

DeepRob

Lecture 3

Recap: Image Classification

PROPS dataset

Recap: Image Classification

4 (4)

1(1)

MNIST dataset

7(7)

8 (8)

2 (2)

Labels

0 (0)

1(1)

4		C
7	8	
2	7	

1(1)

Recap: K Nearest Neighbor

PROPS dataset

KNN Pseudocode

- 1. Load training and testing data
- 2. Choose Hyperparameters (K=?)
- 3. For each point (image) in test data:
 - find the distance to all training data points
 - store the distance and sort it
 - choose the first K points

assign a class to the test image based on the majority of the classes

KNN – Some things to note

- 1. Hyperparameters: choose from k_choices
- 2. Cross-validation (e.g., 5-fold validation)

First, split the data into folds torch.chunk Then, use all but one fold for train and one fold for validation

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

120

Problem—Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

 $2^{32X32} \approx 10^{308}$

K-Nearest Neighbors: Seldomly Used on Raw Pixels

Very slow at test time

Distance metrics on pixels are not informative

Original

Both images have same L2 distance to the original

Shifted

Tinted

Recap: Linear Classifier

Algebraic Viewpoint

Input image (2, 2)

f(x,W) = Wx

Stretch pixels into column

10

Recap: Linear Classifier

Visual Viewpoint

fish

Recap: Linear Classifier

Geometric Viewpoint

Training Data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Hyperplane

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} - b = 0$$

Recap—Linear SVM

What if there are misclassifications?

Hinge Loss (soft margin)

$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Training Data

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

Hyperplane $\mathbf{w}^{\mathrm{T}}\mathbf{x} - b = 0$

Maximize
$$\frac{2}{\|w\|} \rightarrow \text{Minimize } \frac{\|w\|}{2}$$

Back to SVM...

Loss Functions Quantify Preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

 $SVM: L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: How do we find the best W,b?

s = f(x; W, b) = Wx + bLinear classifier

Loss Functions Quantify Preferences

Q: Low or High regularization?

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: Low or High regularization?

 $+C \frac{\|w\|^2}{2}$

General Case: Adding Regularization Term

Simple examples:

Deepreob

<u>L2 regularization:</u> $R(W) = \sum W_{k,l}^2$ L1 regularization: $R(W) = \sum |W_{k,l}|$ k,l

Hyperparameter giving regularization strength

Regularization: Prevent the model from doing too well on training data

Regularization: Example

Regularization term causes loss to **increase** for model with sharp cliff

Regularization: Expressing Preference

$\begin{aligned} x &= [1,1,1,1] \\ w_1 &= [1,0,0,0] \end{aligned} \qquad \mbox{L2 Regularization} \\ R(W) &= \sum_{k,l} W_{k,l}^2 \\ w_2 &= [0.25,0.25,0.25,0.25] \end{aligned} \ \mbox{L2 Regularization prefers weights to be} \label{eq:w2}$

 $w_1^T x = w_2^T x = 1$

Same predictions, so data loss will always be the same

How to find a good W*?

$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$

Loss function consists of data loss to fit the training data and regularization to prevent overfitting

Optimization

W

$$v^* = \arg\min_{w} L(w)$$

The valley image and the walking man image are in CC0 1.0 public domain

DEEPROD

Idea #1: Random Search (bad idea!)

assume X train is the data where each column is an example (e.g. 3073 x 50,000) # assume Y train are the labels (e.g. 1D array of 50,000) # assume the function L evaluates the loss function bestloss = float("inf") # Python assigns the highest possible float value for num in xrange(1000): W = np.random.randn(10, 3073) * 0.0001 # generate random parameters loss = L(X train, Y train, W) # get the loss over the entire training set if loss < bestloss: # keep track of the best solution</pre> bestloss = loss bestW = Wprint 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss) # prints: # in attempt 0 the loss was 9.401632, best 9.401632 # in attempt 1 the loss was 8.959668, best 8.959668 # in attempt 2 the loss was 9.044034, best 8.959668 # in attempt 3 the loss was 9.278948, best 8.959668 # in attempt 4 the loss was 8.857370, best 8.857370 # in attempt 5 the loss was 8.943151, best 8.857370 # in attempt 6 the loss was 8.605604, best 8.605604 # ... (trunctated: continues for 1000 lines)

Idea #1: Random Search (bad idea!)

Assume X test is [3073 x 10000], Y test [10000 x 1] # find the index with max score in each column (the predicted class) Yte predict = np.argmax(scores, axis = 0) # and calculate accuracy (fraction of predictions that are correct) np.mean(Yte predict == Yte) # returns 0.1555


```
scores = Wbest.dot(Xte cols) # 10 x 10000, the class scores for all test examples
```

15.5 % accuracy on CIFAR-10! not bad but not great... (SOTA is ~95%)

Idea #2: Follow the slope

The valley image and the walking man image are in CC0 1.0 public domain

Idea #2: Follow the slope

"gradient descent"

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

derivatives) along each dimension

In 1-dimension, the **derivative** of a function gives the slope:

- In multiple dimensions, the gradient is the vector of (partial
- The slope in any direction is the **dot product** of the direction with the gradient. The direction of steepest descent is the negative gradient.

Current W:

Example:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33, ...] loss 1.25347

Current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33, …] loss 1.25347

Deepreob

W + h (first dim): [0.34 + **0.0001**, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33, ...] loss 1.25322

Gradient

 $\frac{dL}{dW}$

(1.25322 - 1.25347)/0.0001 = -2.5

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x+h)}{h}$$

Current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33, …] loss 1.25347

DeepRob

[0.34, -1.11 + **0.0001**, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33, ...] loss 1.25353

W + h (second dim):

dL dW Gradient [-2.5, 0.6, ?, ?, (1.25353 - 1.25347)/0.0001 = 0.6

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

with numerical gradient. This is called a gradient check.

