
DeepRob Final Project Report:
Classification Mislabeling (ClaM)

Chancellor Day
College of Engineering
University of Michigan
Ann Arbor, Michigan
dchance@umich.edu

Zack Vega
College of Engineering
University of Michigan
Ann Arbor, Michigan

zvega@umich.edu

Meha Goyal
College of Engineering
University of Michigan
Ann Arbor, Michigan

mehag@umich.edu

Tucker Moffat
College of Engineering
University of Michigan
Ann Arbor, Michigan
moffatuc@umich.edu

Abstract—In this paper, we aim to reproduce and extend
the paper Rethinking the Inception Architecture for Computer
Vision by Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
and Jonathon Shlens [2]. This work builds on the Inception
architecture of the GoogleNet deep neural network model with
the goal of optimizng the network by scaling it up while
constraining the increase in computational costs. In this report,
our team will reproduce and validate the model on a new dataset,
and develop ClaM (Classification Mislabeling) as an attempt to
extend upon the work by incrementally mislabeling parts of the
input data with the goal of reducing bias and limiting overfitting.
This study shows that mislabeling increasing proportions of the
dataset does not improve overall performance of the Inception-v3
model defined in the original paper as evaluated on the CIFAR-
10 dataset by measuring training and validation accuracy over
several epochs.

I. INTRODUCTION

This work presents a novel method for image recognition
using Convolutional Neural Networks(Cnns) [1]. Recognizing
and understanding its environment is crucial for a robots
functionality.

Since 2012, CNN architectures have evolved rapidly be-
coming deeper and wider, resulting in improved performance
across diverse computer vision tasks. A key landmark in the
field of computer vision and Convolutional Neural Networks
alike was the Alex Net victory in the 2012 ImageNet compe-
tition [2], ushering in a huge wave of research dedicated to
enhancing the performance of CNNs across a broad spectrum
of visual recognition tasks. Among the architectures developed
in this time, Inception V3 [1], specifically, represents a pivotal
milestone in efficient and effective CNNs.

The Inception architecture series is characterized by its
unique utilization of inception modules. These modules enable
the network to capture multi-scale features efficiently while
being cost effective. Notably, the computational cost of Incep-
tion is much lower than that of VGGNet and the other more
efficient models.[3] (Figure 1)(Figure 2)

Due to this feat, the Inception module has made an impact
in big-data scenarios[4][5] allowing for CNNs to be used in
situations that require large levels of data with little computa-
tional power.

One challenge caused by the complexity of the deep convo-
lutions of the Inception architecture is it is difficult to modify

Fig. 1. Single-model, multi-crop experimental results comparing the cumu-
lative effects on the various contributing factors. Szegedy et. al.[1] compare
their numbers with the best published single-model inference results on the
ILSVRC 2012 classification benchmark.[1]

Fig. 2. Ensemble evaluation results comparing multi-model, multi-crop
reported results. Our numbers are compared with the best published ensemble
inference results on the ILSVRC 2012 classification benchmark. *All results,
but the top-5 ensemble result reported are on the validation set. The ensemble
yielded 3.46 percent top 5 error on the validation set. [1]

the architecture to be used for different tasks while preserving
its advantages. Specifically noted by the paper, is when scaling
up the architecture, careful consideration must be used to
prevent exponential increases in the computational cost and
parameter count. This could render the architecture hard to
use for real world algorithms.

The main conclusion from the Inception architecture is its
novelty in its relatively high efficiency and accuracy for its
computational cost compared to other algorithms. However at
the cost of this efficiency, it becomes hard to scale up the
architecture for real world applications due to risk of over



fitting, lower accuracy, etc.
Our extension aims to attempt to improving upon the

over fitting problem when scaling up the architecture. This
extension tries to allow for the architecture to train longer
with different data sets without the sever issue in over fitting.

II. RELATED WORK

“Rethinking the Inception Architecture for Computer Vi-
sion” addresses the scaling of deep convolutional neural
networks to utilize the additional computation efficiently by
leveraging factorized convolutions and regularization, with
an initial focus on Inception architectures [2]. The primary
concern highlighted in the study is optimizing architecture
designs such that convolutional neural networks can be scaled
up in terms of depth and width without a significant corre-
sponding increase in computational cost and number of param-
eters. The paper outlined several overall design considerations
for large scale architectures for neural networks, including
avoiding representational bottlenecks early in the network,
using higher dimensional representations to increase network
training speed, performing spatial aggregation over lower
dimensional embeddings, and balancing the width and depth
of the network to optimize performance and computational
budget.

