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Abstract—SORNet (Spatial Object-Centric Representation
Network) is a network architecture that takes an RBG image
with several canonical object views and outputs object-centric
embeddings. The authors of SORnet trained and tested on their
custom Leonardo and Kitchen datasets, as well as the CLEVR
dataset. We expanded SORnet’s capability by training it on
PROPS Dataset, which was extensively used throughout this
course. Training SORNet with PROPS dataset allow us to test its
capabilities to a real-world dataset in order to better understand
how it performs in real-life applications. Our Dataset and its
code can be found publicly at https://github.com/Jaldrich2426/
PROPS-Relation-Dataset, and a modification of the SORNet code
to run it can be found at https://github.com/Jaldrich2426/sornet

I. INTRODUCTION

There are a plethora of applications for robots that can
perform sequential tasks that involve manipulating objects
around them. These tasks can range from object assembly to
organizing and sorting to packing to much more. However, in
order to perform these tasks, robots need a way to recognize
the orientation of objects in the world frame and in relation
to each other.

Existing methods to address this issue exist, yet it is difficult
to derive precise estimations from unprocessed data. For ex-
ample, Model-based Sequential Manipulation [1], [2], [3], [4],
[5] attempts this estimation but experiences limitations based
on the ability of the state estimator due to it outputting explicit
object states. SORNet (Spatial Object-Centric Representation
Network) [6], a neural network backbone, was proposed to be
a more powerful solution to this problem.

SORNet is based on a Vision Transformer Model [7], where
it learns object-centric representations from RGB images. In
addition to encoding an image, the model encodes example
patches defining an object, referred to as canonical object
views, such that the network can be trained on relationships
between them. Specifically, after the encoding portion of
the model, SORNet maintains a series of readout networks,
which accept object embeddings to output predictions of their
relationships. These readout networks are trained on logical
predicates such as ”top is clear”, ”left of”, and ”behind”,
either defining an object’s properties or relations to another
object. By training on large sets of simulated data, SORNet
was able to achieve state-of-the-art classification accuracy in
these predicates.

One of SORNet’s limitations is the lack of training in
real-world data. SORNet provides accurate results in certain
training datasets like Leonardo or CLEVR (Compositional
Language and Elementary Visual Reasoning). However, due
to a lack of background noise, it provides significantly more
accurate outcomes than what may be seen in a real-world set-
ting. A second limitation is that it requires a high supervision
burden of labeling object relationships explicitly.

Our primary contribution was to train SORNet on PROPS
Dataset (Progress Robot Object Perception Samples) and col-
lect data on its accuracy and performance. Since PROPS im-
ages come from real-world settings, they offer a clearer picture
of SORNet’s potential performance in real-world scenarios. In
doing so, we generated a framework that is easily applicable
to other datasets with pose data. Lastly, the framework auto-
matically generates relationships for objects in a scene given
their pose data, reducing the burden of labeling.

II. RELATED WORK

Model-based Sequential Manipulation: A majority of the
work [1], [2], [3], [4], [5] utilizes a sequential, two-step
pipeline approach. The initial phase derives explicit object
states(e.g., bounding boxes or 6D poses), while the second
phase plans actions to achieve some goal state, given the
object states. These model-based systems are powerful at
reasoning and apply to many different tasks with various goal
conditions. Nevertheless, their effectiveness is contingent upon
the proficiency of the state estimator, which is often lacking.

End-to-end Manipulation: Knowing explicit object states
is not necessary for manipulation [8], [9], [10]. Motor controls
can be learned directly from raw sensor inputs, such as RGB
imagery and joint encoder data, thereby bypassing the stage of
object state estimation. End-to-end methods leverage powerful
neural network backbones that are able to extract low-level
embedding vectors from high-dimensional images and directly
optimize for downstream tasks. Although these techniques
avoid the reliance on object models and explicit states, they do
not have the notion of objects at all. As a result, they may lack
sophisticated reasoning capabilities and could be confined to
simpler scenarios involving only one or two objects and tasks
in a relatively short time.
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Learning Spatial Relations: In the field of 3D vision,
methods such as [11], [12], [13] have been developed to
predict both discrete and continuous pairwise object relations,
given 3D inputs such as point clouds or voxels representa-
tions. These methods, however, typically operate under the
assumption that the scene is fully observed and the objects
are segmented with identifiable features. In contrast, SOR-
Net’s approach does not make any assumptions regarding the
observability of the objects and does not require pre-processing
of the sensor data.

