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Figure 2: Framework Overview. Given the input RGB image, the image encoder and feature extractor
(blue) predict the canonical mesh deformations �V , transformations [R�t] and per-pixel features. The mesh
encoder (green) predicts mesh per-vertex features. We compute the feature similarity matrix and bidirectional
correspondences (orange), which are used to transfer image pixel colors to mesh texture. Finally, we use
differentiable rendering to render the RGB image, segmentation mask and (optionally) depth map. The
framework is trained with reconstruction loss Lrecon and cycle-consistency loss Lcycle.

PointNet (Qi et al., 2017) to encode the deformed categorical mesh shape (Section 3.1) and extract the
vertex features. We compute the geometric correspondence between these two CSE feature maps and
use the correspondence to transfer the texture from a 2D image to a 3D shape. We project the textured
3D shape with a regressed pose to the 2D image, mask, and depth via differentiable rendering. We
compute the reconstruction losses against the 2D ground-truths (Section 3.2). However, reconstruction
alone does not provide enough constraint for learning the high-dimensional geometric correspondence.
We propose multi-level cycle-consistency losses (Section 3.3) to enforce the consistency of geometric
correspondence across instances and time. We summarize our training and inference in Section 3.4.

3.1 CANONICAL SHAPE PRIOR DEFORMATION

The first step of our model is to learn a categorical canonical shape prior. We choose to use a triangular
mesh S = {V̄,F}, where V̄ ∈ R3×N are canonical vertices and F ∈ R3×M are canonical faces that
encode the mesh topology. We use �V to model the deformation of each instance in the same
category, and the shape of an instance can be represented as V = V̄ +�V, where V̄ is a learnable
global shape and �V is predicted by our network given the input image. The shape prior not only
describes the approximate shape of the category, but also defines the canonical pose, such that the
6D pose estimation problem can turn into predicting the relative pose between the observed object
and the canonical mesh. Given an input image, we predict an implicit shape code ushape ∈ Rs with
our image encoder. Then, for each vertex on the canonical mean mesh, we concatenate the vertex
positions [xi, yi, zi] with the shape code ushape, and use a MLP fshape ∶ Rs+3 → R3 to predict the
per-vertex offset amount along 3 dimensions x, y, z to obtain �V.

3.2 CATEGORICAL SURFACE EMBEDDING AND CORRESPONDENCE

Once we have the deformed mesh based on the input image, we can extract the vertex features
using a PointNet (Qi et al., 2017) encoder (green box in Fig. 2) as {v1,�,vN} ∈ RN×d, where N is
the number of vertices of the given canonical shape and d is embedding dimension. We name this
per-vertex embedding as the Categorical Surface Embedding, for it introduces a shared embedding
space across all mesh instances in the same category. On the image side, we use a feature extractor
network to obtain the pixel-wise features {u1,�,uh×w} ∈ Rh×w×d, where h,w are the height and
width of the input image.

After extracting image features and vertex features, we measure the cosine distance between per-
pixel features and per-vertex features, from where we obtain the image-mesh and mesh-image
correspondence matrices via a Softmax normalization over all mesh vertices and over all pixels:

W
2D-3D
ij = exp (cos�ui,vj��⌧)∑i exp (cos�ui,vj��⌧) , W

3D-2D
ji = exp (cos�ui,vj��⌧)∑j exp (cos�ui,vj��⌧) . (1)
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Fig. 2: Neural network architecture for multimodal representation learning with self-supervision. The network takes data from three
different sensors as input: RGB images, F/T readings over a 32ms window, and end-effector position and velocity. It encodes and fuses
this data into a multimodal representation based on which controllers for contact-rich manipulation can be learned. This representation
learning network is trained end-to-end through self-supervision.

be obtained via automatic procedures rather than manual
labeling. Fig. 2 visualizes our representation learning model.

