

DEEDROB

Lecture 1 **Image Classification University of Michigan I Department of Robotics**

Welcome!

Candy

Table

Recap: Deep Learning for Robot Perception

Animal faces—or snouts? (

"Semantic Gap"

Input: image

[[183, 187, 189, 189, 188, 188, 189, 190, 186, 185, 189, 190, 187, 186, 183][185, 188, 189, 188, 188, 189, 191, 193, 187, 190, 191, 189, 186, 185, 185][186, 189, 189, 187, 187, 188, 189, 189, 192, 194, 189, 184, 182, 185, 187] [188, 188, 188, 190, 190, 189, 189, 190, 190, 189, 185, 184, 185, 188, 188][187, 187, 188, 192, 191, 189, 191, 193, 191, 186, 185, 189, 187, 187, 185] [186, 186, 189, 191, 190, 189, 190, 192, 191, 188, 190, 193, 186, 186, 184] [189, 186, 189, 192, 192, 190, 191, 193, 184, 188, 190, 192, 186, 187, 186] [191, 189, 189, 190, 189, 190, 190, 190, 183, 187, 186, 188, 187, 189, 188] [192, 194, 193, 189, 188, 193, 194, 191, 191, 192, 186, 186, 187, 186, 187] [190, 192, 193, 191, 191, 195, 194, 191, 191, 192, 188, 189, 189, 186, 188] [189, 188, 190, 189, 190, 189, 187, 187, 185, 190, 188, 189, 192, 192, 191] [191, 188, 187, 186, 188, 190, 189, 190, 186, 193, 190, 187, 194, 194, 192][194, 193, 189, 186, 189, 190, 191, 194, 192, 191, 192, 194, 194, 194, 188] [196, 196, 196, 193, 191, 190, 191, 195, 194, 191, 193, 194, 192, 190, 187] [194, 193, 194, 191, 188, 189, 190, 193, 193, 191, 193, 192, 190, 190, 190] [197, 194, 193, 191, 188, 189, 191, 192, 192, 192, 194, 192, 190, 193, 193] [202, 201, 202, 200, 196, 193, 192, 192, 190, 191, 194, 193, 191, 193, 193] [205, 206, 207, 206, 202, 198, 196, 194, 189, 190, 191, 192, 191, 191, 190] [207, 207, 204, 202, 199, 198, 199, 199, 195, 192, 192, 194, 193, 191, 190] [205, 203, 200, 200, 199, 196, 198, 202, 199, 194, 193, 195, 193, 191, 192], [199, 196, 196, 201, 205, 204, 202, 202, 199, 194, 192, 193, 191, 189, 192], [195, 194, 193, 196, 201, 205, 205, 203, 200, 196, 195, 195, 192, 190, 192], [194, 194, 193, 194, 196, 199, 202, 204, 201, 200, 200, 199, 196, 195, 196], [194, 193, 192, 195, 197, 199, 202, 204, 200, 203, 204, 202, 199, 200, 200] [199, 201, 201, 200, 200, 201, 201, 205, 202, 206, 207, 205, 203, 205, 203]]

What the computer sees

An image is just a grid of numbers between [0, 255]

An Image Classifier

Some magic here? return class_label

Unlike well defined programming (e.g. sorting a list)

No obvious way to hard-code the algorithm for recognizing each class

def classify_image(image):

Deep Learning – Representation Learning

• "Features"

Deep Learning - A Data-Driven Approach

- Collect a dataset of images + labels
- 2. Use ML/DL to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Image Classification Datasets—CIFAR10

airplane automobile 🌆 bird cat deer dog frog horse ship truck

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

- **10 classes**
- 32x32 RGB images
- **50k** training images (5k per class)
- **10k** test images (1k per class)

Image Classification Datasets—CIFAR100

100 classes 32x32 RGB images 50k training images (500 per class) **10k** test images (100 per class)

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, otter, seal, whale

Trees: maple, oak, palm, pine, willow

Image Classification Datasets—MNIST

Handwritten digits

10 classes: Digits 0 to 9
28x28 grayscale images
50k training images
10k test images

Due to relatively small size, results on MNIST often do not hold on more complex datasets

Image Classification Datasets—ImageNet

flamingo

ruffed grouse

quail

Egyptian cat

Persian cat Siamese cat

tabby

lynx

dalmatiar

keeshond

miniature schnauzer standard schnauzer giant schnauzer

Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, 2009. Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015

~1.3M training images (~1.3K per class) 50k validation images (50 per class) **100K** test images (100 per class)

Images have variable size, but often resized to **256x256** for training

*Performance metric: Top 5 accuracy Algorithm predicts 5 labels for each image, one must be right

