L

!

! -
<. »
o

VL prrpRob

~ Lecture 3
- Regularization + Optimization
- University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

Recap: Image Classification

PROPS dataset

| btt,)ﬂ_a

Recap: Image Classification

Labels

4

MNIST dataset

I

f bzzzz,;[@

Recap: K Nearest Neighbor

PROPS dataset

| btt,;ﬂ_a

KNN Pseudocode

1. Load training and testing data

2. Choose Hyperparameters (K="?)

3. For each point (image) in test data:
find the distance to all training data points
store the distance and sort it

choose the first K points

assign a class to the test image based on the majority of the classes

End
f bzzzzf[@

KNN — Some things to note

. Hyperparameters: choose from k_choices

2. Cross-validation (e.g., 5-fold validation)

First, split the data into folds torch.chunk
Then, use all but one fold for train and one fold for validation

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

f bzzzzf[@

Setting Hyperparameters

Cross-validation on k

Example of 5-fold cross-validation for
the value of k.

Each point: single outcome.

The line goes through the mean, bars
indicated standard deviation

0 20 40 60 80 100 120

Problem—Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number
of training points needed grows exponentially with dimension

Dimensions =1
Points =4

—O0—O0—0—0—

' bf[@

Dimensions = 3

: — A3
Dimensions = 2 Points = 4
ite = 42 O O O O
Points = 4 o o o o -
O O O
O O O O O O O O oO
o~ O
O O O O O 0 O O OO
O
© O O O O O O O = O
O o
O O O O O O O O OOO
o o o o |°

232X32 10308

K-Nearest Neighbors: Seldomly Used on Raw Pixels

Very slow at test time

Distance metrics on pixels are not informative

Original Shifted Tinted

Both images have same L2 distance to the original

| bzzfn_a

Recap: Linear Classifier

Algebraic Viewpoint f(X,W) = WX

Stretch pixels into column

56
02 | -05 | 01 | 2.0 1.1 -96.8
231
1.5 | 1.3 | 21 | 0.0 4| 32 | = | 4379
24
L 0 | 025 02 | -0.3 1.2 61.95
Input image
(2,2) ?
W G4 b 3)

l bttf@ S 6)

Recap: Linear Classifier

Visual Viewpoint

master
chef cracker
can

| bzzP@

“stretch rows of W into images”

tomato
sugar soup mustard fish
can bottle can

gelatln meat large
can marker

0.2

-0.5

0.1

2.0

1.5

13

1.1

-96.8

2.1

0.0

.25

3.2

437.9

0.2

-0.3

61.95

11

Recap: Linear Classifier

Geometric Viewpoint

Sugar Pixel
Score (11, 11, 0)

Mug template

o
.0
*
-
L

on this line
+" Mug score

Increases
this way

Cracker
Score

Mug Score

- .

1Z£

Recap—Linear SVM

- L2
Training Data

(xlayl)v (x27y2)7 JRIEED (Xn,yn)

Hyperplane wix—b=0

l DiipReb §

What if there are misclassifications?

Hinge Loss (soft margin) Overfitting

L; = Zjiyi max(O, Sj — Sy, + 1)

| bttpﬂ_a

14

Back to SVM...

- L2
Training Data

(X17y1)7 (X27y2)7 JRICED (xnayn)

Hyperplane wix—b=0

.. 2
Maximize —— -~ Minimize !l
wl .

Rebb 15

Loss Functions Quantify Preferences

Q: How do we find the best W,b?

We have some dataset of (x, y)

We have a score function: s=f(;W,b) =Wx+Db
We have a loss function: Linear classifier

exp| Sy .
Softmax: L; = —log Ly‘) 14 -
Z] eXp(Sj) — lor}:uf(xi W) data loss ’—ll;—
= : e
SVM: Li — Zjiyi maX(O, Sj — Syl. + 1) Li|
1 Yi

| btzfﬂéa +7\@ y

Loss Functions Quantify Preferences

Q: Low or High regularization?

exp(sy,)

% exp(sj))
maX(O, Sj — Syi + 1)

Softmax: L; = —log(

SVM: Li — Zj;tYi

lw|"2
2

| bzz,;@ +C

E] l.
.o o [
»
- - - [il A
m N
‘ ..l [

Q: Low or High regularization?

17

General Case: Adding Regularization Term

1 N
L(W) = N lzzl L(f(x;, W), ;) +

Regularization: Prevent the model
from doing too well on training data

Hyperparameter giving
regularization strength

Data loss: Model predictions
should match training data

Simple examples:
L2 regularization: R(W) = Z Wz,
k.l

L1 reqularization: R(W) = Z | Wil
k.l

18

Regularization: Example

Example: Linear classifier with 1D

Inputs, 2 classes, and softmax loss

Loss = 2.05e-03
Accuracy = 1.0

— ply=0]x)
ply=1|x)
® xwith y=0
® xwithy=1

10 1

0.8 -

0.6 1

04 -

0.2 -

0.0 1

s; = wx + b,

exp(s;)
exp(sy) + exp(sy)
L=—- log(py) + Z W

Loss = 5.96e-03
Accuracy = 1.0

Pi =

— ply=0|x)
p(y=1|x)
® xwith y=0
® xwithy=1

10 A1

0.8 -

0.6 1

0.4 -

0.2 -

0.0 1

Regularization term causes

loss to Increase for model

with sharp cliff

Loss = 5.95e-01
Accuracy = 1.0

[e——

— ply=0|x)
ply=1|x)
® xwith y=0
e xwithy=1

@ P 00 O i
-4 -2 0 2 4
X

19

Regularization: Expressing Preference

X = [1,1’1,1] L2 Regularization
w, = [1,0,0,0] ROW) =), W},
k,l
W2 — [025,025,0259025] !C_SQp?eeagdulsL:iﬁation prefers weights to be
! T

