
Lecture 4
Neural Networks
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

Recap: Regularization

2

Loss Function

RegularizationData Loss

“LASSO regression”

“Ridge regression”

Recap: Regularization

3

Example:

Tend to shrink coefficients Evenly

Recap: Regularization

4

Loss Function

RegularizationData Loss

“LASSO regression”

“Ridge regression”

Useful for feature selection

How to find a good W*?

5

Optimization Gradient Descent
Numeric gradient:

approximate, slow, easy to
write

Analytic gradient: exact, fast,
error-prone

Recap: Optimization

6

SGD + Momentum

7Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Local Minima Saddle Points

Poor Conditioning

Gradient Noise

SGD + Momentum

8

Momentum update:

Velocity
Actual step

Combine gradient at current point
with velocity to get step used to
update weights

Nesterov Momentum

Velocity

Actual step

Gradient

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction

Gradient

AdaGrad

9

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

“Per-parameter learning rates” or “adaptive learning rates”

Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011

SGD in PyTorch

10Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011

train_dataloader =

torch.utils.data.DataLoader(train_dataset, batch_size=64,

shuffle=True)

optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

AdaGrad

11Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011

Progress along “steep” directions is damped;
progress along “flat” directions is acceleratedQ: What happens with AdaGrad?

Problem: AdaGrad will
slow over many iterations

RMSProp: “Leaky AdaGrad”

12

RMSProp

AdaGrad

Adam (almost): RMSProp + Momentum

13Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

Adam (almost): RMSProp + Momentum

14

Adam

Momentum

SGD+Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

Adam (almost): RMSProp + Momentum

15

Adam

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp

RMSProp

Adam: Very common in Practice!

18

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

AdamW: Decouple Weight Decay

19Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

“weight decay” in L2 regularization

“weight decay” in AdamW

Optimization Algorithm Comparison

21

In practice:

29

• Adam is a good default choice in many cases
SGD+Momentum can outperform Adam but may require
more tuning.

• If you can afford to do full batch updates then try out second-
order optimization (e.g., L-BFGS), and don’t forget to disable
all sources of noise

30

Neural Networks

Problem: Linear Classifiers aren’t that powerful

31

Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different modes of a
class

X

Y

One solution: Feature Transformation

32

(hand-crafted!)

RGB – HSV color space

33

Image Features: Color Histogram

34

Ignores texture,
spatial positions

Frog image is in the public domain

+1

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Image Features: Color Quantization

35

Image Features: Histogram of Oriented Gradients (HoG)

36

1. Compute edge
direction/strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge direction
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999
Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

Example: 320x240 image gets
divided into 40x30 bins;
9 directions per bin;
feature vector has 30*40*9 =
10,800 numbers

Image Features: Histogram of Oriented Gradients (HoG)

37

1. Compute edge
direction/strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge direction
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins;
9 directions per bin;
feature vector has 30*40*9 =
10,800 numbers

Weak edges

Strong diagonal edges

Edges in all directions

Capture
texture and
position,
robust to
small image
changes

Image Features: Histogram Equalization

38

Image Features: Bag of Words (Data-Driven!)

39Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005

Image Features: Bag of Words (Data-Driven!)

40

Image Features

41

Example: Winner of 2011 ImageNet Challenge

Low-level feature extraction ≈ 10k patches per image
• SIFT: 128-dims
• Color: 96-dim

FV extraction and compression:
• N=1024 Gaussians, R=4 regions → 520K dim x 2
• Compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

42F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.

} Reduced to 64-dim with PCA

Image Features vs Neural Networks

43

Feature Extraction

training

f
10 numbers giving
scores for classes

Image Features vs Neural Networks

44

Feature Extraction

training

f
10 numbers giving
scores for classes

training

10 numbers giving
scores for classes

“Trained from data”

Neural Networks

45

Input: ! ∈ ℝ!
Output: $(!) ∈ ℝ"

Rosenblatt's Perceptron

•A set of synapses each of which is
characterized by a weight (which includes
a bias).

•An adder

•An activation function (e.g., Rectified Linear
Unit/ReLU, Sigmoid function, etc.)

Activation Function

46

Neural Networks

47

Before: Linear Classifier: $(!) = (! + *
Now: Two-Layer Neural Network: $(!) = (#+,!(0,($! + *$) + *#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

Feature Extraction

Linear Classifier

Neural Networks

48

Input: ! ∈ ℝ! Output: $(!) ∈ ℝ"

Before: Linear Classifier: $(!) = (! + *
Learnable parameters: (∈ ℝ!×" , * ∈ ℝ"

Now: Two-Layer Neural Network: $(!) = (#+,!(0,($! + *$) + *#
Learnable parameters: ($ ∈ ℝ&×! , *$ ∈ ℝ& ,(# ∈ ℝ"×& , *# ∈ ℝ"

Or Three-Layer Neural Network:
$(!) = ('+,!(0,(#+,!(0,($! + *$) + *#) + *'

Neural Networks – MLP

49

“Fully Connected”

! !! !"ℎ #

Neural Networks - MLP

50

Before: Linear Classifier: $(!) = (! + *
Now: Two-Layer Neural Network: $(!) = (#+,!(0,($! + *$) + *#