Visual Reasoning: SORNet’s architecture demonstrates the
capability to address spatial-reasoning tasks for novel object
instances without the need for separate segmentation or object
detection components. SORNet focuses on a relatively com-
plex manipulation task domain involving a manipulator in the
observations

III. ALGORITHMIC EXTENSION

Our algorithmic extension focuses on enhancing SORNet’s
current capabilities to work with real data. To achieve this, we
developed a class-based framework that enables the transfor-
mation of any dataset comprising scene images, identifiable
objects within those scenes, the three-dimensional coordinates
of each object’s center, and the ability to generate canonical
object views into a format compatible with SORNet’s infras-
tructure. A base class is provided to handle the majority of
the functions involving objects and predicates. It is intended
to be extended for individual datasets to assimilate the actual
scene images with the corresponding object information and
locations.

To handle canonical views of real data, a selection of
candidate images is automatically generated. A user will
then manually select an arbitrary number of images to keep,
indexing the ”best” one as zero for validation purposes. A
minimum of one image is needed as a canonical representation
of the object, but having more canonical representations of the
object will increase performance. During the evaluation phase,
for each object depicted in the scene, an image is selected: a
random image during the training phase, and the most suitable
or ”best” image when it comes time for evaluation. Examples
of these manually selected views are depicted in Figure 1

Fig. 1: PROPS Best Object Canonical Views

To obtain the relational data, images are parsed to obtain the
three-dimensional coordinates of each object’s center. These

coordinates are used to infer information about the objects
”left”, ”right”, ”back” and ”front” relations relative to the
camera’s coordinate frame. Since datasets often augment their
RGB images via a transform or some noise, these relations
cannot be pre-computed and must be calculated at runtime.
However, the operations are mostly binary and partially par-
allelizable, resulting in minimal performance decreases.

Additionally, our extension ensures consistent sizing of
object views and images, enabling the extraction and resizing
of image patches to meet the specific resolution input needs
of SORnet. The extension seamlessly integrated with SORNet,
enhancing its capacity to train and analyze across an extensive
array of real-world data.

IV. EXPERIMENTS AND RESULTS

To evaluate the dataset conversion framework and its ability
to hold up to real-world data, SORNet was fully retrained for
both the CLEVR dataset and PROPS dataset. Additionally,
as an example of this paper’s contribution, it was trained on
the PROPS Pose dataset, with the resulting dataset named
the PROPS Relation Dataset. An evaluation was performed
across both models’ final results and learning characteristics
to address SORNet’s ability to handle real-world data training.

A. Experimental Setup
To facilitate training on the PROPS dataset, the aforemen-

tioned dataset class was instantiated with logical predicates
calculated and saved per image, and formatted to retain object
naming conventions for readability. The class, along with
PROPS example usage and sample-generated data, are made
public at [14], and example usage with SORNet is shown at
[15]. Although the framework is easily overloaded to other
datasets with object center data, it was only evaluated on
the PROPS dataset for brevity. To demonstrate its utility,
predicates for whether objects were left, right, behind, or in
front of other objects were all automatically generated through
pose data.

To provide a fair comparison, the model for each dataset was
trained on near-identical hyper-parameters, with exceptions
only relating to dataset size and machine multi-threading
capabilities. Since the PROPS dataset has images at a higher
resolution (640 by 480 pixels compared to 480 by 320 pix-
els), a model was trained at each resolution. However, there
were significantly fewer images in the PROPS dataset, so its
model was trained for 80 epochs as opposed to CLEVR’s 40.
Additionally, images were sampled from the training set in
identical batch sizes - 32 images at a time. After Each epoch,
the models were evaluated against their respective validation
sets, recording the accuracies depicted in Figures 2 and 3.
Lastly, attempts were made to fine-tune the resulting model
from CLEVR onto the PROPS dataset, however, the initial
accuracy was on par with random guessing, resulting in only
complete training being used.

B. Results
Overall, SORNet demonstrated capabilities to learn real-

world data, but could not share an inference with a separate



set of simulated objects. As demonstrated by Figures 2-6
and Table I, each model individually achieved over 99%
training and validation accuracy once converged. Due to the
sharp contrast in objects, the model sets were incompati-
ble with each other, scoring around 50% in each logical
predicate, or effectively behaving randomly. Relative to the
number of batches until convergence, it can be noted that
the full-size PROPS dataset took roughly 200 batches (12-13
epochs) before any significant accuracy improvements, while
the CLEVR set had a noticeably less drastic curve, improving
within a single epoch (2187 batches). Of note as well, the
downscaled version took twice as long to achieve significant
improvements, demonstrating the level at which the model can
learn the fine details in the objects.