wivy = wix = 1 nge predictions, so data loss
1 2 will always be the same

| bz;:,;[@ o

How to find a good W*?

1 N
LW) = —) Lo W3 + 2R(W)
=1

Loss function consists of data loss to fit the training
data and regularization to prevent overfitting

Optimization
w* = arg min L(w)

| btt,;ﬂ_a "

21

l bttf@ The valley image and the walking man image are in CCO 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/

D

ldea #1: Random Search (bad ideal)

assume X train 1s the data where each column 1s an example (e.g. 3073 x 50,000)

assume Y train are the labels (e.qg.

bestl

for num in xrange(1000):

W =

loss = L(X train, Y train, W) # get the loss over the entire training set

oss = float("inf") # Python assigns the highest possible float value

1D array of 50,000)
assume the function L evaluates the loss function

np.random.randn(10, 3073) * 0.0001 # generate random parameters

if loss < bestloss: # keep track of the best solution
bestloss

bestW = W

loss

print 'in attempt %d the loss was %f, best

pri
in
in
in
in
in
in

H H O O W H W W

in

=

nts:

attempt
attempt
attempt
attempt
attempt
attempt
attempt

h & W N N O

6

the
the
the
the
the
the
the

(trunctated:

loss
loss
loss
loss
loss
loss
loss

continues for

wWas
was
was
was
was
was
was

G 0 & © © & O

. 401632,
. 959668,
. 044034,
. 278948,
.857370,
. 943151,
. 605604,
1000 lines

best
best
best
best
best
best
best

%' % (num, loss, bestloss)

9.401632
8.959668
8.959668
8.
8
8
8
)

959668

.857370
.857370
. 605604

23

Seog
e
i
[s=
f |

ldea #1: Random Search (bad ideal)

scores = Wbest.dot(Xte cols) # I
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5 % accuracy on CIFAR-10!
not bad but not great... (SOTA is ~95%)

»

lde . Follow the slope

l bttf@ The valley image and the walking man image are in CCO 1.0 public domain

25

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/

ldea #2: Follow the slope

In 1-dimension, the derivative of a function gives the slope:

& _ S+ h) - f
-_— = 11
dX h—() h

In multiple dimensions, the gradient is the vector of (partial
derivatives) along each dimension

The slope In any direction is the dot product of the direction with the
gradient. The direction of steepest descent is the negative gradient.

Example:
Current W:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]
loss 1.25347

| bttfﬂg)

dL
Gradient gw
[?,
?,
?,
?,
?,
?,
?,
?,
?, ...

27

Current W:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]
loss 1.25347

P Reb

W + h (first dim):

10.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25322

dL
Gradient —

dW
2.5,
?,
?,
(1.25322 - 1.25347)/
0.0001
=-2.5
df s Jx+ h) — f(x)
— = unm -—
dx h—0 h
?,...]

Current W:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]
loss 1.25347

W + h (second dim):

10.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, ...]

loss 1.25353

| dL
Gradient —
dwW

-2.93,
0.6,

?,
?,
(1.25353 - 1.25347)/

0.0001
= 0.6

if _ lim fx+ h) — f(x)
dx h—0 h

29

DR

Computing Gradients

 Numeric gradient: approximate, slow, easy to write
* Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

def grad check sparse(f, x, analytic grad, num checks=10, h=le-7):

mmnn

sample a few random elements and only return numerical
in this dimensions.

mmnn

| bttpﬂ_a

30

DR

Computing Gradients

 Numeric gradient: approximate, slow, easy to write
* Analytic gradient: exact, fast, error-prone

toxrch.autograd.gradcheck (func, inputs, eps=1e-06, atol=1e-05, rtol=0.001,

, , [SOURCE] (9’
raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0)

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs
that are of floating point type and with requires_grad=True.

The check between numerical and analytical gradients uses allclose() .

l DiipReb)

DR

Computing Gradients

 Numeric gradient: approximate, slow, easy to write
* Analytic gradient: exact, fast, error-prone

toxrch.autograd.gradgradcheck (func, inputs, grad_outputs=None, eps=1e-06, atol=1e-
05, rtol=0.001, gen_non_contig _grad_outputs=False, raise_exception=True, [SOURCE]
nondet_tol=0.0)

Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in
inputs and grad_outputs that are of floating point type and with requires_grad=True.