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

Element (", $) of
&! gives the effect
on ℎ" from (#

Element (", $) of
&$ gives the effect
on)" from ℎ#

Input:
3072

Hidden Layer:
100

Output:10

! !! !"ℎ #

Neural Networks - MLP

51

Before: Linear Classifier: $(!) = (! + *
Now: Two-Layer Neural Network: $(!) = (#+,!(0,($! + *$) + *#

Element (", $) of
&! gives the effect
on ℎ" from (#

Element (", $) of
&$ gives the effect
on)" from ℎ#

All elements of (affect
all elements of ℎ

All elements of ℎ affect
all elements of)

Fully-connected neural network also
“Multi-Layer Perceptron” (MLP)

Input:
3072

Hidden Layer:
100

Output:10

Neural Networks

52

Linear classifier: One template per class
Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

53

Neural net: first layer is bank of templates;
Second layer recombines templates Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

54

Can use different templates to cover
multiple modes of a class! Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

55

Can use different templates to cover
multiple modes of a class! Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

56

“Distributed representation”: Most
templates not interpretable! Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Deep Neural Networks

57

! #! ℎ! #" ℎ" ## ℎ# #$ ℎ$ #% ℎ% #& "

Input:
3072

Output:10

& = %'()!(0,%(()!(0,%)()!(0,%*()!(0,%%()!(0,%"!)))))

Depth = number of layers

Width:
Size of
each
layer

Neural Net in <20 lines!

58

Input layer
Hidden layer

Output layer

Initialize weights
and data

Compute loss (Sigmoid
activation, L2 loss)

Compute gradients

SGD step

Feature Space Warping

59

Feature Space Warping

60

Feature Space Warping

61

!!

!"
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional

Feature Space Warping

62

!!

!"
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional

ℎ!

ℎ"
Feature transform:
ℎ = %& + (

Feature Space Warping

63

!!

!"

ℎ!

ℎ"A B

C

D
AB

C D

Consider a linear transform: ℎ = (! +
* where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ = %& + (

Feature Space Warping

64

!!

!"
Points not linearly separable

in original space
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional

Feature Space Warping

65

!!

!"

ℎ!

ℎ"
Points not linearly separable

in original space
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ = %& + (

Points still not linearly
separable in feature space

Feature Space Warping

66

!!

!"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

ℎ!

ℎ"
Feature transform:

ℎ
= &'()(#+ + -)

A
A

Feature Space Warping

67

!!

!"

ℎ!

ℎ"A
AB B

B is “collapsed”
onto +h2 axis

Consider a neural net hidden layer: ℎ = 0123((! + *) =
+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Feature Space Warping

68

!!

!"

ℎ!

ℎ"A
AB B

B is “collapsed”
onto +h2 axisD

D
D is “collapsed”

onto +h1 axis

Consider a neural net hidden layer: ℎ = 0123((! + *) =
+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Feature Space Warping

69

!!

!"

ℎ!

ℎ"A
AB B

B is “collapsed”
onto +h2 axisD

D
D is “collapsed”

onto +h1 axis
C C

C is “collapsed”
onto origin

Consider a neural net hidden layer: ℎ = 0123((! + *) =
+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Feature Space Warping

70

!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable
in original space

Feature Space Warping

71

!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable
in original space

Feature Space Warping

72

!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable
in original space

Points are linearly
separable in feature space!

Feature Space Warping

73

!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable
in original space

Points are linearly
separable in feature space!

Linear classifier in
feature space gives
nonlinear classifier in
original space

Setting the number of layers and their sizes

74

3 hidden units 6 hidden units 20 hidden units

More hidden units = more capacity

Don’t regularize with size; instead use stronger L2

75

* = 0.001 * = 0.01 * = 0.1

Web demo with ConvNetJS:
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Convex Functions

79

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Example: !(') = '# is
convex:

Convex Functions

80

Example: !(') = '# is
convex:

!! !"

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Convex Functions

81

Example: !(') = cos(') is
not convex: !"

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

!!

Convex Functions

82

Intuition: A convex function is a
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Convex Functions

83

Intuition: A convex function is a
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Neural net losses sometimes look
convex-ish:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Convex Functions

84

Intuition: A convex function is a
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

But often clearly nonconvex:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Convex Functions

85

Intuition: A convex function is a
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

With local minima:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Convex Functions

86

Intuition: A convex function is a
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Convex Functions

87

Intuition: A convex function is a
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Most neural networks need
nonconvex optimization
- Few or no guarantees about

convergence
- Empirically it seems to work

anyway
- Active area of research

Summary

88

Feature transform + Linear classifier
allows nonlinear decision boundaries

Neural Networks as learnable feature
transforms

Summary

89

From linear classifiers to
fully-connected networks

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

$(!) = (#+,!(0,($! + *$) + *#

Linear classifier: One template per class

Neural networks: Many reusable templates

Summary

90

From linear classifiers to
fully-connected networks

$(!) = (#+,!(0,($! + *$) + *#

Nonconvex

Feature Space Warping

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Lecture 4
Neural Networks
University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

