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Abstract—In this paper, we aim to reproduce and extend the
results from Learning to Grasp the Ungraspable with Emergent
Extrinsic Dexterity by W. Zhou and D. Held [1]. The original
paper demonstrates that a simple gripper using intuition about its
environment can still perform complex manipulation tasks. That
work studies the task of “Occluded Grasping” that aims to reach
a grasp in configurations that are initially intersecting with the
environment. While the original work only considered occlusions
by the ground, our work extends their work by considering
occlusions by side walls along with unoccluded configurations.
Our system trains different policies for each occlusion type
and selects between them at run-time. In simulation, our policy
selector was 100% successful at choosing the correct policy for
the occlusion type and the policy was then 100% successful at
picking up the object. Videos can be found at https://deeprob.org/
w24/reports/grasping-ungraspable/ and our code can be found at
https://github.com/HarrelsonJ/DeepRob Ungraspable/tree/main.

I. INTRODUCTION

In the realm of robotics, achieving dexterous manipulation
comparable to that of human hands has long been a challenge.
Traditional multi-fingered robotic hands [2], while capable, are
often expensive to produce and prone to fragility. However,
recent advancements in robotics research have introduced a
fascinating concept: extrinsic dexterity [3]. This approach
proposes that rather than focusing solely on the capabilities
of the gripper itself, manipulation tasks can be accomplished
by leveraging the surrounding environment. This paradigm
shift opens doors to new possibilities, enabling even simple
grippers to perform intricate maneuvers by exploiting external
resources such as contact surfaces and gravity.

The paper under review, “Learning to Grasp the Ungras-
pable with Emergent Extrinsic Dexterity” by Wenxuan Zhou
and David Held [1] delves into the realm of extrinsic dex-
terity, specifically focusing on a task known as “occluded
grasping.” Unlike conventional grasping tasks that typically
involve reaching for an object in unobstructed space, occluded
grasping requires the robot to grasp objects in poses that are
initially unreachable due to the target grasp intersecting with
the environment. These grasps are shown in Figure 1.

Imagine a scenario where a cereal box lies on its side
on a table, partially obscured by the table’s surface. The
only manipulator available is a narrow parallel gripper, too

*Equal contribution, listed alphabetically by last name

Fig. 1. Three types of grasps. The green C shape represents the gripper. From
left to right: Unoccluded, side occlusion, ground occlusion.

small to grasp the cereal box from the top. A traditional
approach would find the desired grasp unattainable. However,
by employing extrinsic dexterity, the robot can manipulate the
object using the environment—perhaps by pushing the object
against a vertical wall—to expose an achievable grasp. This
behavior is shown in Figure 2.

Wenxuan Zhou and David Held achieved this advanced level
of extrinsic manipulation by utilizing goal conditioned rein-
forcement learning (RL) to develop a closed loop policy for
performing ocluded grasps. Previous research in this domain
has shown promising results but has been limited by factors
such as reliance on hand-designed motions, specific gripper
designs, or the inability to generalize across different objects
and environments [4]–[6]. The original paper showed that it
was possible with a single 1 degree of freedom parallel gripper
(Figure 3) to achieve a very high level of dexterity.

Their work, however, was limited to ground occlusions
where the base of the object is in contact with the ground, and
was not tested against other occlusion types. In this paper, we
extend their work to show that using similar methods of goal-
conditioned reinforcement learning, it is possible to achieve
similar extrinsic dexterity as in the basic ground occlusion
case.

II. RELATED WORK

The field of robotic manipulation has seen significant ad-
vancements in addressing the complexities associated with in-
hand manipulation utilizing external influences. Prior research
has delved into various methodologies aimed at overcoming
challenges such as continuous contact dynamics and discrete
contact switch-overs. These challenges arise from the intricate
interactions between the robot’s fingers and the manipulated
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Fig. 2. Example of a robot using extrinsic dexterity to grasp an occluded object. Figure reused from [1].

