
OD-VOS: Object Detection for Video Object
Segmentation

Omer Benharush
University of Michigan

Ann Arbor, MI
omerb@umich.edu

Sarah Chan
University of Michigan

Ann Arbor, MI
sjchan@umich.edu

Jack Kernan
University of Michigan

Ann Arbor, MI
jrkernan@umich.edu

Max Rucker
University of Michigan

Ann Arbor, MI
mruck@umich.edu

Abstract—Video object segmentation (VOS) often requires
manual intervention for selecting object masks, which can
be impractical for various applications in robotics. In our
project, OD-VOS, we propose a novel approach that integrates
Vision Transformer for Open-World Localization (OWL-ViT)
with XMem. OWL-ViT is an object detection network that
can identify objects based on text queries, and XMem is a
VOS framework which efficiently stores memory inspired by the
Atkinson-Shiffrin memory model. OD-VOS uses OWL-ViT to
automate the mask selection process for XMem. Our method
eliminates the need for manual mask selection, thus streamlin-
ing the segmentation pipeline and reducing human effort. By
automating the mask selection process, our framework enhances
the applicability of VOS techniques. The project page is available
at: https://deeprob.org/w24/reports/group8. The code is available
at: https://github.com/jrkernan/ROB498FinalProject-XMem.

I. INTRODUCTION

VOS is a computer vision task that involves separating
specific objects of interest from the background in a video
sequence. Contrary to traditional image segmentation, which
involves static images, VOS focuses on segmenting objects
across multiple frames in a video.

XMem is a VOS model which addresses the complications
of memory constraints in other VOS techniques. Unlike tradi-
tional VOS methods, XMem leverages a memory mechanism
to store and retrieve information from previous frames. This
memory mechanism allows the model to learn and remember
object appearances and motion patterns over time, facilitating
accurate and consistent segmentation results. By incorporating
contextual information from past frames, XMem enhances the
model’s ability to handle long-term dependencies, ensuring
robust performance across varied video lengths. Additionally,
XMem’s efficient memory utilization significantly reduces
computational resources needed for traditional VOS models
[1].

The traditional approach to VOS involves supervised mask
selection where the user is required to manually select the
object they wish to track. One disadvantages of this is the re-
quirement of human intervention, which leads to an inefficient,
time consuming process to run VOS models. This prevents
usage of VOS in applications which require object tracking in
real-time.

Google’s OWL-ViT is a query-based object detection model
that uses Vision Transformers (ViT). The model allows users to

Fig. 1. An example of OD-VOS being used to mask a video with a baby and
a puppy.

enter names of objects and the model will identify the objects
and create a bounding box around them. [2].

To address the limitation of supervised mask selection in
XMem, we created OD-VOS. By integrating the query based
input from OWL-ViT into the GUI for XMem, OD-VOS
presents a streamlined process for running the XMem model.
The user is now only required to type the name of one or
multiple objects they would like XMem to track. OD-VOS
uses OWL-ViT to detect the location of the object(s) indicated
by the user which feed into the XMem interactive GUI. This
is beneficial because it promotes real-time processing of video
streams, enabling OD-VOS to be used in robotics applications
such as video surveillance and autonomous navigation, where
timely analysis is crucial.

In this report, we will discuss existing work relating to VOS,
our findings from reproducing the XMem model, our method
for integrating OWL-ViT with XMem, and final remarks and
ideas for future work.

II. RELATED WORK

Referring video object segmentation (R-VOS) is a method
of supervised VOS which uses language expressions. The goal
of R-VOS is to be able to use language queries to identify and
segment objects in a video. Some previous R-VOS models
include GLEE [3], DsHmp [4], and ReferFormer [5].

GLEE [3] provides an object-level for object detection in
images and videos. Its particularly strong aspects include its
ability to handle multi-modal (video, image, and query) inputs
and its zero-shot capabilities. DsHmp [4] focuses on improving

https://deeprob.org/w24/reports/group8
https://github.com/jrkernan/ROB498FinalProject-XMem


VOS by separating the perception of static elements from
hierarchical motion language cues. ReferFormer [5] offers a
more user-friendly version of VOS which interprets natural
language queries, allowing the user to provide more descriptive
context for the object they would like to mask, similar to our
project.

However, the existing R-VOS models were not designed to
handle long videos. They struggle with scalability which hin-
ders their ability to provide accurate and reliable segmentation
results over the entire length of long videos. This limitation
undermines the utility of R-VOS in real-world applications
where users need to analyze and track objects across lengthy
sequences. We aim to develop a model that can input language
cues for VOS while also performing well across diverse video
lengths.