The paper used these design considerations as well as
factorization into smaller convolutions, auxiliary classifiers,
and efficient grid size reductions to propose a new architecture.
The team evaluated the model on the ILSVRC-2012 validation
set, and found that their highest quality Inception-v3 model
reached 21.2% top 1 error and 5.6% top 5 error for single
crop evaluation with a modest 2.5x increase in computational
cost compared to existing models. Overall, the paper found
that the scaling techniques used significantly less computation
than the best models at the time. Factorizing convolutions and
aggression dimension reductions helped develop high quality
networks with relatively lower computational cost while the
combination of low parameter count, additional regularization,
batch normalized auxiliary classifiers, and label-smoothing
allowed the networks to be trained on modestly sized training
sets while maintaining quality.

A. Method

The main advancements this paper made to improve the
architecture of the inception model can be broken down into
several steps:

1) Factorizing the traditional 7x7 convolution into three 3x3
convolutions

2) Implementing a set of 3, 5, and 2 inception modules
with efficient grid size reduction for filtration

3) Performing label smoothing to regularize the classifier
layer of the model

A high level overview of their overall architecture can be
seen in figure 3.

To implement the factorization of the convolutions, the
paper introduced an interesting conversion method, finding
that any n× n convolution could be replaced by first a 1× n

Fig. 3. The outline of the proposed network architecture. The output size of
each module is the input size of the next one.

convolution followed by an n × 1 convolution, such that the
computational cost savings increase as n grows. From their
experiments, they found that this worked well on medium
sized grids, such as the 7x7 grid used for the model. An
example of this factorization is depicted in figure 4 below.

Fig. 4. The figure demonstrates an example of a mini network in which a 3x3
convolution is factorized. The lower layer is comprised of a 3x1 convolution
with 3 output units

B. Reproducing Results

To reproduce these results we utilized the Tensorflow and
Keras python modules to recreate the environment to train the
Inception architecture. Due to hardware limitations we had to
use the Cifar-10 Dataset, a relatively smaller dataset compared
to the massive ImageNet dataset used by the paper. It is
important to keep this in mind as the Cifar-10 Dataset has only
10 labels and a relatively small size compared to the 20,000
labels of ImageNet that the original Inception v3 architecture
is trained on. To prepare the Cifar-10 dataset for training with



Inception V3, pre-processing steps are undertaken. Initially
the images are resized to meet the minimum input size of
Inception V3, which is 75x75 pixels. TensorFlow’s image
manipulation library and the skimage model are then used to
transform the images into the proper format. After this, the
images are then normalized to ensure pixel values lie between
-1 and 1 as well as the labels being converted to one-hot
encoding. Using Keras, the Inception V3 model, pre-trained
on the ImageNet dataset, is employed as a base model. The
fully connected layers of the Inception V3 model are then
addapted to match the number of classes in the CIFAR-10
dataset. Specifically, a Global Average Pooling layer followed
by two dense layers with ReLU and soft max activation’s are
added to the model. We then trained using this to recreate
what was done in the paper.

III. ALGORITHMIC EXTENSION

A. The Problem

After reproducing the paper’s results using the CIFAR-10
dataset, we found that the model was overfitting significantly,
and at epochs 3 and 4, the training accuracy increased while
the validation accuracy began decreasing. Therefore, for our
extension, we aimed to reduce the overfitting by randomly
mislabeling training data before each attempt to train the
model. Since the Inception v3 model already included bias,
modifying the training set specifically of the labels allowed us
to introduce noise and attempt to reduce overfitting overall.

B. Dataset

The dataset that we used to test our model and extension
was the CIFAR-10 dataset. The dataset contains 60,000 32x32
images with 10 classes and 6,000 images per class. Due to
the limited access to the original dataset, and limits on our
own systems’ computational power and memory, we chose
this dataset as despite the more limited dataset, it provided
similar information and was able to be processed efficiently
on our systems.

C. Implementation

We began by writing our own python script to access and
use the Inception V3 model described in the paper. We cut
of the top of the model archtiecture and replcaed it with our
own, and set it up to use the 10 classes as represented in
our CIFAR-10 dataset rather than the large number of classes
from the paper’s original dataset. Then, we performed two
experiments. First we randomly mislabeled 1, 5, and 10% of
the y-train data (the labels used for training) only once before
training the model, and for the second approach, we had the
model mislabel the same percentages of data before every
epoch. We graphed the changes in training accuracy, validation
accuracy, and validation loss per percentage of mislabeled data
per epoch.