A. Modality Encoders
Our model encodes three types of sensory data available

to the robot: RGB images from a fixed camera, haptic
feedback from a wrist-mounted force-torque (F/T) sensor,
and proprioceptive data from the joint encoders of the robot
arm. The heterogeneous nature of this data requires domain-
specific encoders to capture the unique characteristics of each
modality. For visual feedback, we use a 6-layer convolutional
neural network (CNN) similar to FlowNet [22] to encode
128⇥128⇥3 RGB images. We add a fully-connected layer
to transform the final activation maps into a 128-d feature
vector. For haptic feedback, we take the last 32 readings
from the six-axis F/T sensor as a 32 ⇥ 6 time series and
perform 5-layer causal convolutions [39] with stride 2 to
transform the force readings into a 64-d feature vector. For
proprioception, we encode the current position and velocity
of the end-effector with a 2-layer multilayer perceptron
(MLP) to produce a 32-d feature vector. The resulting three
feature vectors are concatenated into one vector and passed
through the multimodal fusion module (2-layer MLP) to
produce the final 128-d multimodal representation.

B. Self-Supervised Predictions
The modality encoders have nearly half a million learnable

parameters and require a large amount of labeled training
data. To avoid manual annotation, we design training ob-
jectives for which labels can be automatically generated
through self-supervision. Furthermore, representations for
control should encode the action-related information. To
achieve this, we design two action-conditional representation
learning objectives. Given the next robot action and the
compact representation of the current sensory data, the model
has to predict (i) the optical flow generated by the action and
(ii) whether the end-effector will make contact with the envi-
ronment in the next control cycle. Ground-truth optical flow

annotations are automatically generated given proprioception
and known robot kinematics and geometry [22, 26]. Ground-
truth annotations of binary contact states are generated by
applying simple heuristics on the F/T readings.

The next action, i.e. the end-effector motion, is encoded by
a 2-layer MLP. Together with the multimodal representation
it forms the input to the flow and contact predictor. The
flow predictor uses a 6-layer convolutional decoder with
upsampling to produce a flow map of size 128⇥ 128⇥ 2.
Following [22], we use 4 skip connections. The contact
predictor is a 2-layer MLP and performs binary classification.

As discussed in Sec. II-B, there is concurrency between the
different sensory streams leading to correlations and redun-
dancy, e.g., seeing the peg, touching the box, and feeling the
force. We exploit this by introducing a third representation
learning objective that predicts whether two sensor streams
are temporally aligned [40]. During training, we sample a
mix of time-aligned multimodal data and randomly shifted
ones. The alignment predictor (a 2-layer MLP) takes the
low-dimensional representation as input and performs binary
classification of whether the input was aligned or not.

We train the action-conditional optical flow with endpoint
error (EPE) loss averaged over all pixels [22], and both
the contact prediction and the alignment prediction with
cross-entropy loss. During training, we minimize a sum of
the three losses end-to-end with stochastic gradient descent
on a dataset of rolled-out trajectories. Once trained, this
network produces a 128-d feature vector that compactly
represents multimodal data. This vector from the input to
the manipulation policy learned via reinforcement learning.

V. POLICY LEARNING AND CONTROLLER DESIGN

Our final goal is to equip a robot with a policy for perform-
ing contact-rich manipulation tasks that leverage multimodal
feedback. Though it is possible to engineer controllers for
specific instances of these tasks [48, 56], this effort is difficult
to scale to the large variability of real-world tasks. Therefore,
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Figure 1: Overview of VICRegL: Learning local and global features with VICReg. Given a seed
image, two views are produced and fed to an encoder that produces local features. The features
are further processed by a local projector that embed them into a smaller space, without destroying
the localization information. Two matchings, one based on the spatial information provided by
the transformation between the views, the other one based on the l

2-distance in the embedding
space are computed, and the VICReg criterion is then applied between matched spatial embeddings.
Additionally, the local features from the encoder are pooled together, and the pooled features are fed
to a global expander. The VICReg criterion is finally applied between the two resulting embeddings.

are kept. The location-based matching loss function is defined as follows:

Ls(z, z
Õ) =

ÿ

pœP

l(zp, z
Õ
NN(p)), (2)

where the sum is over coordinates p in P = {(h, w) | (h, w) œ [1, ..., H] ◊ [1, ..., W ]} the set of all
coordinates in the feature map, and NN(p) denotes the (spatially) closest coordinate p

Õ to p according
to the actual distance in the seed image.

