

Lecture 2 **Linear Classifiers**

Project 0

- Instructions and code available on the website
 - Here: <u>deeprob.org/w24/projects/project0/</u>
- Due Thursday! January 18th, 11:59 PM EST
- Everyone granted 3 *total* late tokens for semester
 - A penalty-free 24 hour extension

- If you choose to develop locally
 - **PyTorch Version 2.1.0**
- Ensure you save your notebook file before uploading submission
- Close any Colab notebooks not in use to avoid usage limits

Project 0 Suggestions

- Thursday's lecture

Calendar					
Week 1					
Jan 10:	DIS 0 PROJECT				
Jan 11:	LEC 1				
Week 2					
Jan 16:	LEC 2				
Jan 17:	DIS 1				
Jan 18:	LEC 3				
	PROJEC				

Project 1 Upcoming

Instructions and code will be available on the website before

Classification using K-Nearest Neighbors and Linear Models

Everyone should have access to

- <u>Course Website</u>
- Piazza
- <u>Gradescope</u>
- If not, please <u>contact Anthony</u>!

Course Resources

Enrollment

- Additional class permissions being issued
 - Both sections (498 & 599)
- Room capacity is 74
- If you are waitlisted and want to take the class, please email Xiaoxiao & Anthony!

Recap: Image Classification—A Core Computer Vision Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar

Potato Chips

Water Bottle

Popcorn

Viewpoint Variation & Semantic Gap

Image Classification Challenges

Illumination Changes

Intraclass Variation

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- Evaluate the classifier on new images 3.

