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Abstract—This project extends the capabilities of masked
autoencoders (MAE) based on the research paper ”Masked
Autoencoders are Scalable Vision Learners”. We aim to en-
hance MAE in three key areas: data augmentation, masking
approaches, and Generative Adversarial Networks (GAN) loss.
First, we advanced the current data augmentation techniques
to diversify the training data and improve model generaliza-
tion. This enhances the model’s ability to learn diverse image
representations given a more diverse training set. Second, we
explore different masking strategies by introducing random and
adaptive masking proportions. Unlike fixed masking values used
in previous approaches, our method dynamically adjusts masking
proportions, either randomly or based on the current training
epoch. This dynamic adaptation enables the model to learn
more effectively from occluded regions, improving reconstruction
quality. Lastly, we integrate GAN loss into the MAE framework.
By leveraging GAN’s superior image generation capabilities, we
enhance the realism and detail performance of image reconstruc-
tion. This addition enables the model to learn from additional
high-quality data generated by the GAN, further refining its
representations and enhancing overall performance.

I. INTRODUCTION

Self-supervised learning is a type of machine learning algo-
rithm where the model attempts to train itself using segments
of data compared to human labeling. Self-supervised learning
has become more prominent, especially when labeled data is
scarce.

In the field of self-supervised learning, masked autoencoders
(MAE) have proved to be an effective tool to efficiently
learn the intrinsic features of an image, especially when
dealing with large-scale image datasets. MAE trains a model
by masking portions of an image and reconstructing these
masked portions, thus extracting useful representations of the
data without the need for explicit labeling. However, although
MAE performs well in feature extraction, it still has room for
improvement in reconstructing details and maintaining image
realism, especially when dealing with datasets with complex
visual environments.

In this study, the Progress Robot Object Perception Samples
(PROPS) dataset was selected, which is a dataset designed
for robot visual recognition tasks and contains images from

multiple angles and distances with rich scene variations and
complex background information. The characteristics of this
data pose additional challenges to the image reconstruction
task, especially in terms of maintaining image detail and
quality. To address these challenges and to improve the per-
formance of MAE in terms of image reconstruction quality,
this study proposes the integration of Generative Adversarial
Networks (GAN) into MAE.

The main objective of introducing GAN is to utilize its
powerful image generation capabilities to enhance the recon-
struction of MAE. In this integrated model, the generator
of GAN, also known as the original network framework of
MAE, is responsible for reconstructing images to achieve a
realistic effect; And the discriminator is dedicated to identify-
ing whether the image is reconstructed or the original image,
thus further enhancing the realism and detail performance of
the reconstruction through adversarial training. This not only
significantly improves the efficiency of robotic vision systems
in dealing with complex environments, but also increases their
adaptability and accuracy in real-world applications.

Through this study, we hope to show how the combination
of MAE and GAN can overcome the limitations faced when
using MAE alone and enhance the generalization ability and
utility of the model by generating realistic reconstructed
images. The experimental design, integration strategy, and
experimental results on the PROPS dataset will be presented in
detail, aiming to provide new perspectives and approaches to
the field of self-supervised learning, especially for applications
in robot visual recognition and handling tasks in variable
environments.

II. RELATED WORK

Masking Autoencoder (MAE) Originally proposed by He
et al [1]. to improve the representation of image features
through self-supervised learning, MAE learns the underlying
structure and complex features of the data by randomly mask-
ing a portion of the input image (typically up to 75 percent),
forcing the model to reconstruct the missing content. This
method has shown excellent performance in a variety of vision



tasks, especially on large-scale datasets such as ImageNet,
where MAE significantly improves processing efficiency and
learning speed by effectively reducing the redundancy of
training data.

Masked autoencoders have been researched for their usabil-
ity from videos to images to natural language processing with
varying results [2], [3]. With videos, masked autoencoders
have been very effective at learning. With natural language
processing at scale, they are less effective. Masked autoen-
coders are still being researched in depth for their potential
use cases.

Generative Adversarial Networks (GANs) Introduced by
Goodfellow et al [4], GAN is a powerful generative model
that mainly consists of a generator and a discriminator, both
of which fight against each other during the training process.
The generator is responsible for producing images that are as
realistic as possible, while the discriminator tries to distinguish
between real and generated images. GAN is particularly good
at creating high-quality and detail-rich images and is therefore
widely used in fields such as image synthesis, image super-
resolution, and artistic creation. Despite its ability to generate
high-quality images, the training process of GAN often faces
the challenges of instability and pattern collapse.

III. PAPER REPRODUCTION

We thoroughly analyzed and executed the code provided
by the paper, enabling us to replicate their reported results.
Our reproduction effort includes visualizations of the original
images, masked images, and reproduced images.