III. ALGORITHMIC RECREATION

For the start of this project, we had to recreate and im-
plement XMem for our video object segmentation. XMem is
a VOS algorithm specifically designed for long-term videos,
leveraging an architecture similar to the Atkinson-Shiffrin
memory model having sensory, working, and long-term mem-
ory. Each of these three pieces of memory work together to
influence the masking of the selected object while keeping
memory usage minimal. The architecture of XMem can be
split up into two main sections: feature extraction and memory
storage. A high-level overview can be seen in Figure 2.

A. Feature Extraction

Feature extraction is how XMem identifies objects in each
video frame. The architecture of this section includes the
encoders, query, readout features, and decoder. The encoder is
based on the Resnet-50 model that reads in the current frame
and sends that to the query (q) which is another convolutional
neural network to extract the features from the current frame.
Once the current features are extracted, they are then combined
with the features saved in the working and long-term memory.
These saved features are extracted using a key-value pairing
to call upon each piece of memory. Once combined, the
feature combination is sent as the readout features (F ) which
is decoded along with the sensory memory and upscaled to
create the output mask.

B. Memory Storage

After the mask is created, each memory system has to be
updated accordingly. The sensory memory is the first to be
updated. This is done by taking the output mask and running
it through a Resnet-18 encoder. Once encoded, the data is
passed through a Gated Recurrent Unit (GRU) to create the
sensory memory model that is used in the decoder to create
the mask. This is updated every frame as a sort of short-term
memory, but is reset every r frames to avoid holding onto
sensory information too long. Additionally, every r frames the
mask from the current frame is saved to the working memory.
This gives the model a longer memory than just sensory,

Fig. 2. XMem Architecture overview. Describes how sensory, working, and
long-term memory interact to create the VOS mask.

providing the feature detector with relevant information from
older frames.

Once the working memory is filled up over time and reaches
it’s maximum capacity, it moves frames into the long-term
memory. These are chosen based on how often the memory
gets called upon for the feature detection. The frames that get
used the most, aka the more important memories, are removed
from working memory and then inserted into the long-term
memory.

Lastly, the long-term memory will continue to increase until
it is full, where it will start removing the least called-upon
values and deleting them entirely from the memory bank.

IV. RECREATION EXPERIMENTS AND RESULTS

A. Recreation Experimental Setup

To evaluate the recreation of XMem we tested our version
on three datasets that XMem was initially tested on. These
three datasets include hand-crafted image masks as ground
truth to evaluate the masks created by VOS algorithms. Two
datasets come from the densely annotated video segmentation
(DAVIS) 2016 [6] and 2017 [7] datasets, along with one
other dataset that is a significantly longer video [7]. The long
video was used twice for testing, once with the regular video
along with another version of the video that loops three times.
To quantitatively evaluate the differences in the masking,
the Jaccard index J , contour accuracy F , and the average
of both J&F are calculated for each dataset and compared
against previous VOS methods, including the results of XMem
described in the original paper.

The Jaccard index J is defined as the intersection over the
union between the predicted and the ground truth mask. This
essentially describes quantitatively the amount of mislabeled
pixels by the predicted masks. The equation is defined as:

J =
|A

⋂
B|

|A
⋃

B|
(1)

The contour accuracy F is a function that describes the F-
accuracy and is comprised of the precision Pc and recall Rc

of the predicted masks against the ground truth masks. This
describes the precision of the predicted masks. The equation
is defined as:

F =
2PcRc

Pc +Rc
(2)

For the recreation, we ran our recreation on an NVIDIA
GTX 4090 and used the vos-benchmark [8] script provided in



Fig. 3. This is a figure showing a section of the GUI. The red box highlights
the additions we made for the algorithmic extension.

the paper to calculate J , F , and J&F . This script automati-
cally calculates each term using the output masks from each
VOS algorithm and the hand-crafted masks.

B. Results

In table I, we can see the results of our recreation as well as
previous VOS methods. From these results, we can see that our
recreation of XMem is true to the original results provided in
the XMem paper. XMem consistently performs better across
all datasets when compared to other algorithms, even when
tested on shorter videos. We can see that our method has
results within ±0.1% of the results from the original paper.

V. ALGORITHMIC EXTENSION

As previously mentioned, one limitation of VOS is the fact
that on the first frame of the video, the user has to manually
select the objects to be tracked. Our algorithmic extension
to the XMem paper seeks to improve this aspect of VOS
by allowing users to simply type the name of the objects
looking to be tracked. This simplifies the user experience,
automatically masking the objects that are entered into the
text box.

Google’s OWL-ViT provided the exact functionality we
were looking for. To integrate OWL-ViT with XMem we
started with the XMem code-base which was provided in the
paper. In order to demonstrate their model, the authors of the
XMem paper, Ho Kei Cheng and Alexander G. Schwing, used
a VOS GUI developed by Cheng and a couple other reseachers
for a previous paper on Modular interactive VOS (MiVOS) [9].
This GUI retains the ”interaction-to-mask” module for object
detection given a user input and replaces the propagation
module with XMem, allowing users to demo XMem for any
video of their choosing.

