$

SGD

$$
w_{t+1}=w_{t}-\alpha \nabla L\left(w_{t}\right)
$$

for t in range(num_steps):
$\mathrm{dw}=$ compute_gradient(w)

$$
\text { w -= learning_rate } * \text { dw }
$$

SGD + Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla L\left(w_{t}\right) \\
& w_{t+1}=w_{t}-\alpha v_{t+1}
\end{aligned}
$$

SGD + Momentum

DEEPREO

SGD + Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension
"Per-parameter learning rates" or "adaptive learning rates"

SGD in PyTorch

train_dataloader =
torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
optimizer $=$ torch.optim.SGD(model.parameters(), lr=0.001)

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
```

 dw = compute_gradient(w)
    ```
    dw = compute_gradient(w)
grad_squared += dw * dw
grad_squared += dw * dw
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

```
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

```

Problem: AdaGrad will slow over many iterations


Q: What happens with AdaGrad?
Progress along "steep" directions is damped; progress along "flat" directions is accelerated

\section*{RMSProp: "Leaky AdaGrad"}
```

grad_squared = 0
for t in range(num_steps):
dw = compute_gradient(w)
grad_squared += dw * dw
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)

```

```

grad_squared = 0
for t in range(num_steps):
dw = compute_gradient(w)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)

```

\section*{Adam (almost): RMSProp + Momentum}
```

moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): \# Start at t = 1
dw = compute_gradient(w)
moment1 = beta1 * moment1 + (1 - beta1) * dw
moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)

```

D 郎pren

\section*{Adam (almost): RMSProp + Momentum}
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w) Momentum
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
                v = 0
                for t in range(num_steps):
                    dw = compute_gradient(w)
```

```
```

moment1 = 0

```
```

```
moment1 = 0
```

Momentum

Adam

SGD+Momentum

Kingma and Ba , "Adam: A method for stochastic optimizatio

Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w == learning_rate * moment1// (moment2.sqrt() + 1e-7)
grad_squared = 0
for t in range(num_steps):
Adam
RMSProp
    dw = compute_gradient(w)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


Adam: Very common in Practice!

common practice, the network is trained end-to-end using stochastic gradient descent with the Adam optimizer [22]. We anneal the learning rate to 0 using a half cosine schedule without restarts [28].

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019

We train all models using Adam [23] with learning rate 10^{-4} and batch size 32 for 1 million iterations; training takes about 3 days on a single Tesla P100. For each minibatch we first update f, then update $D_{i m g}$ and $D_{o b j}$

Johnson, Gupta, and Fei-Fei, CVPR 2018
ganized into three residual blocks. We train for 25 epochs using Adam [27] with learning rate 10^{-4} and 32 images per batch on 8 Tesla V100 GPUs. We set the cubify thresh-

Gkioxari, Malik, and Johnson, ICCV 2019
sampled with each bit drawn uniformly at random. For gradient descent, we use Adam [29] with a learning rate of 10^{-3} and default hyperparameters. All models are trained with batch size 12. Models are trained for 200 epochs, or 400 epochs if being trained on multiple noise layers.

Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

16 dimensional vectors. We iteratively train the Generator and Discriminator with a batch size of 64 for 200 epochs using Adam [22] with an initial learning rate of 0.001 .

Gupta, Johnson, et al, CVPR 2018

Adam with beta1 $=0.9$,

beta2 $=0.999$, and learning_rate $=1 \mathrm{e}-3,5 \mathrm{e}-4,1 \mathrm{e}-4$ is a great starting point for many models!

AdamW: Decouple Weight Decay

```
"weight decay" in L2 regularization
        final_loss = loss + wd * all_weights.pow(2).sum() / 2
        w = w - lr * w.grad - lr * wd * w
```

 "weight decay" in AdamW
 CLASS torch.optim.AdamW (params, $1 x=0.001$, betas=(0.9, 0.999), eps=1e-
08, weight_decay=0.01, amsgrad=False, *, maximize=False,
foreach=None, capturable=False, differentiable=False,
fused=None) [SOURCE]