Feature-based matching. In addition to matching features that are close in terms of location in the
original image, we match features that are close in the embedding space. Each feature vector zp at
position p is matched to its nearest neighbor in z

Õ according to the l
2 distance in the embedding space,

and among the H ◊ W resulting pairs, only the top-“ pairs are kept. The feature-based matching
loss function is defined as follows:

Ld(z, z
Õ) =

ÿ

pœP

l(zp, NNÕ(zp)), (3)

where the sum is over coordinates p in P and NNÕ(zp) denotes the closest feature vector to zp in the
feature maps z

Õ, in terms of the l
2-distance. Similar to the location-based loss function, the feature-

based loss function enforces invariance on a local scale, but between vectors that are close in the
embedding space, and not necessarily pooled from the same location in the seed image. The purpose
of this loss function is mainly to capture long-range interactions not captured by the location-based
matching.

The general idea of top-“ filtering is to eliminate the mismatched pairs of feature vectors that are too
far away in the image for the location-based matching, and that therefore probably do not represent
the same objects, but most importantly that are probably mismatched for the feature-based matching,
especially at the beginning of the training when the network matches feature vectors representing
different objects or textures. Sometime, two views don’t or barely overlap, for the feature-based
matching this is not an issue, as the purpose of this matching is to capture long-range interactions not
captured by location-based matching. For the location-based matching, given the parameters we use
to generate the views (each view covers between 8% and 100% of the image, chosen uniformly), the
probability for the views to not overlap is small, and even in that case matching the closest points
between the views does not degrade the final performance. Indeed, we have tried to use a variable
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Real-Time Grasp Detection

2 Andreas ten Pas and Robert Platt

paper, we propose an algorithm that detects grasps in a point cloud by predicting
the presence of necessary and su�cient geometric conditions for grasping. The
algorithm has two steps. First, we sample a large set of grasp hypotheses. Then,
we classify those hypotheses as grasps or not using machine learning. Geometric
information is used in both steps. First, we use geometry to reduce the size of
the sample space. A trivial necessary condition for a grasp to exist is that the

Fig. 1. Our algorithm is able to localize and
grasp novel objects in dense clutter.

hand must be collision-free and part
of the object surface must be con-
tained between the two fingers. We
propose a sampling method that only
produces hypotheses that satisfy this
condition. This simple step should
boost detection accuracy relative to
approaches that consider every possi-
ble hand placement a valid hypoth-
esis. The second way that our algo-
rithm uses geometric information is to
automatically label the training set. A
necessary and su�cient condition for
a two-finger grasp is an antipodal con-
tact configuration (see Definition 1).
Unfortunately, we cannot reliably de-
tect an antipodal configuration in most real-world point clouds because of occlu-
sions. However, it is nevertheless possible sometimes to verify a grasp using this
condition. We use the antipodal condition to label a subset of grasp hypothe-
ses in arbitrary point clouds containing ordinary graspable objects. We generate
large amounts of training data this way because it is relatively easy to take lots
of range images of ordinary objects. This is a huge advantage relative to ap-
proaches that depend on human annotations because large amounts of training
data can significantly improve classification performance.

Our experiments indicate that the approach described above performs well
in practice. We find that without using any machine learning and just using our
collision-free sampling algorithm as a grasp detection method, we achieve a 73%
grasp success rate for novel objects. This is remarkable because this is a trivially
simple detection criterion. When a classification step is added to the process,
our grasp success rate jumps to 88%. This success rate is competitive with the
best results that have been reported. However, what is particularly interesting is
the fact that our algorithm achieves an average 73% grasp success rate in dense
clutter such as that shown in Figure 1. This is exciting because dense clutter is
a worst-case scenario for grasping. Clutter creates lots of occlusions that make
perception more di�cult and obstacles that make reaching and grasping harder.