Fig. 5. This image displays each of the 10 classes and 10 example images
from each class of the CIFAR-10 dataset

IV. EXPERIMENTS AND RESULTS

When recreating the paper, it was noticed that while using
the CIFAR-10 dataset that the data was being over fitted. At
epoch 3 or 4, the validation accuracy would start decreasing,
while the training accuracy would continue to increase. In an
attempt to combat this over-fitting, and since the inception
V3 architecture already has bias included in their model, it
was decided to implement a novel form of noise involving
randomly mislabeling training data. We implemented this in
two distinct ways. The first way that was tested was randomly
mislabeling a percentage of the dataset, and then training all
10 epochs on that data with a portion mislabeled. The second
way that was tested was randomly mislabeling a percentage
of the dataset, and then training one epoch on that data. This
mislabeling process was repeated between every epoch so the
same percentage of data was mislabeled, but different sets of
data was mislabeled each epoch.

A. Experimental Setup
For this paper, all software was run utilizing an RTX

3060 Ti on Ubuntu 22.04. Due to hardware limitations, when
recreating the paper Rethinking the Inception Architecture for
Computer Vision[2] instead of training the entire inception
V3 model on the imageNet dataset, we imported the pre-
trained model without the top, and instantiated our own top.
This top was identical to Rethinking the Inception Architecture
for Computer Vision[2] except it had 10 output classes, one
for each class in the CIFAR-10 dataset. This model was
trained using a batch size of 32, equal to Rethinking the
Inception Architecture for Computer Vision, and 10 epochs,
which is different than the 100 that Rethinking the Inception
Architecture for Computer Vision used, but much quicker.

B. Results
Each 10 Epoch trial took ∼18 minutes. The resulting graphs

were produced in matlab.



Fig. 6. This graph displays the training accuracy per epoch for method one,
mislabeling a percentage of the training data before training starts

Fig. 7. This graph displays the validation accuracy per epoch for method
one, mislabeling a percentage of the training data before training starts

Fig 6. shows that our classification using inception V3 is
successfully being trained on the training data. Moreover low
amounts of initial mislabeling actually increased the training
accuracy over zero mislabeling. High amounts of training data
mislabeling decreased accuracy.

Despite Fig 6. showing that the model was being trained
on the initially mislabeled training data. Fig 7. shows there is
a large amount of over-fitting occurring. after the 3rd or 4th
epoch of every trial, validation accuracy starts decreasing.

Fig 8. shows that training with a low amount of mislabeling
each epoch allows for accurate training than the baseline of
0%, but training with a high amount of mislabeling each epoch
does not allow for accurate training. In comparison to method
1, training accuracy in method two is worse, and having a low
amount of mislabeling each epoch does not increase training

Fig. 8. This graph displays the training accuracy per epoch for method two,
mislabeling a percentage of the training data before each new epoch

Fig. 9. This graph displays the validation accuracy per epoch for method
two, mislabeling a percentage of the training data before each new epoch

accuracy. Our hope was that this lower training accuracy in
method two would have the trade off of introducing noise into
the system to reduce over-fitting.

Shown in figure 9. the validation results of method two
are relatively similar to method one, although all validation
accuracy starts higher at epoch one, and has a more gradual
decrease in validation accuracy over each epoch. This shows
that neither method one or method two successfully introduced
a successful form of noise preventing data over-fitting.

V. CONCLUSIONS

This paper found that classifying a small dataset with
inception V3 resulted in over-fitting. Moreover, two different
methods of mislabeling data were explored to decrease this
over-fitting. it was found that low levels of initial mislabeling
of the data increased training accuracy, but both methods did



not increase validation accuracy, nor did they decrease over-
fitting.

REFERENCES

[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, ”Rethinking
the Inception Architecture for Computer Vision,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 2016, pp. 2818-2826, doi: 10.1109/CVPR.2016.308.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, and Y. Jia, ”TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2016. [Online]. Available:
https://www.tensorflow.org/

[3] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. arXiv
preprint arXiv:1502.01852, 2015.

[4] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object
detection using deep neural networks. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, pages 2155–2162.
IEEE, 2014

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.


	Introduction
	Related Work
	Method
	Reproducing Results

	Algorithmic Extension
	The Problem
	Dataset
	Implementation

	Experiments and Results
	Experimental Setup
	Results

	Conclusions
	References

