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Recap: Regularization
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Loss Function

RegularizationData Loss

“LASSO regression”

“Ridge regression”



Recap: Regularization
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Example:

Tend to shrink coefficients Evenly



Recap: Regularization
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Loss Function

RegularizationData Loss

“LASSO regression”

“Ridge regression”

Useful for feature selection



How to find a good W*?
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Optimization Gradient Descent
Numeric gradient: 

approximate, slow, easy to 
write

Analytic gradient: exact, fast, 
error-prone



Recap: Optimization
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SGD + Momentum

7Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Local Minima Saddle Points

Poor Conditioning

Gradient Noise



SGD + Momentum
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Momentum update:

Velocity
Actual step

Combine gradient at current point 
with velocity to get step used to 
update weights

Nesterov Momentum

Velocity

Actual step

Gradient

“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to get 
actual update direction

Gradient



AdaGrad
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Added element-wise scaling of the gradient based on the 
historical sum of squares in each dimension

“Per-parameter learning rates” or “adaptive learning rates”

Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011



SGD in PyTorch

10Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011

train_dataloader = 

torch.utils.data.DataLoader(train_dataset, batch_size=64, 

shuffle=True) 

optimizer = torch.optim.SGD(model.parameters(), lr=0.001)



AdaGrad

11Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011

Progress along “steep” directions is damped; 
progress along “flat” directions is acceleratedQ: What happens with AdaGrad?

Problem: AdaGrad will 
slow over many iterations



RMSProp: “Leaky AdaGrad”
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RMSProp

AdaGrad



Adam (almost): RMSProp + Momentum

13Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015



Adam (almost): RMSProp + Momentum
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Adam

Momentum

SGD+Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015



Adam (almost): RMSProp + Momentum
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Adam

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp

RMSProp



Adam: Very common in Practice!
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Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4 
is a great starting point for many models!



AdamW: Decouple Weight Decay

19Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

“weight decay” in L2 regularization

“weight decay” in AdamW



Optimization Algorithm Comparison
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In practice:

29

• Adam is a good default choice in many cases 
SGD+Momentum can outperform Adam but may require 
more tuning.

• If you can afford to do full batch updates then try out second-
order optimization (e.g., L-BFGS), and don’t forget to disable 
all sources of noise
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Neural Networks



Problem: Linear Classifiers aren’t that powerful
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Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different modes of a 
class

X

Y



One solution: Feature Transformation
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(hand-crafted!)



RGB – HSV color space
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Image Features: Color Histogram
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Ignores texture, 
spatial positions

Frog image is in the public domain

+1

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg


Image Features: Color Quantization
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Image Features: Histogram of Oriented Gradients (HoG)
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1. Compute edge 
direction/strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge direction 
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999
Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

Example: 320x240 image gets 
divided into 40x30 bins; 
9 directions per bin; 
feature vector has 30*40*9 = 
10,800 numbers



Image Features: Histogram of Oriented Gradients (HoG)
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1. Compute edge 
direction/strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge direction 
weighted by edge strength

Example: 320x240 image gets 
divided into 40x30 bins; 
9 directions per bin; 
feature vector has 30*40*9 = 
10,800 numbers

Weak edges

Strong diagonal edges

Edges in all directions

Capture 
texture and 
position, 
robust to 
small image 
changes



Image Features: Histogram Equalization
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Image Features: Bag of Words (Data-Driven!)

39Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005



Image Features: Bag of Words (Data-Driven!)
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Image Features

41



Example: Winner of 2011 ImageNet Challenge

Low-level feature extraction ≈ 10k patches per image
• SIFT: 128-dims
• Color: 96-dim

FV extraction and compression:
• N=1024 Gaussians, R=4 regions → 520K dim x 2
• Compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

42F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011. 

} Reduced to 64-dim with PCA



Image Features vs Neural Networks
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Feature Extraction

training

f
10 numbers giving 
scores for classes



Image Features vs Neural Networks
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Feature Extraction

training

f
10 numbers giving 
scores for classes

training

10 numbers giving 
scores for classes

“Trained from data”



Neural Networks
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Input: ! ∈ ℝ!  
Output: $(!) ∈ ℝ"  

Rosenblatt's Perceptron

•A set of synapses each of which is 
characterized by a weight (which includes 
a bias).

•An adder

•An activation function (e.g., Rectified Linear 
Unit/ReLU, Sigmoid function, etc.)



Activation Function
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Neural Networks
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Before: Linear Classifier:                             $(!) = (! + *
Now: Two-Layer Neural Network:               $(!) = (#+,!(0,($! + *$) + *#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#



Feature Extraction

Linear Classifier

Neural Networks
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Input: ! ∈ ℝ!  Output: $(!) ∈ ℝ"  

Before: Linear Classifier:  $(!) = (! + *
Learnable parameters: ( ∈ ℝ!×" , * ∈ ℝ"  

Now: Two-Layer Neural Network: $(!) = (#+,!(0,($! + *$) + *#
Learnable parameters: ($ ∈ ℝ&×! , *$ ∈ ℝ& ,(# ∈ ℝ"×& , *# ∈ ℝ"

Or Three-Layer Neural Network:
$(!) = ('+,!(0,(#+,!(0,($! + *$) + *#) + *'



Neural Networks – MLP
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“Fully Connected”



! !! !"ℎ #

Neural Networks - MLP
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Before: Linear Classifier:                             $(!) = (! + *
Now: Two-Layer Neural Network:               $(!) = (#+,!(0,($! + *$) + *#