Fig. 3. Simple 1 DoF parallel gripper used in trials

objects, requiring precise planning and control to achieve
desired manipulation tasks effectively. The notable approach
explored involves the integration of low-level optimization-
based inverse dynamics with high-level sampling-based plan-
ning techniques [4]. By combining these methods, researchers
have sought to generate push sequences that facilitate the
reconfiguration of objects between different grasps while mini-
mizing contact switch-overs. These efforts have contributed to
a better understanding of the dynamics involved in in-hand
manipulation with external pushes, laying the groundwork for
further advancements in planning frameworks tailored to this
context. There are several external resources usable in extrinsic
dexterity tasks, such as gravity, environment surfaces, and
arm motions used to manipulate objects within the hand. This
approach offers advantages in scenarios requiring significant
adjustments of object, potentially leading to more versatile
and adaptable manipulation tasks [3]. The long term goal
of developing a repertoire of pre-grasp actions to navigate
grasps represents a promising direction for future research in
this area. Efforts have also been made to extend traditional
grasping techniques through the concept of shared grasping.

By leveraging external contacts to maintain force closure,
researchers have proposed frameworks that emphasize robust-
ness and versatility in object manipulation [5].

III. ORIGINAL METHODOLOGY [1]

The proposed system aims to overcome these limitations
by employing RL to learn a closed-loop policy π(st, η) that
guides the robot’s interactions with both the object and the
environment, considering both planning and control aspects.
The policy’s inputs are the state of the system st and the goal
η, as the paper uses goal-conditioned RL.

A. System Definition

One of the key innovations of the paper lies in its use of
model-free RL to optimize pre-grasp and grasping motions
without the need for separate stages as seen in previous work.
To do so, the original paper crafted a single, overall reward
function:

r = αD(g,E) + βΣiP (mi)

Where α and β represent argument weights, g represents
the object-frame target grasp configuration, E represents the
world-frame end effector position, and mi represents prospec-
tive grasp positions on the target gripper as seen in Figure
4. This reward function combines rewards for the box’s pose
D(g,E) and the box’s non-occluded grasps ΣiP (mi). The
box position reward is defined as:

αD(g,E) = α1∆T (g,E) + α2∆θ(g,E)

Where α1 and α2 are weight arguments. This function includes
both the translational (∆T ) and rotational (∆θ) difference of
the box position to its desired position.

The available non-occluded points on the target gripper are
defined as ΣiP (mi). This function penalizes points on the
target grasp that are intersecting with the environment. In
doing so, we reward shifting the box to positions where the
target grasp becomes unoccluded.



B. System Simulation

The system is then trained using a Soft Actor Critic [7]
trainer using the MuJoCo robot simulation suite [8]. During
training, the system incorporates Automatic Domain Random-
ization (ADR) [9] to enhance the policy’s robustness. This
allows the model to generalize across environmental condi-
tions (including friction), object sizes, and object locations.
Through iterative refinement and expansion of environmental
parameters via ADR, the system learns to perform occluded
grasping tasks with a high degree of success.

C. Robot Low-Level Motion Controller

To translate desired end-effector positions into actual mo-
tion, the paper controls the robot using an Operational Space
Controller (OSC). This controller results in tunable end-
effector stiffnesses and speeds. Tuned correctly, the end-
effector is able to move relatively slowly but with enough force
to move the boxes. This compliant style allows for quick low-
level robot control loops (100 Hz) that do not result in adverse
effects from the comparatively slow RL policy loops (2 Hz).

D. Translation to the Physical System

After training in simulation, the RL model is then trans-
ferred to a physical version of the robot for validation tests.
These tests include a variety of item positions and types,
introducing different-shaped containers such as cylindrical
tubs (whereas the simulator only used boxes).

IV. REPRODUCTION

We were able to replicate the results of the paper in
simulation. After training with the provided hyperparameters
and methods, we successfully trained a policy to pick up a
block using extrinsic dexterity in simulation. Our replicated
policy was without using grasp selection ADR and without
using physical ADR. This took 13.5 hours to train on one
of our local workstations. Due to time constraints, we did not
train the ground occlusion policy any more times. Additionally,
as we do not have access to a Franka Emika Panda robot, we
did not attempt to replicate the real-robot experiments.

A video of our replicated ground occlusion policy is shown
on our project page website.