Optimization Algorithm Comparison

| Algorithm | Tracks first moments (Momentum) | Tracks second moments
 (Adaptive
 learning rates) | Leaky second moments | Bias correction for moment estimates |
| :---: | :---: | :---: | :---: | :---: |
| SGD | \boldsymbol{X} | \boldsymbol{X} | \boldsymbol{X} | X |
| SGD+Momentum | \checkmark | X | X | X |
| Nesterov | \checkmark | \boldsymbol{X} | X | X |
| AdaGrad | \boldsymbol{X} | \checkmark | X | X |
| RMSProp | X | \checkmark | \checkmark | X |
| Adam | \checkmark | \checkmark | \checkmark | \checkmark |

In practice:

- Adam is a good default choice in many cases SGD+Momentum can outperform Adam but may require more tuning.
- If you can afford to do full batch updates then try out secondorder optimization (e.g., L-BFGS), and don't forget to disable all sources of noise

DEEPROG

Deppreso Neural Networks

D

Problem: Linear Classifiers aren't that powerful

Geometric Viewpoint

Visual Viewpoint

One template per class:
Can't recognize different modes of a class

One solution: Feature Transformation

Original space

RGB - HSV color space

Forming the HSI color model from the RGB color model

- Hue, Saturation, Value
- Nonlinear - reflects topology of colors by coding hue as an angle

DEEprers

Image Features: Color Histogram

Image Features: Color Quantization

Image Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction/strength at each pixel
2. Divide image into 8×8 regions
3. Within each region compute a histogram of edge direction weighted by edge strength

Example: 320×240 image gets divided into 40×30 bins;
9 directions per bin;
feature vector has $30 * 40 * 9=$ 10,800 numbers

Image Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction/strength at each pixel
2. Divide image into 8×8 regions
3. Within each region compute a histogram of edge direction weighted by edge strength

Weak edges
Strong diagonal edges

Edges in all directions
Capture texture and position, robust to small image changes

Example: 320x240 image gets divided into 40×30 bins;
9 directions per bin;
feature vector has $30 * 40 * 9=$ 10,800 numbers

Image Features: Histogram Equalization

Image Features: Bag of Words (Data-Driven!)

Step 1: Build codebook

Extract random patches

DEApren

Image Features: Bag of Words (Data-Driven!)

Step 1: Build codebook

Cluster patches to form "codebook" of "visual words"

Step 2: Encode images

Image Features

Example: Winner of 2011 ImageNet Challenge

Low-level feature extraction ≈ 10 k patches per image

- SIFT: 128-dims

Reduced to 64-dim with PCA

- Color:96-dim

FV extraction and compression:

- $N=1024$ Gaussians, $\mathrm{R}=4$ regions $\rightarrow 520 \mathrm{~K} \operatorname{dim} \times 2$
- Compression: $G=8, b=1$ bit per dimension

One-vs-all SVM learning with SGD
Late fusion of SIFT and color systems
DEEPREGO

Image Features vs Neural Networks

Image Features vs Neural Networks

Krizhevsky, Sutskever, and Hinton, "Imagenet classification with deep convolutional neural networks", NIPS 2012. Figure copyright Krizhevsky, Sutskever, and Hinton, 2012 Reproduced with permission.

10 numbers giving scores for classes
"Trained from data"
training

Neural Networks

Input: $x \in \mathbb{R}^{D}$
Output: $f(x) \in \mathbb{R}^{C}$

Rosenblatt's Perceptron

-A set of synapses each of which is characterized by a weight (which includes a bias).

- An adder
- An activation function (e.g., Rectified Linear Unit/ReLU, Sigmoid function, etc.)

$$
y_{k}=\phi\left(\sum_{j=1}^{m} w_{k j} x_{j}+b_{k}\right)
$$

Activation Function

Sigmoid

$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh

$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU $\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

DEEPREG

Neural Networks

Before: Linear Classifier:

$$
f(x)=W x+b
$$

Now: Two-Layer Neural Network:

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

DEEpreros

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Input: $x \in \mathbb{R}^{D} \quad$ Output: $f(x) \in \mathbb{R}^{C}$
Before: Linear Classifier: $f(x)=W x+b$
Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Feature Extraction

Linear Classifier

Now: Two-Layer Neural Network: $f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$ Learnable parameters: $W_{1} \in \mathbb{R}^{H \times D}, b_{1} \in \mathbb{R}^{H}, W_{2} \in \mathbb{R}^{C \times H}, b_{2} \in \mathbb{R}^{C}$

Or Three-Layer Neural Network:
$f(x)=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}\right)+b_{3}$
DENPRO家

Neural Networks - MLP

"Fully Connected"

Input layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Neural Networks - MLP