1.1 Related Work

The idea of searching an image for grasp targets independently of object identity
was probably explored first in Saxena’s early work that used a sliding window

Using Geometry to Detect Grasps

[3] Mahler et al., RSS 2017

Dex-Net 2.0: Deep Learning to Plan Robust
Grasps with Synthetic Point Clouds

and Analytic Grasp Metrics
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Abstract—To reduce data collection time for deep learning of

robust robotic grasp plans, we explore training from a synthetic

dataset of 6.7 million point clouds, grasps, and analytic grasp

metrics generated from thousands of 3D models from Dex-Net 1.0

in randomized poses on a table. We use the resulting dataset, Dex-

Net 2.0, to train a Grasp Quality Convolutional Neural Network

(GQ-CNN) model that rapidly predicts the probability of success

of grasps from depth images, where grasps are specified as the

planar position, angle, and depth of a gripper relative to an

RGB-D sensor. Experiments with over 1,000 trials on an ABB

YuMi comparing grasp planning methods on singulated objects

suggest that a GQ-CNN trained with only synthetic data from

Dex-Net 2.0 can be used to plan grasps in 0.8s with a success

rate of 93% on eight known objects with adversarial geometry

and is 3⇥ faster than registering point clouds to a precomputed

dataset of objects and indexing grasps. The Dex-Net 2.0 grasp

planner also has the highest success rate on a dataset of 10

novel rigid objects and achieves 99% precision (one false positive

out of 69 grasps classified as robust) on a dataset of 40 novel

household objects, some of which are articulated or deformable.

Code, datasets, videos, and supplementary material are available

at http://berkeleyautomation.github.io/dex-net.

I. INTRODUCTION

Reliable robotic grasping is challenging due to imprecision
in sensing and actuation, which leads to uncertainty about
properties such as object shape, pose, material properties, and
mass. Recent results suggest that deep neural networks trained
on large datasets of human grasp labels [31] or physical grasp
outcomes [40] can be used to plan grasps that are successful
across a wide variety of objects directly from images or
point clouds, similar to generalization results in computer
vision [28]. However, data collection requires either tedious
human labeling [25] or months of execution time on a physical
system [32].

An alternative approach is to plan grasps using physics-
based analyses such as caging [46], grasp wrench space
(GWS) analysis [44], robust GWS analysis [56], or sim-
ulation [25], which can be rapidly computed using Cloud
Computing [27]. However, these methods assume a separate
perception system that estimates properties such as object
shape or pose either perfectly [44] or according to known
Gaussian distributions [34]. This is prone to errors [2], may

Fig. 1: Dex-Net 2.0 Architecture. (Center) The Grasp Quality Convolutional
Neural Network (GQ-CNN) is trained offline to predict the robustness
candidate grasps from depth images using a dataset of 6.7 million synthetic
point clouds, grasps, and associated robust grasp metrics computed with Dex-
Net 1.0. (Left) When an object is presented to the robot, a depth camera
returns a 3D point cloud, where pairs of antipodal points identify a set of
several hundred grasp candidates. (Right) The GQ-CNN rapidly determines
the most robust grasp candidate, which is executed with the ABB YuMi robot.

not generalize well to new objects, and can be slow to
match point clouds to known models during execution [13].
In this paper we instead consider predicting grasp success
directly from depth images by training a deep Convolutional
Neural Network (CNN) on a massive dataset of parallel-jaw
grasps, grasp metrics, and rendered point clouds generated
using analytic models of robust grasping and image forma-
tion [18, 35], building upon recent research on classifying
force closure grasps [15, 51] and the outcomes of dynamic
grasping simulations [24, 25, 54].