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

Recap: Machine Learning—Data-Driven Approach

Example training s

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

First Classifier—Nearest Neighbor

Memorize all data and labels

Predict the label of the most similar training image

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
```

return Ypred

""" X is N x D where each row is an example. Y is 1-dimension of size N """

""" X is N x D where each row is an example we wish to predict label for """

min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min_index] # predict the label of the nearest example Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)

This is a problem: we can train slow offline but need fast testing!

What does this look like? Examples on the PROPS Dataset

10 Nearest Neighbors from Training Set

Test Images Unseen During Training

K-Nearest Neighbors Decision Boundaries

K = 1

Using more neighbors helps smooth out rough decision boundaries

What is the best value of *K* to use? What is the best **distance metric** to use?

Hyperparameters

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

These are examples of **hyperparemeters**: choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

These are examples of **hyperparameters**: choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Very problem-dependent. In general need to try them all and observe what works best for our data.

Idea #1: Choose hyperparameters that work best on the data

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Idea #1: Choose hyperparameters that work best on the data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train

BAD: K = 1 always works perfectly on training data

lest		test
------	--	------

Idea #1: Choose hyperparameters that work best on the data

Your

Idea #2: Split data into train and test, cl hyperparameters that work best on test data

train

BAD: K = 1 always works perfectly on training data

h	0	0	S	e
L		-	┻	_

BAD: No idea how algorithm will perform on new data

	test
--	------

Idea #1: Choose hyperparameters that work best on the data

Your

Idea #2: Split data into train and test, classical hyperparameters that work best on test

train

Idea #3: Split data into train, val, and te hyperparameters on val and evaluate of

train

BAD: K = 1 always works perfectly on training data

Dataset		
hoose t data	BA wil	D : No idea how algorithr I perform on new data
		test
e st ; choose n test	Bette	er!
	validation	test

Deeprob

Setting Hyperparameters

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

K-Nearest Neighbors with NN Features Works Well

Devlin et al., "Exploring Nearest Neighbor Approaches for Image Captioning", 2015.

- In **image classification** we start with a training set of images and labels, and must predict labels for a test set
- Image classification is challenging due to the semantic gap: we need invariance to occlusion, deformation, lighting, sensor variation, etc.
- Image classification is a **building block** for other vision tasks
- The K-Nearest Neighbors classifier predicts labels from nearest training samples
- Distance metric and K are hyperparameters
- Choose hyper parameters using the validation set; only run on the test set once at the very end!

Summary of Image Classification and K-NN

Linear Classifiers

Building Block of Neural Networks

Linear classifiers

This image is CC0 1.0 public domain

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

Recall PROPS

10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Parametric Approach

Array of **32x32x3** numbers (3072 numbers total)

W parameters or weights

→ f(x,W)

10 numbers giving class scores

Parametric Approach—Linear Classifier

Array of **32x32x3** numbers (3072 numbers total)

Parametric Approach—Linear Classifier

Image

Array of 32x32x3 numbers (3072 numbers total)

parameters or weights

(3072,) (10,) (10, 3072) + f(x,W)

10 numbers giving class scores

Parametric Approach—Linear Classifier

Image

Array of **32x32x3** numbers (3072 numbers total)

parameters or weights

(3072,) f(x,W) = Wx + b(10,) (10,) (10, 3072)**10** numbers giving ► f(x,W) class scores

Stretch pixels into column

Input image (2, 2)

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

(4,)

f(x,W) = Wx + b

Stretch pixels into column

Input image (2, 2)

0.2	-0.5	
1.5	1.3	
0	0.25	

W

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

Stretch pixels into column

Input image (2, 2)

0.2	-0.5	
1.5	1.3	
0	0.25	

Linear Classifier—Algebraic Viewpoint

Linear Classifier—Bias Trick

Stretch pixels into column

Add extra one to data vector; bias is absorbed into last column of weight matrix

DEEPROD

			56		
0.1	2.0	1.1			-96.8
2.4	0.0	2.2	231		407.0
2.1	0.0	3.2	24		437.9
0 2	-0.3	_1 7	24		61 05
0.2	-0.5	-1.2	2		01.95
(3,	5)				(3,)
			1	(5,)	

Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

Interpreting a Linear Classifier

Algebraic Viewpoint

f(x,W) = Wx + b

<u>Algebraic Viewpoint</u>

$$f(x,W) = Wx + b$$

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

tomato_soup_can potted_meat_can

master chef can

Deepreob

tomato soup can

mustard bottle

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

b

.25

-0.3

fish gelatin large meat box marker can can mug

Interpreting a Linear Classifier—Visual Viewpoint

Linear classifier has one "template" per category

	Stretch pixels into column				
56 231 24 2 Input image	0.2	-0.5	0.1	2.0	
	1.5	1.3	2.1	0.0	
	0	0.25	0.2	-0.3	
(2, 2)	(2, 2) W (3, 4)			4)	

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

W

b

.25

-0.3

-1.2

Interpreting a Linear Classifier—Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot can multiple modes of the dat

∖∔╻	Ir	\mathbf{a}		
וו	0.2	-0.5	0.1	2.0
	1.5	1.3	2.1	0.0
	0	0.25	0.2	-0.3
	W (3, 4)			

(2, 2)

Stretch pixels into column

e.g. mustard bottles can rotate

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

b

.25

-0.3

-1.2

Value of pixel (15, 8, 0)

Interpreting a Linear Classifier—Geometric Viewpoint

f(x,W) = Wx + b

Value of pixel (15, 8, 0)

Interpreting a Linear Classifier—Geometric Viewpoint

f(x,W) = Wx + b

f(x,W) = Wx + b

Mug score increases this way

f(x,W) = Wx + b

Mug score increases this way

ate e

f(x,W) = Wx + b

Mug score increases this way

Mug Score = 0

Mug score increases this way

> Mug Score = 0

Hyperplanes carving up a high-dimensional space

Plot created using Wolfram Cloud

Hard Cases for a Linear Classifier

Class 1: First and third	quadrants	Clas 1 <=
Class 2: Second and fo	urth quadrants	Clas Ever

ss 1:

= L2 norm <= 2

ss 2: rything else

Class 1: Three modes

Class 2: Everything else

Algebraic Viewpoint

f(x,W) = Wx

master chef cracker

fish can

Linear Classifier—Three Viewpoints

Plot created using Wolfram Clou

So far—Defined a Score Function

master chef can	-3.45	-0.51	3.42
mug	-8.87	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can	-0.36	-2.09	-4.79
large marker	-0.72	-2.93	6.14

f(x,W) = Wx + b

Given a W, we can compute class scores for an image, x.

But how can we actually choose a good W?

So far—Choosing a Good W

master chef can	-3.45	-0 51	3 12