V. ALGORITHMIC EXTENSION

A. Multiple Occlusion Types

While the original paper only considered grasps occluded
by the ground, we extend the possible occlusion types to side
occlusions and no occlusions. While ground occlusions are
defined as grasp positions where the end effector would need
to intersect with the ground to reach the grasp in the initial
configuration of the object, side occlusions are defined as grasp
positions where the end effector would need to intersect with
one of the side walls. We additionally consider unoccluded
grasps where the initial position is reachable from the top in
a basic pick-and-place maneuver. Figure 1 shows the types of
occlusions considered.

The two new types of grasp would not necessarily need
extrinsic dexterity, although there are ways to complete the
side occluded grasp using extrinsic dexterity. The side oc-
cluded grasp is reached without extrinsic dexterity by first
scraping the block away from the wall, then moving into
position to reach the grasp when it is no longer occluded.
The side occluded grasp is reached using extrinsic dexterity
by bumping the block into the wall, slightly rotating it towards
the wall and causing it to rebound away from the wall. That
leaves a gap for the gripper, which can then move into position
and pick the block up.

B. Policy Switching

In principal, a policy could be trained to handle multiple
cases, but we were unsuccessful in creating a single policy that
could handle all cases. Instead, we trained two policies: One
for ground occlusions, and the other for side occlusions and no
occlusions. We found that the policy trained on side occlusions
was able to pick up unoccluded configurations, despite those
configurations not being in its training data. During testing,
we have two possible ways to select a policy. We evaluate
with both methods.

1) Simple Size Selector: During testing, the simple size
selector decides which policy to use at the start of an episode.
This decision is made based on the dimensions of the block
and uses a simple algorithm rather than a neural network. The
basic logic of the algorithm is as follows: If the block could be
picked up from the top, we use the side occlusion policy. If the
block could be picked up from the side, we use the ground
occlusion policy. Otherwise, we determine that the block is
too large for the gripper and we do not attempt to pick it up.
A diagram showing the cases is in Figure 1 and the formal
algorithm is shown in Algorithm 1.

Algorithm 1 Simple Size Policy Selection
1: x← length of the block
2: y ← width of the block
3: z ← height of the block
4: g ← width of the gripper
5: if x < g or y < g then
6: SETPOLICY(SIDE)
7: else if z < g then
8: SETPOLICY(GROUND)
9: else

10: SETPOLICY(NONE)
11: end if

2) Q-Function Maximizer: The Q-function maximizer
picks the action that results in the highest Q-function value.
For each time step, we pass the current observations st and
goal η into both policies πg(st, η) and πs(st, η) to see what ac-
tion the robot would take given each policy. We then pass each
action along with the current observations into the Q-function
of the corresponding policy, yielding Qπ

g (st, πg(st, η), η) and
Qπ

s (st, πs(st, η), η). We perform the action that would yield
a higher Q-function value. If the ground Q-function yields a



Fig. 4. Marker points to calculate occlusion penalty. Figure reused from [1].

Fig. 5. Training Curve of Side Policy with Grasp Selection ADR

higher value than the side Q-function, we choose the action
output by the ground policy, and vice versa.

VI. EXPERIMENTS AND RESULTS

A. Training

We trained the side occlusion policy similar to the ground
occlusion policy given to us in the paper’s provided code. We
changed a few things to make training work with the side
occlusion. First, we changed the grasp selection method to
choose grasps from the top rather than the side. We also added
an additional penalty of how far outside the box the target
grasp was. Similar to the ground occlusion reward function
including a term to penalize the target grasp being inside the
ground, this extra penalty encouraged the arm to move the box
away from the side to where it was graspable. This penalty was
computed based on seven marker points on the target gripper,
as shown in Figure 4. If a marker is to the left of the left wall
of the bin, the distance to the wall is used as the penalty.

The side occlusion policy was trained with a 0.06 m × 0.20
m × 0.06 m block. This size is small enough to be picked up
from the top. The side occlusion policy was trained with grasp
selection ADR, starting with a single grasp in the middle of
the block and expanding outwards. Due to not having a real
robot to experiment on, we did not train with physics ADR.
A plot of the training curve is shown in Figure 5. As visible,
after 14 epochs the success rate rose to 100%.