Our primary contributions are: 1) the Dexterity Network
(Dex-Net) 2.0, a dataset associating 6.7 million point clouds
and analytic grasp quality metrics with parallel-jaw grasps
planned using robust quasi-static GWS analysis on a dataset
of 1,500 3D object models, 2) a Grasp Quality Convolutional
Neural Network (GQ-CNN) model trained to classify robust
grasps in depth images using expected epsilon quality as
supervision, where each grasp is specified as a planar pose
and depth relative to a camera, and 3) a grasp planning method
that samples antipodal grasp candidates and ranks them with
a GQ-CNN.

In over 1,000 physical trials of grasping single objects on
a tabletop with an ABB YuMi robot, we compare Dex-Net
2.0 to image-based grasp heuristics, a random forest [51], an
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Fig. 2. Training Data Pipeline. We place object meshes with dense grasp annotations from the ACRONYM dataset [32] at random stable poses in scenes.
Grasp poses that produce gripper model collisions are removed. Resulting grasps are mapped to their contacts on the mesh surface. During training, we
sample virtual cameras to render point clouds from the scenes. We consider recorded points (yellow) as positive contacts if there exists a mesh contact
(blue) in a 5mm radius and associate the grasp transformation belonging to the closest mesh contact to them. These per-point annotations are used to
supervise the Contact Grasp Network.

Fig. 3. Our grasp representation: c depicts an observed contact point. a
and b constitute the 3-DoF rotation, w is the predicted grasp width, d the
distance from baseline to base frame. In pink we show the five gripper
points v that we used in the ladd�s loss.

been shown to be difficult in grasping [11] and also in related
fields such as object pose estimation [33].

A. Grasp Representation

For these reasons, finding an efficient grasp representation
is crucial to solve this task using learning-based methods.
This representation should generalize well to unseen objects
and handle the high-dimensional output space well.

Contact Grasp Representation: We observe that for
most predictable two-finger grasps at least one of the two
contacts is visible prior to grasping. In contrast, grasps
without any visible contact are often ambiguous or do not
preserve the initial object pose after grasping. Therefore, we
map a distribution of successful 6-DoF ground truth grasps
g 2 G to their corresponding contact points c 2 R3. Since
visible contact points are bound to lie on surfaces that we
can observe with a depth sensor, we can represent their 3D
location by nearby points in a recorded point cloud.

Given that we can predict whether observed points are
suitable grasp contacts, we can thus reduce the 6-DoF grasp

learning problem to estimating the 3-DoF grasp rotation
Rg 2 R3⇥3 and grasp width w 2 R of a parallel-yaw gripper.

Starting from a contact point c 2 R3, where the gripper
baseline intersects the mesh, we depict a 6-DoF grasp pose
g 2 G defined by (Rg, tg) 2 SE(3) and grasp width w 2 R
as

tg = c+
w

2
b+ da (1)

Rg =

2

4
| | |
b a⇥ b a
| | |

3

5 , (2)

where a 2 R3, ||a|| = 1 is the approach vector, b 2
R3, ||b|| = 1 is the grasp baseline vector, and d 2 R is the
constant distance from the gripper baseline to the gripper
base. Our grasp representation is depicted in Figure 3.

The reduced dimensionality greatly facilitates the learning
process compared to methods that estimate grasp poses in
unconstrained SE(3) space. It also increases the pose accu-
racy of predicted grasps as they are bound to the geometry
of the observed scene. In contrast to axis-angle representa-
tions, our rotation representation has neither ambiguities nor
discontinuities. Moreover, at test time we can sample grasp
proposals by sampling contact points that cover the whole
observable surface of the scene/object and thus represent the
modes of the 6-DoF grasp distribution well. While a 3D
view on the scene is preferable, even a frontal view on a
box produces reasonable grasps due to the radial mapping.

Point Set Networks such as PointNet++ [34] effectively
process point clouds and hierarchically aggregate points
and their feature representations in local 3D neighborhoods.
Their predictions can be directly associated to 3D points in
the input point cloud and our proposed grasp representation
exploits this ability.