11 11 11 sample a few random elements and only return numerical in this dimensions.

- In practice: Always use analytic gradient, but check implementation
- def grad check sparse(f, x, analytic grad, num checks=10, h=1e-7):

Computing Gradients

- Numeric gradient: approximate, slow, easy to write • Analytic gradient: exact, fast, error-prone

torch.autograd.gradcheck(func, inputs, eps=1e-06, atol=1e-05, rtol=0.001, raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0)

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs that are of floating point type and with requires_grad=True.

The check between numerical and analytical gradients uses allclose().

[SOURCE]

Computing Gradients

- Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

torch.autograd.gradgradcheck(*func*, *inputs*, *grad_outputs=None*, *eps=1e-06*, *atol=1e-*05, rtol=0.001, gen_non_contig_grad_outputs=False, raise_exception=True, nondet_tol=0.0)

inputs and grad_outputs that are of floating point type and with requires_grad=True.

correct.

- [SOURCE]
- Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in
- This function checks that backpropagating through the gradients computed to the given grad_outputs are

Gradient Descent

- Iteratively step in the direction of the negative gradient (direction of local steepest descent)
- # Vanilla gradient descent
 w = initialize_weights()
 for t in range(num_steps):
 dw = compute_gradient(loss_fn, data, w)
 w -= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent

- Iteratively step in the direction of the negative gradient (direction of local steepest descent)
- # Vanilla gradient descent
 w = initialize_weights()
 for t in range(num_steps):
 dw = compute_gradient(loss_fn, data, w)
 w -= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Batch Gradient Descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda R(W)$$

Full sum expensive when N is large!

+ $\lambda \nabla_W R(W)$

i

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda R(W)$$

Stochastic gradient descent w = initialize_weights() for t in range(num_steps): minibatch = sample_data(data, batch_size) dw = compute_gradient(loss_fn, minibatch, w) w -= learning_rate * dw

 $\lambda \nabla_W R(W)$

Full sum expensive when N is large!

Approximate sum using minibatch of examples 32/64/128 common

Hyperparameters:

- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Stochastic Gradient Descent (SGD)

 $L(W) = \mathbb{E}_{(x,y) \sim p_{data}}[L(x, y, W)] + \lambda R(W)]$ $\approx \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W)$

$$\nabla_{W} L(W) = \nabla_{W} \mathbb{E}_{(x,y) \sim p_{da}}$$
$$\approx \sum_{i=1}^{N} N \nabla_{W} L(x_{i}, y_{i}, W) + \sum_{i=1}^{N} \nabla$$

Think of loss as an expectation over the full data distribution Pdata

Approximate expectation via sampling

 $L(x, y, W)] + \lambda R(W)$

 $+ V_{w} \lambda R(W)$

Interactive Web Demo

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

0]	W[0,1]	b[0]		x [0]	x[1]	У	s[0]	s[1]	s[2]	L
30 17	2.00	0.00		0.50	0.40	0	1.95	-0.10	0.60	0.00
·	V	V		0.80	0.30	0	2.44	0.90	1.60	0.16
.0]	W[1,1]	ь[1]		0.30	0.80	0	2.29	-2.10	-0.40	0.00
00 12	-4.00 -0.61	0.50 -0.22		-0.40	0.30	1	-0.32	-1.50	-2.00	2.68
0]	▼ w[2,1]	▼ b[2]		-0.30	0.70	1	0.71	-2.90	-2.10	6.41
	A	A		-0.70	0.20	1	-1.21	-1.70	-2.80	1.49
12	0.32	-0.11		0.70	-0.40	2	0.81	3.50	2.00	2.50
	•	•	_	0.50	-0.60	2	-0.05	3.90	1.60	3.30
size: 0.09976				-0.40	-0.50	2	-1.92	1.70	-1.20	4.18
igle parameter update								•	mean:	
tart repeated update			Total data loss: 2.30 Regularization loss: 3.93					2.30		
top repeated update				Total loss: 6.23						

Randomize parameters

L2 Regularization strength: 0.10000

What does gradient decent do?

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another?

What does gradient decent do? Very slow progress along shallow dimension, jitter along steep

the Hessian matrix is large

- What if loss changes quickly in one direction and slowly in another?

Loss function has high condition number: ratio of largest to smallest singular value of

What if the loss function has a **local minimum** or **saddle point**?

What if the loss function has a **local minimum** or saddle point?

Zero gradient, gradient descent gets stuck

What if the loss function has a **local minimum** or **saddle point**?

Batched gradient descent always computes same gradients

SGD computes noisy gradients, may help to escape saddle points

SGD + Momentum

SGD

$$w_{t+1} = w_t - \alpha \nabla L(w_t)$$

for t in range(num_steps): dw = compute_gradient(w) w -= learning_rate * dw

SGD + Momentum $v_{t+1} = \rho v_t + \nabla L(w_t)$ $w_{t+1} = w_t - \alpha v_{t+1}$ v = 0for t in range(num_steps): $dw = compute_gradient(w)$ v = rho * v + dww = learning rate * v

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho = 0.9 or 0.99

SGD + Momentum

Poor Conditioning

Sutskever et al, "On the importance of initialization and momentum in deep learning," ICML 2013

SGD + Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Lecture 3