The behavior differences in CLEVR and PROPS could in
part be due to PROPS’s smaller dataset, but is likely also
due to the inherently larger amount of noise associated with
real-world datasets. In particular, even the canonical object
views sometimes had snippets of other objects in them, making
learning an accurate embedding vector per object harder for
the network. The network also converged in many fewer
iterations, by nearly an order of magnitude, demonstrating that
SORNet can scale to smaller object datasets relatively easily,
even when there are fewer training images. Regardless, given
enough time, the network prevailed, generating high-quality
results.

Additionally, concerning the objects in the PROPS dataset
itself, SORNet performed comparably across the board. An-
alyzing Table I, complete accuracy averages for relations
involving the sugar box were the best at 99.36%, followed
by the gelatin box, with the large marker the worst at 98.98%,
barely beating out the master chef can at 98.99%. When
analyzing their respective best canonical views in Figure 1, the
master chef can’s low accuracy could potentially be attributed
to the presence of multiple objects at the same size of the can,
as opposed to the smaller objects in the cracker box canonical
view, or the other remaining views that are nearly free from
other objects. The large marker is also quite small relative to
the other objects, potentially introducing some errors as well.
On the other side, the gelatin and sugar boxes have a very
well-defined canonical object view, driving the importance of
the quality of canonical object views.

V. CONCLUSIONS

To summarize, SORnet (Spatial Object-Centric Representa-
tion Network) demonstrated performance in learning object-
centric representations from RGB images and has shown
strong performance on datasets such as Leonardo, Kitchen,
and CLEVR. However, the real-world application of SORNet
was uncertain due to its initial training on simulated datasets,
which lack details available in natural environments. Our work
addresses this gap by training SORNet on a more challenging
and noisy dataset, the PROPS (Progress Robot Object Per-
ception Samples) dataset. SORNet demonstrated the ability to
learn real-world data, but could not share an inference with a
separate set of simulated objects. We demonstrate that SORnet

Fig. 2: CLEVR Dataset Results. Only the first 10,000 batches
are shown for training to highlight early trends

Fig. 3: PROPS Full Resolution Dataset Results



Fig. 4: PROPS Box Item Query

Fig. 5: PROPS Canned Item Query

Master
Chef Can

Cracker
Box

Sugar
Box

Tomato
Soup Can

Mustard
Bottle

Tuna
Fish Can

Gelatin
Box

Potted
Meat Can Mug Large

Marker Average

Master Chef Can - 99.30 99.77 98.80 98.90 98.77 98.65 99.20 99.15 98.85 99.04
Cracker Box 99.10 - 99.37 99.80 99.20 99.39 98.54 98.70 99.55 98.3000 99.11
Sugar Box 99.20 99.14 - 99.09 99.37 98.89 99.75 99.32 99.54 99.20 99.28

Tomato Soup Can 98.40 99.65 99.26 - 99.40 98.87 98.86 99.60 99.00 99.15 99.13
Mustard Bottle 99.30 98.90 99.26 99.90 - 98.87 99.68 98.95 98.55 98.95 99.15
Tuna Fish Can 98.98 99.28 99.41 98.98 97.95 - 99.11 99.13 98.98 99.28 99.01

Gelatin Box 99.19 99.40 99.88 99.51 99.89 99.33 - 98.81 99.78 99.03 99.43
Potted Meat Can 99.20 98.70 99.03 99.75 98.30 99.38 98.81 - 98.90 98.20 98.92

Mug 98.80 99.45 99.49 98.80 98.70 98.92 99.51 99.65 - 99.45 99.20
Large Marker 98.30 98.10 99.43 99.20 98.95 99.23 99.24 99.20 99.55 - 99.03

Average 98.94 99.10 99.43 99.31 98.96 99.08 99.13 99.17 99.22 98.93 99.13

Complete Average 98.99 99.10 99.36 99.22 99.06 99.04 99.28 99.05 99.21 98.98

TABLE I: Full Size PROPS Data Validation Accuracy Percentages for all Relationships. The row is object 1 in the relationship,
the column is object 2 in the relationship. The complete average is the average over the object’s row and column, as SORNet
treats the first and second patches differently.



Fig. 6: PROPS Downsized Resolution Dataset Results

was able to output highly accurate predictions given enough
training time, across all objects within the dataset. One of
the limitations of SORNet we identified, but did not address,
includes its inability to handle conflicting answers to a query
(multiple of the same object in different locations). Regardless,
the PROPS Relation Dataset and our modified SORNet code
contribute to the community, offering opportunities for further
research and refinement of SORNet’s capabilities. Future work
could focus on addressing the limitations related to dataset
compatibility, applying our framework to other datasets, or ex-
ploring the effects of incremental learning or transfer learning
techniques to bridge the gap between simulated and real-world
data. The progress made on SORNet with the PROPS Dataset
is a promising step towards more complex robotic perception
systems that can interact with a dynamically changing real
world.
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