

Lecture 2

Linear Classifiers
University of Michigan I Department of Robotics

DEEAR

Project 0

- Instructions and code available on the website
- Here: deeprob.org/w24/projects/project0/
- Due Thursday! January 18th, 11:59 PM EST
- Everyone granted 3 total late tokens for semester
- A penalty-free 24 hour extension

DEEPREG

Project 0 Suggestions

- If you choose to develop locally
- PyTorch Version 2.1.0
- Ensure you save your notebook file before uploading submission
- Close any Colab notebooks not in use to avoid usage limits

D

Project 1 Upcoming

- Instructions and code will be available on the website before Thursday's lecture
- Classification using K-Nearest Neighbors and Linear Models

DEEPR

Course Resources

- Everyone should have access to
- Course Website
- Piazza
- Gradescope
- If not, please contact Anthony!

D 郎preror

Enrollment

- Additional class permissions being issued
- Both sections (498 \& 599)
- Room capacity is 74
- If you are waitlisted and want to take the class, please email Xiaoxiao \& Anthony!

D

Recap: Image Classification-A Core Computer Vision Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar
Potato Chips
Water Bottle
Popcorn

D

Image Classification Challenges

Recap: Machine Learning - Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images
```
def train(images, labels):
    # Machine learning!
            return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```


First Classifier—Nearest Neighbor

```
def train(images, labels):
    # Machine learning!
    return model
```

def predict(model, test_images):
\# Use model to predict labels

Predict the label of the most similar return test_labels training image

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
    def __init__(self):
        pass
    def train(self, X, y):
        """ X is N x D where each row is an example. Y is l-dimension of size N ""
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y
    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
        # loop over all test rows
        for i in xrange(num test):
            # find the nearest training image to the i'th test image
            # using the Ll distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
        Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
    return Ypred
```

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)

This is a problem: we can train slow offline but need fast testing!

What does this look like? Examples on the PROPS Dataset

10 Nearest Neighbors from Training Set

Test Images
Unseen During Training

K-Nearest Neighbors Decision Boundaries

Using more neighbors helps smooth out rough decision boundaries

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

D 朗prere

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparemeters:
choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters:
choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Very problem-dependent.
In general need to try them all and observe what works best for our data.

Setting Hyperparameters

Idea \#1: Choose hyperparameters that
work best on the data
Your Dataset

D 㑒

Setting Hyperparameters

Idea \#1: Choose hyperparameters that work best on the data

BAD: $\mathrm{K}=1$ always works
perfectly on training data

Your Dataset

D

Setting Hyperparameters

Idea \#1: Choose hyperparameters that work best on the data

BAD: $\mathrm{K}=1$ always works
perfectly on training data

Your Dataset
Idea \#2: Split data into train and test, choose
hyperparameters that work best on test data

train	test

Setting Hyperparameters

Idea \#1: Choose hyperparameters that work best on the data

BAD: K = 1 always works
perfectly on training data
Your Dataset
Idea \#2: Split data into train and test, choose hyperparameters that work best on test data

> BAD: No idea how algorithm
will perform on new data

train	test

Setting Hyperparameters

Idea \#1: Choose hyperparameters that
work best on the data

BAD: $\mathrm{K}=1$ always works
perfectly on training data
Your Dataset
Idea \#2: Split data into train and test, choose hyperparameters that work best on test data

> BAD: No idea how algorithm
will perform on new data

train	test

Idea \#3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

train	validation	test

Setting Hyperparameters

Your Dataset

Idea \#4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1 fold 2 fold 3 fold 4 fold 5 test fold 1 fold 2 fold 3 fold 4 fold 5 test					

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

K-Nearest Neighbors with NN Features Works Well

Devlin et al., "Exploring Nearest Neighbor Approaches for Image Captioning", 2015.

Summary of Image Classification and K-NN

In image classification we start with a training set of images and labels, and must predict labels for a test set

Image classification is challenging due to the semantic gap:
we need invariance to occlusion, deformation, lighting, sensor variation, etc.
Image classification is a building block for other vision tasks
The K-Nearest Neighbors classifier predicts labels from nearest training samples
Distance metric and K are hyperparameters
Choose hyper parameters using the validation set; only run on the test set once at the very end!