This function checks that backpropagating through the gradients computed to the given grad_outputs are
correct.

l DiipReb)

bie

Gradient Descent

 |teratively step in the direction of the negative gradient (direction of local

steepest descent)

Vanilla gradient descent

w = initialize_weights()

for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate x dw

Hyperparameters:

- Weight initialization method
- Number of steps

- Learning rate

| bzl:,;ﬂ_sa

y W_2

Negative gradient
direction

Original W

33

bie

Gradient Descent

 |teratively step in the direction of the negative gradient (direction of local

steepest descent)

Vanilla gradient descent

w = initialize_weights()

for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate x dw

Hyperparameters:

- Weight initialization method
- Number of steps

- Learning rate

Final W

>

| bzl:,;ﬂ_sa

W_1

Original W

34

Batch Gradient Descent

Full sum expensive

1 N
LW) ==) Lx,y, W)+ AR(W) when N is large!
N =1

1 N
N =1

| DiipReb .

Stochastic Gradient Descent (SGD)

Full sum expensive

1 N
L(W) ==) L{x,y, W) + AR(W) when N is large!
N i=1

Approximate sum using
minibatch of examples

1 N
N i=1

32/64/128 common
Stochastic gradient descent Hyperparameters:
w = initialize weights() - Weight initialization
for t in range(num_steps): - Number of steps

minibatch = sample_data(data, batch_size)
dw = compute_gradient(loss_fn, minibatch, w)
w —= learning_rate *x dw

- Learning rate
- Batch size
- Data sampling

| bttfﬂg)

36

Stochastic Gradient Descent (SGD)

L(W) =E, V)~ps | L(x,y, W) + AR(W)] Think of loss as an expectation

over the full data distribution
pdata

Approximate expectation
via sampling

1 N
v D L(x,y;, W) + AR(W)
=1

Vi L(W) = VyEq ey [LGY, W] + AR(W)]
~) NV, L(x,y, W) + V, AR(W)
=1

| bz;:,;[@ -

Interactive Web Demo

W([(0,0) W[0,1] b[O]
A A A
2.30 || 2.00||0.00
-0.17(| 0.14 (| 0.33
v v v
W(1,0) wW(1,1] b([1]
A A A
2.00|(-4.00/| 0.50
0.42||=-0.61||=0.22
v v v
W([(2,0) W(2,1) b[2]
A A A
3.00(|-1.00| [-0.50
0.12 || 0.32||=0.11
v v v

Step size: 0.09976

Single parameter update

Start repeated update

Stop repeated update

Randomize parameters

x[0] x[1] s[0] s[1l] s[2] L
0.50 0.40 1.95 | |-0.10|| 0.60 0.00
0.80 0.30 2.44 0.90 1.60 0.16
0.30 0.80 2.29 [[-2.10| | -0.40 0.00
~0.40| | 0.30 -0.32| | -1.50(| =-2.00(§| 2.68
-0.30]] 0.70 0.71 | |-2.90(=-2.10 6.41
-0.70(| 0.20 -1.21| |-1.70((=-2.80 1.45
0.70 -0.40 0.81 3.50 2.00 2.50
0.50 -0.60 -0.05| | 3.90 1.60 3.30
-0.40| | -0.50 -1.92([1.70 [[=1.20 4.18
mean:
Total data loss: 2.30 230

Regularization loss: 3.93
Total loss:

L2 Regularization strength: 0.10000

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

| bttfﬂ_a

38

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient decent do?

e oo

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

f bzzzz,;[@

Problems with SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient decent do?
Very slow progress along shallow dimension, jitter along steep

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

| bttf[@

40

Problems with SGD

What if the loss function has a
local minimum or saddle point?

Saddle

Local
Minimum

| btt,;ﬂ_a

41

Problems with SGD

What if the loss function has a
local minimum or saddle point?

Saddle

Zero gradient, gradient descent gets stuck

| btt,)ﬂ_a

Local
Minimum

42

Problems with SGD

What if the loss function has a
local minimum or saddle point?

Batched gradient descent always
computes same gradients

SGD computes noisy gradients,
may help to escape saddle points

| btt,;ﬂ_a

Saddle

Local
Minimum

43

SGD + Momentum

SGD SGD + Momentum
W =w,—aV.L(w) Vi1 = PVt VLW
Wil = W — 0V

for t in range(num_steps):
dw = compute_gradient(w)
w == learning_rate x dw

v = 0

for t in range(num_steps):
dw = compute_gradient(w)
v = rho *x v + dw
w —= learning_rate *x v

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho = 0.9 or 0.99

lbttf@ y

SGD + Momentum

Gradient Noise

Local Minima Saddle Points

SN

Poor Conditioning

mmm SGD mm SGD+Momentum

Rebb
' bzzrh Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013 45

SGD + Momentum

Momentum update:

Velocity
ctual step

Gradient

Combine gradient at current point
with velocity to get step used to
update weights

| bttf@

Nesterov Momentum

lent

Velocity

Actual step

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction

46

L

!

! -
<. »
o

VL prrpRob

~ Lecture 3
- Regularization + Optimization
- University of Michigan | Department of Robotics

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org/

