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Abstract—Grapes are a globally significant fruit utilized not
only for consumption but also for wine production. However,
manual grape harvesting faces challenges due to labor shortages
and technical intricacies. This paper proposes a robotic grape
harvesting system using deep learning based robot perception and
3D reconstruction to compute grape bunch and stem poses for
robotic picking. Drawing from previous research in agricultural
robotics, this system extends existing methodologies by integrat-
ing a novel stem segmentation model into the vision pipeline, and
testing on a robotic platform to gauge accuracy. Experiments on
the Fetch mobile manipulation shows a grasp success rate of
85.71% and an average gripper pose error of 4 cm on less than
150 training images. Authors can be contacted via email regard-
ing questions, clarifications, and data availability. The project
page is available at: https://github.com/adi-balaji/grape juice.

I. INTRODUCTION

Grapes are a widely popular fruit worldwide, with 72
million tons grown each year. Many countries use grapes
for wine production, such as the United States, France, Italy,
Spain, and more. In addition, grapes have been associated with
the prevention of cancer, heart disease, high blood pressure,
and much more. However, it has been increasingly harder to
harvest due to the technical pruning process and high labor
requirements. In areas with labor shortages, due to the aging
population and reduced agricultural labor force for example,
there have been many many inefficiencies in the process of
manual harvesting.

Thus, the purpose of this paper is to propose a system
that supports the automated harvesting of grapes with robotic
manipulators. Such a system has the potential to alleviate
labor shortages and ensure sustainable grape production even
in areas with insufficient availability of workers. Using deep
learning, we propose an end to end grape localization system
to compute bunch and stem poses for robotic manipulation.
With labeled data of other crops, this pipeline could be
generalized to any other harvesting tasks.

II. RELATED WORK

Computer vision and deep learning for agriculture has been
a growing topic over the past few years for its potential to

greatly increase efficiency to increase crop yields in a time
of labor shortage and high demand for food. For the task of
fruit detection, previous papers have focused on addressing
the cluttered and occluded nature of fruits in farms. Santos et
al. employs a grape dataset to create a segmentation model
for grape masking for [1]. The WGISD dataset proposed in
this paper contains a diverse representation of grape bunches
in a vineyard environment making it ideal for training a real-
world applicable system. Additionally, for robotic pickling,
the system needs good centroid estimates, which requires
fruits to be localized by the system with high accuracy. Gao
et al. proposed a kiwi localization system with YOLOv5
and binocular imagery which achieved millimeter localization
precision [2]. The use of binocular imagery was similarly used
in Yin et al., which presents an approach for the detection
and pose estimation of grapes using binocular imagery and
deep learning [3]. As such, the main contribution lies in the
translational and rotational pose estimation of these grape
bunches – our system focuses on the ideas of Yin et al.
to improve the capabilities of a grape detection system and
evaluate its performance in a real world scenario.

A. Paper Review

The core problem addressed is the need for efficient fruit
detection and accurate pose estimation for the furtherment of
agricultural robotics. The key idea involves utilizing Mask R-
CNN for fruit segmentation and point cloud extraction for pose
estimation, and the implementation involves image prepro-
cessing, fruit segmentation, point cloud construction, and pose
estimation using a RANSAC cylinder model fitting approach.
The evaluation methodology includes metrics such as preci-
sion, recall, and intersection over the union (IoU) to evaluate
the performance under different lighting conditions. Finally,
the paper concludes that the proposed approach achieves high
precision and recall rates, an average IoU of about 82%, and a
quick inference time of 1.7 seconds, demonstrating its viability
for real-world application in grape harvesting robotics.

https://github.com/adi-balaji/grape_juice


Fig. 1: GrapeJuice localization pipeline. The model consists of a feature extractor, a region proposal network, an RoI align layer, and a mask and bounding
box branch. The outputs are combined with the depth map to reconstruct a point cloud of the grapes for pose estimation.

B. Review Summary

Overall, Yin et al. presents a noteworthy contribution to the
field of agricultural robotics and computer vision in relation
to detecting the grape poses [3]. The paper is structured
well, provides clear descriptions of the methodology used
to estimate the pose of the grapes, and displays its results
well. Additionally, the relevance of the paper to the field of
agricultural robotics is clear, as it offers practical solutions to
enhance the efficiency and automation of agricultural farming
practices. Including more visual illustrations or examples of
the detected fruit clusters and their pose estimation would
increase the clarity of the paper, but this did not necessarily
take away from the methodology proposed.