Image Classification Datasets—PROPS

Progress Robot Object Perception Samples Dataset

DEEPROD

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

Image Classification Datasets—MIT Places

365 classes of different scene types ~8M training images

18.25K val images (50 per class)

328.5K test images (900 per class)

Images have variable size, but often resized to **256x256** for training

1 F+13 —			
1.2.10			
1.E+12 —			
1.E+11 —			
1.E+10 —			
1.E+09			
1.E+08		~15/1	
1.E+07	~47M	TJHI	
1.E+06 —			
	CIFAR10	CIFAR1	00
		PROPS	I

Classification Datasets—Number of Training Pixels

ImageNet Places365 ImageNet J

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

First Classifier—Nearest Neighbor

Memorize all data and labels

Predict the label of the most similar training image

Class: Mug

How do we tell the "similarity"

• Similarity/dissimilarity metrics

- \circ Euclidean distance: d_E
- City block distance: d_C
- Mahalanobis distance: ()
- Geodesic distance
- Cosine angle similarity: $\cos \theta = \frac{1}{|\mathbf{x}_1|}$

and many more...

$$= \sqrt{(\mathbf{x}_1 - \mathbf{x}_2)^T (\mathbf{x}_1 - \mathbf{x}_2)}$$
$$= \sum_{i=1}^d |x_{1i} - x_{2i}|$$
$$(\mathbf{x}_1 - \mathbf{x}_2)^T \Sigma^{-1} (\mathbf{x}_1 - \mathbf{x}_2)$$

Distance Metric to Compare Images

Example: L1 distance d

	test i	mage		 _
56	32	10	18	
90	23	128	133	
24	26	178	200	
2	0	255	220	

	10	20	
2	8	10	
	12	16	-
	4	32	2

$$\sum_{1} (I_1, I_2) = \sum_{p} |I_1^p - I_2^p|$$

pixel-wise absolute value differences

	46	12	14	1	
	82	13	39	33	add
	12	10	0	30	- 456
	2	32	22	<mark>108</mark>	

DEEPRE

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
```

return Ypred

Ypred[i] = self.ytr[min index] # predict the label of the nearest example

DEEPRE

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
```

```
def train(self, X, y):
  """ X is N x D where each row is an example. Y is 1-dimension of size N """
 self.Xtr = X
 self.ytr = y
```

```
def predict(self, X):
```

```
num test = X.shape[0]
# lets make sure that the output type matches the input type
```

```
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

```
return Ypred
```

the nearest neighbor classifier simply remembers all the training data Memorize training data

""" X is N x D where each row is an example we wish to predict label for """

DEEPRE

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
```

return Ypred

""" X is N x D where each row is an example we wish to predict label for """

Ypred[i] = self.ytr[min index] # predict the label of the nearest example

For each test image:

Find nearest training image

Return label of nearest image

DEEPRE

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
```

return Ypred

Ypred[i] = self.ytr[min index] # predict the label of the nearest example

Q: With N examples how fast is training?

A: O(1)

DEEPRE

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
```

return Ypred

Ypred[i] = self.ytr[min index] # predict the label of the nearest example

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)

DEEPRE

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
```

return Ypred

Ypred[i] = self.ytr[min index] # predict the label of the nearest example

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)

This is a problem: we can train slow offline but need fast testing!

DEEPRE

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
```

return Ypred

Ypred[i] = self.ytr[min index] # predict the label of the nearest example

There are many methods for fast / approximate nearest neighbors

e.g. github.com/facebookresearch/faiss

PROPS dataset is instance-level

CIFAR10 dataset is category-level

Nearest neighbors in two dimensions

Nearest neighbors in two dimensions

 X_1

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

Deepreob

Nearest neighbors in two dimensions

 X_1

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

Decision boundary is the boundary between two classification regions

Nearest neighbors in two dimensions

 X_1

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

DeepRob

Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

*X*₀

Nearest neighbors in two dimensions

 X_1

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

DeepRob

Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

How to smooth the decision boundaries? Use more neighbors!

DeepRob

take majority vote from K closest training points

K-Nearest Neighbors Classification

Instead of copying label from nearest neighbor,

K-Nearest Neighbors Classification

Using more neighbors helps smooth out rough decision boundaries

Using more neighbords between the effect of outliers

K-Nearest Neighbors Classification

Deeprob

classes.

Need to break ties somehow!

K-Nearest Neighbors Classification

DeepRob

classes.

Need to break ties somehow!

K-Nearest Neighbors Classification

K-Nearest Neighbors—Web Demo

Interactively move points around and see decision boundaries change

Observe results with L1 vs L2 metrics

Observe results with changing number of training points and value of K

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html (Google Colab

Lecture 1 **Image Classification University of Michigan I Department of Robotics**