Firstly we tried a code that was sourced from the GitHub
repository associated with the paper. Within this repository,
two main files were crucial: ”pre-training” and ”regular-
classification.” To ensure comprehensive replication, we ex-
ecuted both notebooks. These files leverage TensorFlow and
Python to implement the masked autoencoder methods.

Pretraining: The pretraining notebook was extremely help-
ful in reproducing some of the original work. With the pre-
training notebook, we were able to visualize the masked
images compared to the original images. You can see how
the masked images are created and how they hide information
compared to the original images. Figure 1 shows a random
sample of masked images next to their original counterparts.

With the pre-training notebook, we were also able to gen-
erate the learning-rate schedule graph. Although this is not
directly in the paper, this is a very useful reproduction to show
how the learning rate changes by step count. Figure 2 is the
learning rate schedule for the pre-training model.

We also have the masked images with the reconstructed
image generated and their counterparts. Figure 3 is a collection
of examples of the original image, the masked image, and the
reconstructed image. With the pre-training code, we were able
to generate an accuracy of 40.98 percent.

Regular Classification: With regular classification, we ran
the code and generated the corresponding accuracy of over
76.84 percent. This is in line with what is expected as the

Fig. 1. Masked Images Next to Original Images

Fig. 2. Learning Rate Schedule for Pre-training

regular classification finetunes the results of the pretraining
accuracy.

Integration of original model: After that, we reviewed
the code of the original paper on GitHub and rewrote it,
trying to integrate all files into an ipynb file. We modified the
parameters of the original model and applied it to the PROPS
dataset. After 30 epochs of training, we achieved an accuracy
of over 70 percent at the beginning of the fine-tuning stage.



Fig. 3. Sample of original, masked, and reconstructed images

IV. ALGORITHMIC EXTENSION

A. GAN LOSS

Given a generator G and a discriminiator D, the loss
function / objective functions to be minimized are given by

LcGAN (G,D) =
1

N

(
N∑
i=1

logD(G (xi), yi)

+

N∑
i=1

log(1−D (G (xi), yi) )

, where (xi, yi) refers to the pair to the ground-truth input-
output pair and G(xi) refers to the image translated by the
Generator.

LL1(G,D) =
1

N

N∑
i=1

∥ y −G(xi) ∥1

The final objective is just a combination of these objectives.

Lfinal(G,D) = LcGAN (G,D) + LL1(G,D)

G∗ = argmin
G

max
D

Lfinal(G,D)

In this model, the ”Input” is the token generated by the
encoder, the ”Generator” is the decoder, and the goal is to
make the image generated by the decoder as close to the
original image as possible. Therefore, we added training a
discriminator to the original model to enable it to recognize
the reconstructed image as a fake image, and optimized the
discriminator; After a step, we then optimize the generator
with the goal of deceiving the discriminator.

B. Data Augmentation:

First we analyzed the current data augmentation methods
and realized they were lacking. We added five more elements
to help improve the robustness of the data set. These were
random rotation, random zoom, random contrast, random

brightness, and random translation. These were important
because the picture will not always be in the exactly perfect
frame every time. There are differences between cameras,
lighting, etc that change the frame of the photos. Applying
the data augmentation methods help catch and solve for those
problems by improving the dataset.

We applied data augmentation techniques in two steps. In
the first attempt, we only used random rotation, random zoom,
and random contrast. In the next training attempt, we used all
five data augmentation approaches. This was to evaluate the
impact of adding more techniques or to determine if the data
was already robust enough.

To implement these features, we imported keras from ten-
sorflow. Using keras from tensorflow, we then imported layers.
With these layers, we called the different function. For every
functio we applied a value of 0.2 except for random rotation
which applied a value of 0.15 and random height and width
which had a value of 0.1. These numbers were picked as they
are the standard choices used.

C. Adaptive Masking

This paper used very high masking ratios as used for the
patch encoder. We wanted to try out using different masking
ratios every time. We were not convinced that the set masking
ratio was always the best approach so we tried to use a
different masking ratio in every epoch. To do this, we used
two different approaches.

The first was randomization. To do randomization, we
initially set the current masking proportion to a random value.
Then, after every epoch, we would set the next masking
proportion to a different random value. Each random value
was generated using the python random library. From here
we called the random.random() function. This helped pick a
random number from 0-1.