However, there are a few areas for improvement; while
the paper effectively addresses the core problem and presents
a novel approach, it could benefit from a more in depth
evaluation of their methods. Their novel pose estimation
pipeline was only evaluated on inference time, not accuracy,
and does not test the implementation of such an algorithm
on a physical robot - leaving the viability of the pipeline
unexamined. Additionally, for a robotic implementation, the
pipeline’s detection capabilities are insufficient as a robot
needs stem pose in addition to bunch pose for manipulation.
These issues are addressed in our algorithmic reproduction and
extension.

C. Points of Feedback

• Clarifying the dataset selection process: It would be
helpful to provide more insights into how the dataset for
training and testing was selected, including the criteria
used for dataset annotation the diversity of the dataset in
terms of fruit varieties, and lighting conditions commonly
encountered in agricultural settings in order to contexu-
alize the general environments this will be used in.

• Elaborate on the pose estimation accuracy: A detailed
analysis of the accuracy of pose estimation under various

environmental conditions, such as varying illumination,
occlusions, and cluttered backgrounds, can be worth-
while. The paper could also discuss how the proposed
method performs in challenging scenarios and potential
strategies for improving the pose estimation accuracy in
such cases.

• Discuss the generalizability of the approach: It would be
beneficial to evaluate the generalizability of these meth-
ods across different fruit types beyond grape harvesting.
The paper mentions about how the problem at hand can
generalized to many different fruits given labeled data,
although only grapes are discussed throughout. It would
be valuable to discuss potential limitations for adapting
the approach to different fruit species or agricultural
tasks.

• Discuss a robot implementation: While the developed
method is talked about, no mention of the applicability
of using an actual robot, and the challenges associated
with that is discussed. The main objective of the paper
is to help improve agricultural robotics by developing
a better pose detection method that can be applied to
grape-harvesting robots, and the introduction focuses
heavily on the need for robotics to help the agriculture
scene in China. Thus, it would be worthwhile to discuss
how the method could possibly be used and evaluated
on a robot.

III. ALGORITHMIC REPRODUCTION & EXTENSION

The key flaw in the system proposed in Yin et al. is that
the pose evaluated is for the grape bunches [3]. However, a
robotic harvester cannot and should not grasp the bunches, as
they will get crushed without a custom soft gripper. More
importantly, even with a grape gripper, the robot needs to
additionally locate the stems for cutting and harvesting. From
this arises another challenge: the stems are not necessarily
located perfectly above the center of the grape bunches. In a



farm environment, the stems of the grape bunches may have
different orientations, shapes, sizes, or be occluded. To account
for this, the vision pipeline was extended by adding a stem
segmentation branch. By additionally training a MaskRCNN
with labeled grape stem data, the grape localization pipeline
can compute grape and stem masks which can then be com-
bined with depth estimation to reconstruct a point cloud of the
entire grape bunch. This provides a method to calculate the
pose of the grapes to provide as input to a robot arm.

Additionally, the original pipeline did not contain an evalu-
ated metric for their pose estimation system, since there is no
ground truth data for grape bunch translation or rotation. While
the pose cannot be explicitly evaluated without labels, the
grape localization pipeline can be run on a mobile manipulator
and be evaluated on the grasp success rate. We developed the
enhanced grape and stem localization pipeline in Python and
implemented it on the Fetch mobile manipulation platform.

A. Dataset

Fig. 2: Example stem mask label from custom grape stem dataset generated
using Supervisely.

We employed two distinct datasets for training and evalua-
tion purposes.

• Wine Grape Instance Segmentation Dataset (WGISD):
The Embrapa WGISD dataset consists of 300 images
of size 1365 × 2048 containing a total of 4,432 grape
clusters from a vineyard environment [1]. A subset of 137
images also contains binary masks identifying the pixels
of each cluster, providing us with the masks of about
2020 clusters to train with. This dataset was specifically
used to reproduce the bunch segmentation branch of the
vision pipeline from Yin et al. [3].