			J•72
mug	-8.8/	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can	-0.36	-2.09	-4.79
large marker	-0.72	-2.93	6.14

6.14

$$f(x,W) = Wx + b$$

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- 2. Find a W that minimizes the loss function (**optimization**)

A loss function measures how good our current classifier is Low loss = good classifier High loss = bad classifier Also called: **objective function**, cost function

Loss Function

Low loss = good classifier

High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Low loss = good classifier

High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called **reward** function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Low loss = good classifier

High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called **reward** function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Low loss = good classifier

High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called **reward** function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Loss for the dataset is average of per-example losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Want to interpret raw classifier scores as **probabilities**

cracker 3.2 5.1 mug -1.7 sugar

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

cracker

mug

sugar

3.2

5.1

-1.7

DeepRob

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as probabilities

 $s = f(x_i)$

cracker mug

sugar

3.2 5.1 -1.7

Unnormalized logprobabilities (logits)

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

Probabilities must be >=0

24.5
164.0
0.18

Unnormalized probabilities

Unnormalized logprobabilities (logits)

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as **probabilities**

Probabilities must be >=0

> 24.5 164.0 0.18

Unnormalized probabilities

cracker 3.2 5.1

sugar

mug

-1.7 **Unnormalized** logprobabilities (logits)

 $exp(\cdot)$

(*W*)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
Probabilities
must sum to 1
0.13
0.87
0.00

Probabilities

Probabilities must be >=0

Unnormalized probabilities

Unnormalized logprobabilities (logits)

Want to interpret raw classifier scores as **probabilities**

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax} \\ \text{function} \\ \text{Probabilities} \\ \text{must sum to 1} \\ \textbf{0.13} \\ \textbf{0.13} \\ \textbf{0.87} \\ \textbf{0.87} \\ \textbf{0.00} \\ \textbf{0.00} \\ \textbf{0.00}$$

Probabilities

Want to interpret raw classifier scores as **probabilities**

Probabilities must be >=0

> 24.5 164.0 0.18

Unnormalized probabilities

cracker 3.2 5.1

sugar

mug

-1.7 **Unnormalized** logprobabilities (logits)

 $exp(\cdot)$

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
Probabilities
must sum to 1
 $L_i = -\log P(Y = y_i | X = L_i)$
 $L_i = -\log(0.13)$
 $L_i = -\log(0.13)$
 $= 2.04$
Maximum Likelihood Estimation

Probabilities

Choose weights to maximize the likelihood of the observed data

(see EECS 445 or EECS 545)

Want to interpret raw classifier scores as **probabilities**

Probabilities must be >=0

> 24.5 164.0 0.18

Unnormalized probabilities

cracker 3.2 5.1

sugar

mug

-1.7 **Unnormalized** logprobabilities (logits)

 $exp(\cdot)$

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
function
Probabilities
must sum to 1
0.13
0.87
0.00
Probabilities
Probabilities

Want to interpret raw classifier scores as **probabilities**

Probabilities must be >=0

> 24.5 164.0 0.18

Unnormalized probabilities

cracker 3.2 5.1

sugar

mug

-1.7 **Unnormalized** logprobabilities (logits)

 $exp(\cdot)$

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$
Probabilities must sum to 1
$$(O.13) \quad O.13 \quad \text{compare} \quad 1.0$$

$$(O.87) \quad \text{Kullback-Leibler} \quad 0.0$$

$$(O.00) \quad D_{KL}(P \quad Q) = 0.0$$
Probabilities
$$\sum_{y} P(y) \log \frac{P(y)}{Q(y)} \quad \text{Correct probabilities}$$

Want to interpret raw classifier scores as **probabilities**

Probabilities must be >=0

> 24.5 164.0 0.18

Unnormalized probabilities

cracker 3.2 5.1

sugar

mug

-1.7 **Unnormalized** logprobabilities (logits)

 $exp(\cdot)$

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$

Probabilities
must sum to 1
$$(0.13) \quad \text{compare} \quad 1.0$$

$$(0.13) \quad \text{Cross Entropy}$$

$$(0.00) \quad H(P, Q) = H(P) + D_{KL}(P \cap Q)$$

$$(0.00) \quad \text{Correct}$$

Probabilities

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

cracker 3.2 5.1 mug

-1.7 sugar

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1

-1.7 sugar

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1

-1.7 sugar

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

A: Min: 0, Max: $+\infty$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: If all scores are small random values, what is the loss?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: If all scores are small random values, what is the loss?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

A:
$$-\log(\frac{1}{C})$$

 $\log(\frac{1}{10}) \approx 2.3$

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{\substack{j \neq y_i \\ j \neq y_i}} \max(0, s_j - s_{y_i} + 1)$

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 5.1 - 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$ $= \max(0, 2.9) + \max(0, -3.9)$ = 2.9 + 0 = 2.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0 = 0

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 2.2 - (-3.1) + 1)$ +max(0, 2.5 - (-3.1) + 1) $= \max(0, 6.3) + \max(0, 6.6)$ = 6.3 + 6.6= 12.9

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Loss over the dataset is: L = (2.9 + 0.0 + 12.9) / 3 = 5.27

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: What happens to the loss if the scores for the mug image change a bit?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q2: What are the min and max possible loss?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q3: If all the scores were random, what loss would we expect?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q4: What would happen if the sum were over all classes? (including $i = y_i$)

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q5: What if the loss used a mean instead of a sum?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q6: What if we used this loss instead? $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- **Q**: What happens to each loss if I double the score of the correct class from 10 to 20?
- A: Cross-entropy loss will decrease, SVM loss still 0

Algebraic Viewpoint

f(x,W) = Wx

Plot created using Wolfram Clou

Recap—Three Ways to Interpret Linear Classifiers

- We have some dataset of (x, y)
- We have a score function:
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i})$

Recap—Loss Functions Quantify Preferences

s = f(x; W, b) = Wx + bLinear classifier

- We have some dataset of (x, y)
- We have a score function:
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Recap—Loss Functions Quantify Preferences

Q: How do we find the best W,b? s = f(x; W, b) = Wx + bLinear classifier

Next time: Regularization + Optimization

W_2

Negative gradient direction **Original W**

Lecture 2 **Linear Classifiers**

