

DeepRob

Discussion 8 Prelude to Rigid Body Objects University of Michigan and University of Minnesota

Next Time: Rigid Body Objects

Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces

- SUM: Sequential scene understanding and manipulation, Sui et al., 2017 1.
- 2. <u>DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation</u>, Park et al., 2019
- 3. Implicit surface representations as layers in neural networks, Michalkiewicz et al., 2019
- iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022 4.

Seminar 4: Dense Descriptors, Category-level Representations

- Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018 1.
- 2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019
- 3. <u>kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation</u>, Manuelli et al., 2019
- Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022 4.

Last Time: 3D Perception

Data courtesy of Anthony Opipari, Liz Olson, Grant Gibson, and Arden Knoll

DR

Data courtesy of Anthony Opipari, Liz Olson, Grant Gibson, and Arden Knoll

Last Time: 3D Perception

This Time: Rigid Body Objects

Data courtesy of Anthony Opipari, Liz Olson, Grant Gibson, and Arden Knoll

Example Rigid Body Object

Example Rigid Body Object

Rigid body:

Model of an object that assumes no deformation is possible

I.e. Every pair of points on the object remain at constant distance

Aside: Digit is an Articulated Object

Aside: Digit is an Articulated Object

Articulated objects are composed of rigid bodies and connecting joints

Rigid Body Objects

Rigid Body Objects

Rigid body:

Model of an object that assumes no deformation is possible

I.e. Every pair of points on the object remain at constant distance

How to represent the 3D geometry of objects?

What roles can deep learning play?

Vertices: set of 3D coordinates

Vertices: set of 3D coordinates

Vertices: set of 3D coordinates

Rigid Body Objects: Explicit Representation

*O*_{torso}=(0, 0, 0)

Object 'origin' or 'coordinate frame'

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

Rigid Body Objects: Explicit Representation

Texture

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

Rigid Body Objects: Explicit Representation

O_{torso}=(0, 0, 0)

Common Geometry File Formats

- .obj (wavefront)
- .ply (polygon file format)
- .stl (standard tessellation language)
- .dae (collaborative design activity)

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

O_{torso}=(0, 0, 0)

Rigid Body Objects: Explicit Representation

Common Geometry File Formats

- .obj (wavefront)
- .ply (polygon file format)
- .stl (standard tessellation language)
- .dae (collaborative design activity)

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

O_{torso}=(0, 0, 0)

Rigid Body Objects: Explicit Representation

Human artists (e.g. <u>Sketchfab</u>, <u>cgtrader</u>) Photogrammetry algorithms (e.g. <u>Matterport</u>)

How to represent the 3D geometry of objects?

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

How to represent the 3D geometry of objects?

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

Pose: Position and orientation of object coordinate frame in world coordinate frame

*O*torso

How to represent the 3D geometry of objects?

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

Pose: Position and orientation of object coordinate frame in world coordinate frame

world

torso

 $O_{\rm torso}$

How to represent the 3D geometry of objects?

Vertices: set of 3D coordinates

Faces: set of polygons made by connecting subset of vertices

Texture Map: Map from image pixel on texture to object face

Pose: Position and orientation of object coordinate frame in world coordinate frame

Rigid Body Transformations

From Special Euclidean group, SE(3), meaning they preserve Euclidean distance

Can be decomposed into a rotation (3DoF) followed by a translation transform (3DoF) Rotations commonly expressed as <u>quaternions</u> Translations expressed as residuals (deltas)

Collections of Rigid Body Objects

Data courtesy of Anthony Opipari, Liz Olson, Grant Gibson, and Arden Knoll

Collections of Rigid Body Objects

Data courtesy of Anthony Opipari, Liz Olson, Grant Gibson, and Arden Knoll

Explicit Object Representations are Useful for Model-Driven Robotics

- Knowing object geometry and pose enables Collision-free motion planning Path planning and obstacle avoidance
- - Task planning
 - Goal-directed manipulation

Rigid Body Objects: Roles for Deep Learning

- 6DoF pose estimation
 - How to perceive from vision or tactile sensors?
- Implicit surfaces and signed distance functions
 - How to model an object's surface implicitly by a learned network?
- Dense object descriptors
 - How to extract features from a learned network that describe local and global object properties?
- Category-level representations
 - How to model geometry and pose for objects of varying shape but same semantic category?

DR

Next Time: Rigid Body Objects

Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces

- SUM: Sequential scene understanding and manipulation, Sui et al., 2017 1.
- 2. <u>DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation</u>, Park et al., 2019
- 3. Implicit surface representations as layers in neural networks, Michalkiewicz et al., 2019
- iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022 4.

Seminar 4: Dense Descriptors, Category-level Representations

- Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018 1.
- 2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019
- 3. <u>kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation</u>, Manuelli et al., 2019
- Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022 4.

DeepRob

Discussion 8 Prelude to Rigid Body Objects University of Michigan and University of Minnesota