An example of the side occlusion behavior is shown in
Figure 6. This policy uses extrinsic dexterity by first nudging

Occlusion Type Box Size [m] Distance to Wall [m]
Ground 0.15 × 0.20 × 0.05 0.00

Side 0.06 × 0.20 × 0.06 0.00
None 0.06 × 0.20 × 0.06 0.05-0.10

TABLE I
EVALUATION EXPERIMENT PARAMETERS

Occlusion Type Success Rate Mean Final Reward (less negative is better)
Ground 100% -0.71

Side 100% -0.75
None 100% -0.71

TABLE II
RESULTS OF SIMULATED GRASPS USING HARD-CODED SELECTOR

the block against the wall to create a gap, then scraping it
away from the wall and picking it up. To see a video of this
policy, please see our project webpage.

B. Evaluation Experimental Setup

During evaluation, we considered three possible cases:
ground occlusions, side occlusions, and no occlusions. The
box size and distance from the wall are shown in Table I. All
other parameters were set to the same between cases.

To evaluate, we simulated each occlusion type for ten
episodes and record the success percentage and average reward
per occlusion type. We simulated using both policy selectors
to compare them. Although the occlusion type was passed into
the environment setup, this information was not made directly
available to the robot.

C. Results

Table II shows the results of simulating each occlusion
type for ten episodes using the simple policy selector. Table
III shows the results for the Q-maximizer policy selector. In
both cases, the policies were 100% successful at grasping and
lifting the boxes in simulation. Additionally, both the simple
selection algorithm and Q-maximizer were able to find the
correct policy to use 100% of the time. In the test cases,
the Q-maximizer had a slightly better mean final reward,
but that is likely random variation. If more occlusion types
were considered, the Q-maximizer may be a better idea, as it
eliminates the need of a hand-crafted selector.

These results are hardly surprising given the limited cases
and controlled environment we tested in. It would be more
interesting to see if the policy selector could perform as well if
it was given bounding boxes of other, non-rectangular objects.

VII. CONCLUSIONS

This paper successfully replicated and extended the findings
of Zhou and Held’s work on extrinsic dexterity in robotic

Occlusion Type Success Rate Mean Final Reward (less negative is better)
Ground 100% -0.70

Side 100% -0.70
None 100% -0.71

TABLE III
RESULTS OF SIMULATED GRASPS USING Q-MAXIMIZER SELECTOR



Fig. 6. An example of the side occlusion policy successfully picking up a block.

manipulation [1]. Through the utilization of reinforcement
learning (RL), the study demonstrated the feasibility of achiev-
ing complex manipulation tasks with simple grippers by
leveraging the environment. The original work focused on
ground occlusions, where objects were partially obstructed by
the ground, and showed promising results. Our paper extends
their research to consider the additional occlusion types of
side occlusions and unoccluded grasps. By training separate
policies for different occlusion scenarios and implementing
a policy-switching algorithm, the study achieved successful
manipulation outcomes across various occlusion conditions.
The experiments conducted in simulation showcased high
success rates in grasping objects under different occlusion
types, indicating the effectiveness of the proposed approach.

The future research could explore several directions building
upon these findings. Firstly, further validation and experi-
mentation in real-world environments with physical robots
would be essential to assess the system’s performance and
generalization capabilities beyond simulation. It would also
be interesting to consider even more possible occlusion types.
We only considered side occlusions on one side of the bin,
but there are many more combinations of occlusion types and
object sizes that we did not train on. Additionally, extending
the approach to handle more complex object shapes and types
could enhance its practical utility in various applications.
To handle more complex shapes, it would be interesting to
consider using a richer representation of object shape, such
as a point cloud or voxels. The pose of the object works for
boxes but may not generalize to more complex objects.

Overall, our findings and extension contribute valuable
insights into the potential of extrinsic dexterity and reinforce-
ment learning in robotic manipulation, paving the way for
advancements in cost-effective and versatile robotic systems
capable of intricate manipulation tasks.
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