The second approach was to use a masking ratio that was
dependent on the current epoch. Since the epochs ranged from
1-100, the masking ratio changed from 0.00 to 0.99. This
allows the model to learn from a wide range of masking ratios.
To do this, we simply set the current masking ratio equal to
the current epoch divided by the total number of epochs. This
also generated a number between 0-1.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We extended the paper in two key ways. First we improved
the existing methods the paper implemented in pre-training.
This refers to data augmentation and masking strategies. Then
we introduced a new part, GAN loss, so that the model will
be even more realistic as a scalable learner.

B. Results

One approach used the standard CIFAR10 dataset that was
used in the repository provided. This was to measure the
accuracy compared to what they already used. This dataset was
loaded with the keras datasets library list. The other approach
used PROPS dataset.



Data Augmentation: Both times we ran the code - with
just three additional augmentation techniques and with all five
augmentation techniques, generated the same final accuracy of
41.25 percent. This is an improvement over the 40.98 percent
accuracy that was achieved with just the standard baseline
augmentation techniques.

Adaptive Masking: As shown in figure 4, the first ran-
domness method seemed to work effectively as it generated
a higher accuracy on the pretraining data. Compared to the
previous value of 40.98 percent, this generated an accuracy of
46.52 percent.

Fig. 4. Five randomly chosen images with randomly chosen mask proportions

The second method was also very effective and managed to
generate the same accuracy of 46.52 percent, which is shown
in the figure 5.

Generative Adversarial Networks: After introducing
generative adversarial networks into masked autoencoders,
this study compared them using the Progress Robot Object
Perception Samples dataset. The experimental results show
that the weight between the generator and the discriminator

Fig. 5. Five images with a masking proportion increasing linearly from 0.1
to 0.9

loss should be at least 100:1, otherwise it will weaken the
effectiveness of the generator. Using 50000 images as the
training set and 10000 images as the testing set, experimental
results did not show significant differences from the quantity
perspective, as shown in Figure 6. However, in terms of the
effect of reconstructing images, models with GAN loss seem
to be better at handling blurry edges.

From a quality perspective, we tested using small-scale
datasets and found that models with GAN loss were able to
extract image features more significantly with less data, bigger
masked patches, and fewer pre training epochs, and shown as
Figure 7, the reconstruction effect was significantly better than
the original models.

VI. CONCLUSIONS

This paper achieved two significant advancements. Firstly,
we enhanced the performance of the masked autoencoders



Fig. 6. The classification accuracy of models

Fig. 7. Comparison of effects between models w&w/o GAN loss

model through a combination of advanced data augmentation
techniques and adjustments to the masking ratio. These im-
provements are pivotal in enhancing the model’s predictive
accuracy, thereby advancing the state-of-the-art in this domain.
However, there are opportunities for further refinement to
align our work more closely with the methodologies employed
in the referenced paper. Notably, the paper underscores the
importance of employing notably high masking ratios. In
contrast, our approach utilized a masking ratio of 0.5 across
both algorithms, falling short of the 0.75-0.80 ratio advocated
by the referenced work. To enhance comparability and ensure
alignment with the referenced research, it would be beneficial
to explore the performance differences achieved by employing
algorithms with masking ratios within the range highlighted
in the paper. This adjustment would afford a more nuanced
understanding of our model’s performance regarding the paper
analyzed.

The second main action accomplished was to introduce
GAN loss to masked autoencoder models. Subsequent papers
have confirmed that GAN Loss can significantly enhance
image reconstruction performance. However, due to limited
computing resources, we can only use 32 * 32 images and
barely can tune the discriminator. Therefore, in our results,
GAN Loss does not significantly improve the reconstruction
effect and classification accuracy after fine-tuning. But we
were inspired to test in harsh environments with limited
data, short training time, and increasing patch size to reduce
semantics, and found that GAN Loss significantly improves
the performance in such situations. By the way, it should be
noted that this research only tested the GAN functions on the
PROPS dataset. By testing it on the CIFAR-10 dataset, we
would have the ability to compare the different techniques
similar to the methods from before used to compare the

Fig. 8. Discriminator Loss Fig. 9. MAE Loss

improvements.
We completed this research because we are extremely

interested in self-supervised learning. We believe that there is
a lot of methods to improve on this work in the future. There
are also many other future directions not related to the work
we completed. One major idea we considered for this project
was token-based or register based information. One potential
area would be to convert patches to tokens such as in natural
language processing. Then the model could relate the image
corresponding to the token with the masked image it sees. In
this way, it can have a type of guide for how the rest of the
image may look. Another method is register based approaches
that we thought of implementing. This method can save more
global features, making the reconstruction more realistic and
eliminating artifacts. This is extremely useful for the large
masking proportions such as in this paper, and could help in
being used to improve the masked autoencoder model.

VII. APPENDIX

https://github.com/Polarisyjr/Masked-Autoencoder
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