The GUI code leverages PySide6 for development of the
application’s interface, utilizing widgets and tools provided
by the Qt framework for Python. This means that all GUI
modifications, front-end or back-end, take place in a single
gui.py file. The first step we took to implement the extension
was modifying the GUI. As seen in Fig. 3, we added a text
box for user input and a button to automatically mask the
objects that the user provided in the text box. This was done
by modifying gui.py following the PySide6 syntax. We created
objects for the text box and the button and then made a layout
object that attached the two. Finally, we inserted the layout
into the minimap area of the GUI, as that’s where it makes
the most sense visually. While PySide6 automatically handles
formatting, we also increased the size of the text box to ease
the user experience.

In the GUI, the user enters the objects to mask and the
number of each object to mask. Once the ”Auto Mask” button
is pressed, the user input is sent through the autonomous
masking pipeline. First, the objects and amounts from the
input are separated and the image is retrieved as the current
frame from the video. Then, for every object the user enters,
a query is generated in the form of ”a photo of a object”
and run through the custom owl vit to bbx function that will
be described below. That function outputs n bounding boxes,
where n is the provided amount of that particular object. Then,
the interaction-to-mask module, developed in MiVOS [9] and
provided by the GUI, is ran with simulated interactions on the
center of the bounding boxes creating the initial masks for the
objects.

In normal operation of the GUI, clicking anywhere on an
object creates a mask for that object. We simulate this interac-
tion by first resetting the visualization. Then a ClickInteraction
object is created using the current frame. After, the ṗush point
function is run on that object with the location of the click
to simulate being passed as a parameter. Finally, a mask is
predicted off that click, and the visualization is updated.

Lastly, the owl vit to bbx function. The function takes in
three parameters, the path to the image, the object name, and
the amount of bounding boxes to return for that particular
object. Using the transformers library, an OWL-ViT model
is loaded. That model is given the image and the object
name formatted as a text query. The model then outputs a
list of possible bounding boxes, each with a varying degree
of confidence, given the text query. Those possible bounding
boxes are sorted by degree of confidence and then returns
the top specified number of bounding boxes for the specified
object object.

VI. EXTENSION EXPERIMENTS AND RESULTS

A. Experimental Setup

To test OD-VOS we follow the same framework to run
XMem normally. Using the GUI we are able to upload any
video of our choosing and run the model. Instead of clicking
on the objects of interest, we can use our added functionality
to type in the object name and the quantity of that object and
automatically mask the first frame. Once the masks are set,



TABLE I
VOS RESULTS FROM XMEM AND OTHER VOS ALGORITHMS

Algorithm DAVIS 2017 DAVIS 2016 Long Video Long Video (x3)
J F J&F J F J&F J F J&F J F J&F

MiVOS 81.7 87.4 84.5 89.6 92.4 91.0 80.2 82.0 81.1 78.0 79.0 78.5
STCN 82.2 88.6 85.4 90.8 92.5 91.6 82.9 89.2 87.3 83.3 85.9 84.6
JOINT 82.0 88.6 83.5 - - - 64.5 69.6 67.1 55.7 59.7 57.7
AOT 82.3 87.5 84.9 90.1 92.1 91.1 83.2 85.4 84.3 79.6 82.8 81.2

XMem 82.9 89.5 86.2 90.4 92.7 91.5 88.0 91.6 89.8 88.2 91.8 90.0
XMem (Our Recreation) 82.9 89.6 86.3 90.4 92.7 91.6 88.0 91.5 89.7 88.3 91.7 90.0

Fig. 4. This figure shows our extension in action. One object is masked using
the text input and the ’Auto Mask’ button.

we can press the forward propagate button as normal to run
XMem across every frame in the video. Once the propagation
finishes we can playback the video at the normal frame rate
with the mask tracking the objects on every frame.

B. Qualitative Results

The videos where we tested OD-VOS can be found on the
GitHub page. We have included Fig. 4 as an example of the
masks produced from running it. We ran many qualitative tests
and we are going to outline the results from those tests below.

OD-VOS appears to be most successful in videos with a
smaller number of objects. As seen on the GitHub page, our
most successful attempts came from security footage of a bear
walking around a house and a video of a baby and a puppy
playing together. In those instances, OWL-ViT had no trouble
distinguishing the objects of interest from the background and
everything ran smoothly. We also tested our model on the
default video that comes with XMem (a video showing a
raccoon and three cats in a garage) and it ran without issues.
Videos with a small number of easily identifiable objects
seemed to work the best when testing our model.