• A custom grape stem dataset: Given resource constraints,
we manually constructed a dataset of about 100 images
of size 480×640 for stem masking, which is exemplified
in 2. The dataset was generated using Supervisely, a
free online dataset labeling service. The dataset contains
images of grapes in a lab environment with labeled
binary masks for stems. While the dataset represents a lab
environment, a similar dataset can be constructed easily
on Supervisely for a vineyard environment. This dataset
was specifically used to train the stem segmentation
branch of the vision pipeline.

B. Model Architecture

The first section of the pipeline consists of a neural network
for bunch and stem segmentation. We adopted a MaskRCNN
model architecture for both masking branches using the Py-
Torch and torchvision libraries in order to infer accurate masks
for precise localization. The backbone network consists of a
ResNet-50 feature pyramid network, which was obtained from
the pre-trained models from torchvision. The embedded region
proposal network uses the extracted feature map calculated
by the ResNet FPN to propose RoIs for the mask and box
predictors. A mask predictor and box predictor layer was thus
added to the RoI Heads for mask and bounding box inference
at the end. We made the following modifications to tailor the
network to our task:

• The number of hidden layers was set to 256
• The number of classes was set to 1. Each branch needs

to predict only one class independently (“grapes” or
“stem”).

Branch Optimizer Batch Size Learning Rate Weight Decay

Bunch Adam 4 1× 10−4 1× 10−3

Stem Adam 2 5× 10−7 1× 10−7

TABLE I: Parameters used for training Bunch and Stem segmentation.

The branches were trained independently over 15 epochs
using the parameters outlined in Table 1. The model ultimately
achieved an average IoU of 73.87% on a test set that was
not seen during training, after training on only 137 images.
This replicates 90% of the performance with less than 1/8th
the amount of data used in Yin et al. With a larger dataset, or
data augmentation, even better performance can be achieved.

The second section of the pipeline consists of the pose
estimation system. This section first relies on a well calibrated
camera, ensuring a good estimate of the intrinsic camera
matrix K. The depth map of the view is first estimated from
the camera: we experimented with using the DepthAnything
model proposed in Kang et al, for robust monocular depth
estimation and qualitatively observed decent results [4]. How-
ever, for testing on the Fetch Mobile Manipulation platform,
the depth map directly from Fetch’s infrared sensor was more
reliable. Depending on whether the robot should navigate to
the bunch or stem, the pipeline will first take the segmentation
mask and crop the depth map to the bunch or stem. This
provides the per pixel depth of the mask that can be used
for 3D reconstruction. This 3D reconstruction algorithm is
outlined in Algorithm 1.

Each pixel in the cropped depth map is first converted to
homogeneous pixel coordinates, then transformed to homo-
geneous world coordinates by multiplying with the inverse
camera matrix K. The third element of the transformed
coordinates is then set to the depth value at the respective
pixel coordinate from the depth map, producing a 3D point
in the world frame. Performing this operation on each pixel
of the cropped depth map results in a grape point cloud from



which translation and rotation can be estimated. The mean
point of the point cloud was estimated as the translation.

Algorithm 1 3D Reconstruction

1: Input: cropped depth map DH×W , camera matrix K3×3

2: Output: Transformed point cloud D′

3: initialize D′ = []
4: for each pixel coordinate (i, j) in D do
5: p = [i, j, 1]
6: p′ = K−1p
7: p′[2] = D[i, j]
8: append p′ to D′

9: end for

The rotational pose is obtained from the cylinder fitting
process as shown in Fig. 3, reproduced from Lin et al. [3].
This method had decent results but showed potential for
improvement. Since a grape cluster tapers towards the bottom,
a cone would fit the point cluster better, so the RANSAC fitting
algorithm was thus adapted for cone fitting instead as seen
in Fig. 3. For both methods, the rotation matrix is computed
based on data points to align a cone with its principal axis. The
process begins by determining the direction and the principal
axis using Principal Component Analysis. We then find the
cross product and dot product of the direction vector with the
positive Z-axis, which gives us an axis of rotation orthogonal
to both of them. The Rodrigues’ rotation formula is applied,
which rotates a vector in three-dimensional space, using the
previously mentioned cross and dot products, to give us our
rotational matrix.