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

Element (", $) of 
&! gives the effect 
on ℎ" from (#

Element (", $) of 
&$ gives the effect 
on )" from ℎ#

Input:
3072

Hidden Layer:
100

Output:10



! !! !"ℎ #

Neural Networks - MLP
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Before: Linear Classifier:                             $(!) = (! + *
Now: Two-Layer Neural Network:               $(!) = (#+,!(0,($! + *$) + *#

Element (", $) of 
&! gives the effect 
on ℎ" from (#

Element (", $) of 
&$ gives the effect 
on )" from ℎ#

All elements of ( affect 
all elements of ℎ

All elements of ℎ affect 
all elements of )

Fully-connected neural network also 
“Multi-Layer Perceptron” (MLP)

Input:
3072

Hidden Layer:
100

Output:10



Neural Networks
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Linear classifier: One template per class
Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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Neural net: first layer is bank of templates; 
Second layer recombines templates Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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Can use different templates to cover 
multiple modes of a class! Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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Can use different templates to cover 
multiple modes of a class! Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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“Distributed representation”: Most 
templates not interpretable! Before: Linear score function

! ∈ ℝ! ,%" ∈ ℝ#×! ,%% ∈ ℝ&×#

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:



Deep Neural Networks
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! #! ℎ! #" ℎ" ## ℎ# #$ ℎ$ #% ℎ% #& "

Input:
3072

Output:10

& = %'()!(0,%(()!(0,%)()!(0,%*()!(0,%%()!(0,%"!)))))

Depth = number of layers

Width: 
Size of 
each 
layer



Neural Net in <20 lines!
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Input layer
Hidden layer

Output layer

Initialize weights 
and data

Compute loss (Sigmoid 
activation, L2 loss)

Compute gradients

SGD step



Feature Space Warping
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Feature Space Warping
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Feature Space Warping
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!!

!"
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional



Feature Space Warping
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!!

!"
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional

ℎ!

ℎ"
Feature transform:
ℎ = %& + (



Feature Space Warping

63

!!

!"

ℎ!

ℎ"A B

C

D
AB

C D

Consider a linear transform: ℎ = (! +
* where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ = %& + (



Feature Space Warping
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!!

!"
Points not linearly separable 

in original space
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional



Feature Space Warping
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!!

!"

ℎ!

ℎ"
Points not linearly separable 

in original space
Consider a linear transform: ℎ = (! +

* where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ = %& + (

Points still not linearly 
separable in feature space



Feature Space Warping
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!!

!"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

ℎ!

ℎ"
Feature transform:

ℎ
= &'()(#+ + -)

A
A



Feature Space Warping
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!!

!"

ℎ!

ℎ"A
AB B

B is “collapsed”  
onto +h2 axis

Consider a neural net hidden layer: ℎ = 0123((! + *) =
+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)



Feature Space Warping
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!!

!"

ℎ!

ℎ"A
AB B

B is “collapsed”  
onto +h2 axisD

D
D is “collapsed”  

onto +h1 axis

Consider a neural net hidden layer: ℎ = 0123((! + *) =
+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)



Feature Space Warping
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!!

!"

ℎ!

ℎ"A
AB B

B is “collapsed”  
onto +h2 axisD

D
D is “collapsed”  

onto +h1 axis
C C

C is “collapsed”  
onto origin

Consider a neural net hidden layer: ℎ = 0123((! + *) =
+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)



Feature Space Warping
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!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable 
in original space



Feature Space Warping
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!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable 
in original space



Feature Space Warping
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!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable 
in original space

Points are linearly 
separable in feature space!



Feature Space Warping
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!!

!"

ℎ!

ℎ"
Consider a neural net hidden layer: ℎ = 0123((! + *) =

+,!(0,(! + *) where !, *, ℎ are each 2-dimensional

Feature transform:
ℎ

= &'()(#+ + -)

Points not linearly separable 
in original space

Points are linearly 
separable in feature space!

Linear classifier in 
feature space gives 
nonlinear classifier in 
original space



Setting the number of layers and their sizes
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3 hidden units 6 hidden units 20 hidden units

More hidden units = more capacity



Don’t regularize with size; instead use stronger L2
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* = 0.001 * = 0.01 * = 0.1

Web demo with ConvNetJS: 
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Convex Functions
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A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Example: !(') = '# is 
convex:



Convex Functions
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Example: !(') = '# is 
convex:

!! !"

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)



Convex Functions
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Example: !(') = cos(') is 
not convex: !"

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

!!



Convex Functions
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Intuition: A convex function is a 
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*



Convex Functions
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Intuition: A convex function is a 
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

Neural net losses sometimes look 
convex-ish:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss



Convex Functions
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Intuition: A convex function is a 
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

But often clearly nonconvex:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss



Convex Functions
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Intuition: A convex function is a 
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

With local minima:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss



Convex Functions
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Intuition: A convex function is a 
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss



Convex Functions
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Intuition: A convex function is a 
(multidimensional) bowl

A function !: # ⊆ ℝ! → ℝ is convex if for all '", '# ∈ #, * ∈
[0,1],

!(*'" + (1 − *)'# ≤ *!('") + (1 − *)!('#)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

Most neural networks need 
nonconvex optimization
- Few or no guarantees about 

convergence
- Empirically it seems to work 

anyway
- Active area of research



Summary
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Feature transform + Linear classifier 
allows nonlinear decision boundaries

Neural Networks as learnable feature 
transforms



Summary
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From linear classifiers to 
fully-connected networks

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10

$(!) = (#+,!(0,($! + *$) + *#

Linear classifier: One template per class

Neural networks: Many reusable templates



Summary
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From linear classifiers to 
fully-connected networks

$(!) = (#+,!(0,($! + *$) + *#

Nonconvex

Feature Space Warping

! !! !"ℎ #Input:
3072

Hidden Layer:
100

Output:10
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