C. Limitations

OD-VOS is not without limitations however, and a couple of
videos on the GitHub show this. OWL-ViT suffers when trying
to identify five wolves in the video of a wolf pack walking
around. It correctly masks four of the five, but misses one
in the background. It also does not give the user a choice on
which object to track. Given a video with multiple instances of
the same object, like the chickens in the chicken coop video,
the user does not have the choice to select which object they
want to track. When ”chicken 1” is entered into the text box

for the chicken coop video, it selects a specific chicken in the
back without the user having any say. These limitations lead
to areas of improvement for future work.

VII. CONCLUSIONS & FURTHER WORK

XMem is a framework designed for long-term video object
segmentation (VOS). Every VOS model is supervised, mean-
ing the object mask needs to be provided on the first frame
for it to run. Our algorithmic extension of XMem, OD-VOS,
simplifies the user experience, allowing users to simply type
the name and quantity of objects of interest to initialize the
masks on the first frame. OD-VOS works extremely well on
videos with a small number of unique objects, but has a couple
of limitations. Videos with a large number of objects suffer
from inaccuracy with identification. Additionally, videos with
many instances of the same object fall short in cases where the
user isn’t tracking all of the objects. There is no way for the
user to distinguish which specific objects they want to track,
leading to unpredictability.

With this, there are many avenues for further work to be
done. One idea would be to expand upon our language model
to take more inputs than the names of different objects. For
example, a user could describe the location or other finer
details of the object that needs to be segmented for further
precision of the initial mask.

REFERENCES

[1] H. K. Cheng and A. G. Schwing, “Xmem: Long-term video
object segmentation with an atkinson-shiffrin memory model,” no.
arXiv:2207.07115, Jul. 2022, arXiv:2207.07115 [cs]. [Online]. Available:
http://arxiv.org/abs/2207.07115

[2] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen,
X. Wang, X. Zhai, T. Kipf, and N. Houlsby, “Simple open-vocabulary
object detection with vision transformers,” no. arXiv:2205.06230, Jul.
2022, arXiv:2205.06230 [cs]. [Online]. Available: http://arxiv.org/abs/
2205.06230

[3] J. Wu, Y. Jiang, Q. Liu, Z. Yuan, X. Bai, and S. Bai, “General object
foundation model for images and videos at scale,” no. arXiv:2312.09158,
Dec. 2023, arXiv:2312.09158 [cs]. [Online]. Available: http://arxiv.org/
abs/2312.09158

[4] S. He and H. Ding, “Decoupling static and hierarchical motion
perception for referring video segmentation,” no. arXiv:2404.03645, Apr.
2024, arXiv:2404.03645 [cs]. [Online]. Available: http://arxiv.org/abs/
2404.03645

[5] J. Wu, Y. Jiang, P. Sun, Z. Yuan, and P. Luo, “Language as queries
for referring video object segmentation,” no. arXiv:2201.00487, Mar.
2022, arXiv:2201.00487 [cs]. [Online]. Available: http://arxiv.org/abs/
2201.00487

http://arxiv.org/abs/2207.07115
http://arxiv.org/abs/2205.06230
http://arxiv.org/abs/2205.06230
http://arxiv.org/abs/2312.09158
http://arxiv.org/abs/2312.09158
http://arxiv.org/abs/2404.03645
http://arxiv.org/abs/2404.03645
http://arxiv.org/abs/2201.00487
http://arxiv.org/abs/2201.00487


[6] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and
A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology
for video object segmentation,” in Computer Vision and Pattern Recog-
nition, 2016.

[7] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung, and
L. Van Gool, “The 2017 davis challenge on video object segmentation,”
2017. [Online]. Available: https://arxiv.org/abs/1704.00675

[8] H. K. Cheng, S. W. Oh, B. Price, A. Schwing, and J.-Y. Lee, “Tracking
anything with decoupled video segmentation,” in ICCV, 2023.

[9] H. K. Cheng, Y.-W. Tai, and C.-K. Tang, “Modular interactive video
object segmentation: Interaction-to-mask, propagation and difference-
aware fusion,” no. arXiv:2103.07941, Mar. 2021, arXiv:2103.07941 [cs].
[Online]. Available: http://arxiv.org/abs/2103.07941

https://arxiv.org/abs/1704.00675
http://arxiv.org/abs/2103.07941

	Introduction
	Related Work
	Algorithmic Recreation
	Feature Extraction
	Memory Storage

	Recreation Experiments and Results
	Recreation Experimental Setup
	Results

	Algorithmic Extension
	Extension Experiments and Results
	Experimental Setup
	Qualitative Results
	Limitations

	Conclusions & Further Work
	References