Fig. 3: Cylinder and Cone fitting for rotational pose estimation from grape
point cloud.

IV. EXPERIMENTS AND RESULTS

A. Experiment

A grape harvesting scenario was replicated in a lab environ-
ment to test the perception pipeline on Fetch. Grape bunches,
either red or black, were suspended from a rod by their stem
with painted twine to simulate grapes hanging from a vine.
Fetch was placed in front of the grapes such that the bunch
and stem were both within the camera view. The experiment
setup can be seen in Fig. 4.

Two experiments were conducted to gauge the efficacy
of this pipeline. For both experiments, a live RGB image
of the scene was taken from Fetch’s head camera and
then run through the localization pipeline. Before motion

Fig. 4: Lab experiment setup. The grapes were suspended from a rod in front
of the robot’s view.

planning, the resultant pose output is transformed from
Fetch’s head camera rgb frame to the base link frame using
the ROS tf package. The rotational pose was assumed to be
constant as the lab environment experiment can only offer a
scene of a grape bunch hanging straight down.

1) Grasp Experiment: The motion planner uses the pose
evaluated by the localization pipeline to move the gripper to
the stem (or bunch), and grasp. We recorded whether the robot
was successful in grasping the grapes or not. This test was
conducted a total of 42 times using images taken at a variety
of orientations of the robot’s head, base and camera tilt. The
grasp success rate is simply evaluated as

Number of successful grasps
Number of attempts

%

2) Gripper Pose Error Experiment: Gripper Pose Error
Experiment: Even if the robot is able to successfully grasp,
there exists some error between the gripper pose and actual
stem or bunch. So, an additional test was added to evaluate
grasp with greater precision. The motion planner uses the
pose evaluated by the localization pipeline to move the
gripper to the grape location, but does not close the gripper.
At this point, we manually measure and record the absolute
error in the x, y and z direction between the actual grape
location (whether it be bunch or stem) and the gripper frame
(center of the gripper). This test was conducted a total of 16
times.

B. Results

Through experimentation, we found that the grape localiza-
tion system performs well when implemented on a real robot
platform. With 36 successful grasps out of 42 attempts, the
Grasp Experiment found a grasp success rate of 85.71%
which would satisfy the requirements of a real world robotic
harvester. Fig. 5 shows the results of the Gripper Pose Error
Experiment, which found an average gripper pose error of
6.08 cm, 3.80 cm, and 3.11 cm in the x, y and z directions



respectively. These errors are on the order of hundredths of a
meter, indicating that the localization pipeline is performing
accurately and the pose outputs are close to the actual location
of the grapes.

Fig. 5: Gripper pose over 16 trials. The average gripper pose error was 6.08
cm, 3.80 cm and 3.11 cm in the x, y and z directions.

V. CONCLUSIONS & FUTURE WORK

Our research presents a robust grape localization pipeline
tailored for robotic harvesting applications. Addressing the
limitations of existing systems, our approach integrates a novel
stem segmentation branch into the vision pipeline, enabling
precise localization of both grape bunches and their stems.
Through experimentation on the Fetch mobile manipulation
platform, we demonstrated the performance of our localization
pipeline in real-world scenarios. The grasp success rate
of 85.71% obtained from our experiments underscores the
practical viability of our approach for autonomous harvesting
tasks. Furthermore, a low average gripper pose error of 6.08
cm, 3.80 cm, and 3.11 cm in the x, y, and z directions
respectively, reaffirms the accuracy of our pose estimation
system. These results demonstrate the potential of robotics and
deep learning-based perception to revolutionize harvesting in
agriculture.

In the future we plan to expand the capabilities of the
localization system by training the masking model on bunch
and stem data from a broader set of environments. This would
help the vision model generalize better and output even better
mask results. Another key area to expand this study would
be to incorporate labeled pose data for the grapes. This could
open up the possibility of implementing learning based pose
estimation methods. The last area for improvement would be
improving runtime by parallelizing the localization pipeline on
GPUs. This would drastically reduce pose inference time, and
also open the model to being augmented with a probabilistic
filter at the end, such as a Kalman Filter. These adjustments
would greatly improve the applicability of this system to a real
world application.
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