Linear Classifiers

D 朗preng

Building Block of Neural Networks

Recall PROPS

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

10 classes
32x32 RGB images
50k training images (5k per class)
10k test images (1k per class)

Parametric Approach

Image

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)
$\longrightarrow f(x, W)$ W
parameters
or weights

10 numbers giving class scores

Parametric Approach—Linear Classifier

Image

$f(x, W)=W x$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)
$\mathrm{f}(\mathrm{x}, \mathrm{W})$

parameters
or weights

10 numbers giving class scores

Parametric Approach—Linear Classifier

10 numbers giving class scores

Array of $32 \times 32 \times 3$ numbers
(3072 numbers total)

Parametric Approach—Linear Classifier

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

D

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

DEEPREG

Linear Classifier—Algebraic Viewpoint

DEEPR

Linear Classifier—Bias Trick

Stretch pixels into column

DEEPR

Linear Classifier-Predictions are Linear

$$
\begin{aligned}
& f(x, W)=W x \quad \text { (ignore bias) } \\
& f(c x, W)=W(c x)=c * f(x, W)
\end{aligned}
$$

Linear Classifier-Predictions are Linear

$$
f(x, W)=W x \quad \text { (ignore bias) }
$$

$$
f(c x, W)=W(c x)=c * f(x, W)
$$

DEEPR

Interpreting a Linear Classifier

Algebraic Viewpoint

$$
f(x, W)=W x+b
$$

D 郎preror

Interpreting a Linear Classifier

Algebraic Viewpoint

$$
f(x, W)=W x+b
$$

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

DEEpres

Interpreting a Linear Classifier-Visual Viewpoint

Linear classifier has one "template" per category

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Interpreting a Linear Classifier-Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot capture multiple modes of the data
e.g. mustard bottles can rotate

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Interpreting a Linear Classifier-Geometric Viewpoint

$$
f(x, W)=W x+b
$$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

DEEprers

Interpreting a Linear Classifier-Geometric Viewpoint

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

D

Interpreting a Linear Classifier-Geometric Viewpoint

DEEprers

Interpreting a Linear Classifier-Geometric Viewpoint

Interpreting a Linear Classifier-Geometric Viewpoint

Interpreting a Linear Classifier-Geometric Viewpoint

Hyperplanes carving up a high-dimensional space

Hard Cases for a Linear Classifier

Class 1:

First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
1 <= L2 norm <= 2
Class 2:
Everything else

Class 1:
Three modes
Class 2:
Everything else

D K K prenole

Linear Classifier-Three Viewpoints

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Stretch pixels into column

So far-Defined a Score Function

(2.0.

$$
f(x, W)=W x+b
$$

Given a W, we can compute class scores for an image, x.

But how can we actually choose a good W?

So far-Choosing a Good W

Loss Function

A loss function measures how good our current classifier is
Low loss = good classifier
High loss = bad classifier
Also called: objective function, cost function

D 㑒

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier
High loss = bad classifier
Also called: objective function, cost function

Negative loss function sometimes called reward
function, profit function, utility function, fitness function, etc.

D 郎preror

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier
High loss = bad classifier
Also called: objective function, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

where x_{i} is an image and
y_{i} is a (discrete) label

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier
High loss = bad classifier
Also called: objective function, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

where x_{i} is an image and
y_{i} is a (discrete) label
Loss for a single example is

$$
L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier
High loss = bad classifier
Also called: objective function, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

where x_{i} is an image and

$$
y_{i} \text { is a (discrete) label }
$$

Loss for a single example is

$$
L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Loss for the dataset is average of per-example losses:

$$
L=\frac{1}{N} \sum_{i} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

cracker 3.2

mug $\quad 5.1$
sugar -1.7

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

cracker 3.2

$\begin{array}{ll}\text { mug } & 5.1\end{array}$

sugar -1.7

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

Unnormalized logprobabilities (logits)

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Probabilities
must be >=0
24.5
164.0
0.18

Unnormalized probabilities

Cross-Entropy Loss

Multinomial Logistic Regression

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

${ }^{281}=$

Unnormalized logprobabilities (logits)