Before: Linear Classifier:

$$
f(x)=W x+b
$$

Now: Two-Layer Neural Network:

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Element (i, j) of

 W_{1} gives the effect on h_{i} from x_{j}Input: 3072

100

DEFpren
$x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Neural Networks - MLP

Before: Linear Classifier:

$$
\begin{aligned}
& f(x)=W x+b \\
& f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
\end{aligned}
$$

Now: Two-Layer Neural Network:

Element (i, j) of

 W_{1} gives the effect on h_{i} from x_{j}All elements of x affect all elements of h
 100

Element (i, j) of W_{2} gives the effect on s_{i} from h_{j}

All elements of h affect all elements of s

Fully-connected neural network also
"Multi-Layer Perceptron" (MLP)

Neural Networks

Linear classifier: One template per class

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Neural net: first layer is bank of templates; Second layer recombines templates

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Can use different templates to cover multiple modes of a class!

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Can use different templates to cover multiple modes of a class!

D

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

"Distributed representation": Most templates not interpretable!

DEEPROG

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Deep Neural Networks
Depth = number of layers

Maskprosb

Neural Net in <20 lines!

import numpy as np
import numpy as np
from numpy.random import randn
from numpy.random import randn
N, Din, H, Dout = 64, 1000, 100, 10
$x, y=r a n d n(N, \operatorname{Din}), ~ r a n d n(N, ~ D o u t)$
w1, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
$h=1.0 /(1.0+n p . \exp (-x \cdot \operatorname{dot}(w 1)))$
y_pred = h.dot(w2)
loss $=$ np.square(y_pred $-y) . s u m()$
dy_pred $=2.0 *\left(y _p r e d-y\right)$
dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)
$\mathrm{dw} 1=\mathrm{x} \cdot \mathrm{T} \cdot \operatorname{dot}(\mathrm{dh} * \mathrm{~h} *(1-\mathrm{h}))$
w1 -= 1e-4 * dw1
$\mathrm{w} 2-=1 \mathrm{e}-4 * \mathrm{dw} 2$

Feature Space Warping

D

Feature Space Warping

Classes not
linearly separable

Hidden layers do the hard work

feature space

Linear and non-linear
operations warp feature space
with learned parameters

DEEPR

Feature Space Warping

Consider a linear transform: $h=W x+$ b where x, b, h are each 2 -dimensional

Feature Space Warping

Consider a linear transform: $h=W x+$ b where x, b, h are each 2 -dimensional

Feature Space Warping

Consider a linear transform: $h=W x+$ b where x, b, h are each 2 -dimensional

Feature Space Warping

Points not linearly separable in original space

Consider a linear transform: $h=W x+$ b where x, b, h are each 2 -dimensional

Feature Space Warping

Points not linearly separable in original space

Consider a linear transform: $h=W x+$ b where x, b, h are each 2 -dimensional

Feature transform: $h=W x+b$
 separable in feature space

Feature Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature Space Warping
Points not linearly separable \quad Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ in original space

Feature Space Warping
Points not linearly separable \quad Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ in original space $\max (0, W x+b)$ where x, b, h are each 2-dimensional

Mal Lkpreob

Feature Space Warping

Points not linearly separable \quad Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ in original space $\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature Space Warping

Points not linearly separable in original space

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $\max (0, W x+b)$ where x, b, h are each 2-dimensional

Setting the number of layers and their sizes

D
More hidden units = more capacity

Don't regularize with size; instead use stronger L2

Web demo with ConvNetJS:
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
DEEPREG

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Example: $f(x)=x^{2}$ is convex:

D

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Example: $f(x)=x^{2}$ is convex:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Example: $f(x)=\cos (x)$ is not convex:

D

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Neural net losses sometimes look convex-ish:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

DEppresb
But often clearly nonconvex:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

With local minima:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Can get very wild!

DEEPR

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in$ [0,1],

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Most neural networks need nonconvex optimization

- Few or no guarantees about convergence
- Empirically it seems to work anyway
- Active area of research

Summary

Feature transform + Linear classifier allows nonlinear decision boundaries

Neural Networks as learnable feature transforms

Summary

From linear classifiers to fully-connected networks

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Input: 3072

Linear classifier: One template per class

Neural networks: Many reusable templates

Summary

From linear classifiers to fully-connected networks

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Input: 3072

Feature Space Warping

Nonconvex

W DEEpresob