Unnormalized probabilities

Probabilities must sum to 1

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax }
$$

Probabilities
must be $>=0$
must be $>=0$
24.5
164.0
0.18 \quad normalize

Unnormalized probabilities

Probabilities must sum to 1

$$
\begin{array}{|cl}
\hline 0.13 & \begin{array}{l}
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \\
0.87
\end{array} \\
\begin{array}{ll}
L_{i}=-\log (0.13) \\
0.00 & =2.04
\end{array} \\
\text { Maximum Likelihood Estimation } \\
\text { Probabilities } & \begin{array}{l}
\text { Choose weights to maximize the } \\
\text { likelihood of the observed data } \\
\text { (see EECS } 445 \text { or EECS } 545)
\end{array}
\end{array}
$$

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Probabilities
must be $>=0$
24.5
164.0
0.18

Unnormalized probabilities

Probabilities must sum to 1

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Probabilities
must be $>=0$

Unnormalized probabilities

Probabilities must sum to 1

$$
\text { Probabilities } \quad \sum_{y} P(y) \log \frac{P(y)}{Q(y)}
$$

Correct probabilities

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \quad \begin{aligned}
& \text { Softmax } \\
& \text { function }
\end{aligned}
$$

Probabilities
must be $>=0$
must be >=0
24.5
164.0
0.18

Unnormalized probabilities

Probabilities must sum to 1

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

mug 5.1

sugar -1.7

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$

Putting it all together
$L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

mug $\quad 5.1$
sugar -1.7

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$

Q: What is the min / max possible loss L_{i} ?

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

mug $\quad 5.1$
sugar -1.7

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$
Putting it all together
$L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$

Q: What is the min / max possible loss L_{i} ?

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

mug $\quad 5.1$
Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { Sunction }
\end{aligned}
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$

Q: If all scores are small random values, what is the loss?

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

mug 5.1

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$

Q: If all scores are small random values, what is the loss?

$$
\begin{aligned}
& \text { Putting it all together } \\
& L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { A }: & -\log \left(\frac{1}{C}\right) \\
& \quad \log \left(\frac{1}{10}\right) \approx 2.3
\end{aligned}
$$

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Highest score
among other classes
DEEPR

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9		

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1) \\
& =\max (0,2.9)+\max (0,-3.9) \\
& =2.9+0 \\
& =2.9
\end{aligned}
$$

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
& =\max (0,-2.6)+\max (0,-1.9) \\
& =0+0 \\
& =0
\end{aligned}
$$

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

D 朗prere
Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
\begin{aligned}
L_{i}= & \sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
= & \max (0,2.2-(-3.1)+1) \\
& +\max (0,2.5-(-3.1)+1) \\
= & \max (0,6.3)+\max (0,6.6) \\
= & 6.3+6.6 \\
= & 12.9
\end{aligned}
$$

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Loss over the dataset is:

$$
\begin{aligned}
\mathrm{L} & =(2.9+0.0+12.9) / 3 \\
& =5.27
\end{aligned}
$$

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to the loss if the scores for the mug image change a bit?

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
（ x_{i} is image，y_{i} is label）
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form：

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q2：What are the min and max possible loss？

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q3: If all the scores
were random, what loss would we expect?

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q4: What would happen if the sum were over all classes? (including $i=y_{i}$)

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q5: What if the loss used a mean instead of a sum?

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q6: What if we used this loss instead?

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)^{2}
$$

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What is cross-entropy loss? What is SVM loss?

D 余

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

D

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

DEEPR

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-entropy loss will decrease, SVM loss still 0

Recap-Three Ways to Interpret Linear Classifiers

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap-Loss Functions Quantify Preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

$$
s=f(x ; W, b)=W x+b
$$

Linear classifier

Softmax: $L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
SVM: $L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

DEEPR

Recap-Loss Functions Quantify Preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax: $L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
SVM: $L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Q: How do we find the best \mathbf{W}, b ?

$$
s=f(x ; W, b)=W x+b
$$

Linear classifier

Next time: Regularization + Optimization

Negative gradient direction

Lecture 2

Linear Classifiers
University of Michigan I Department of Robotics

DEEAR