B. Data Generation

To learn the full distribution of stable 6-DoF grasps,
diverse and dense grasp pose annotations are required. We
used the ACRONYM dataset [32], which consists of 8872
meshes from the Shapenet dataset [35] and 17.7 million

[5] Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, Robert Platt. “Sample Efficient Grasp Learning Using Equivariant Models” RSS, 2022.

(a) 86 GraspNet-1B objects used (b) Pybullet simulation (c) Depth image

Fig. 3. (a) The 86 objects used in our simulation experiments drawn from the GraspNet-1Billion dataset [10]. (b) Phybullet simulation. (c) State is a top-down
image of the grasp scene.

or until 30 grasp attempts have been made at which point the
episode terminates and the environment is reinitialized.

B. Comparison Against Baselines
1) Baseline Model Architectures: We compare our method

against two different model architectures from the literature:
VPG [42] and FC-GQ-CNN [29]. Each model is evaluated
alone and then with two different data augmentation strategies
(soft equ and RAD). In all cases, we use the contextual
bandit formulation described in Section IV-B. The baseline
model architectures are: VPG: Architecture used for grasping
in [42]. This model is a fully convolutional network (FCN)
with a single-channel output. The Q value of different gripper
orientations is evaluated by rotating the input image. We
ignore the pushing functionality of VPG. FC-GQ-CNN: Model
architecture used in [29]. This is an FCN with 8-channel output
that associates each grasp rotation to a channel of the output.
During training, our model uses Boltzmann exploration with
a temperature of ⌧ = 0.01 while the baselines use ✏-greedy
exploration starting with ✏ = 50% and ending with ✏ = 10%

over 500 grasps (this follows the original implementation
in [42]).

2) Data Augmentation Strategies: The data augmentation
strategies are: n⇥ RAD: The method from [18] where we
perform n SGD steps after each grasp sample, where each
SGD step is taken over a mini-batch of samples for which
the observation and action have been randomly translated
and rotated. n⇥ soft equ: same as n⇥ RAD except that we
produce a mini-batch by drawing bs/n (where bs is the batch
size) samples and then randomly augmenting those samples n
times. Details can be found in Appendix C.

3) Results: The learning curves of Figure 4 show grasp
success rate versus number of grasp attempts. Figure 4a shows
on-line learning performance. Our method uses Boltzmann
exploration while the baselines use ✏-greedy as described
above. Each curve connects data points evaluated every 150
grasp attempts. Each data point is the average success rate
over the last 150 grasps (therefore, the first data point occurs
at 150). Figure 4b shows near-greedy performance by stopping
training every 150 grasp attempts and performing 1000 test

(a) Training (b) Testing

Fig. 4. Comparison with baselines. All lines are an average of four runs.
Shading denotes standard error. (a) shows learning curves as a running average
over the last 150 training grasps. (b) shows average near-greedy performance
of 1000 validation grasps performed every 150 training steps.

grasps and reporting average performance over these 1000
test grasps. Our method tests at a lower test temperature of
⌧ = 0.002 while the baselines test pure greedy behavior.

4) Discussion of Results: Generally, our proposed equivari-
ant model convincingly outperforms the baseline methods and
data augmentation strategies. In particular, Figure 4b shows
that the grasp success rate of the near-greedy policy learned
by the equivariant model after 150 grasp attempts is at least
as good as that learned by any of the other baselines methods
after 1500 grasp attempts. Notice that each of the two data
augmentation methods we consider (RAD and soft equ) have
a positive effect on the baseline methods. However, after
training for the full 1500 grasp attempts, our equivariant model
converges to the highest grasp success rate (93.9± 0.4%).

C. Ablation Study
There are three main parts to the approach described in

this paper: 1) use of equivarant convolutional layers instead
of standard convolution layers; 2) use of the augmentated
state representation (ASR) instead of a single network; 3)
the various optimizations described in Section IV-E. Here, we
evaluate performance of the method when ablating each of
these three parts.

1) Ablations: In no equ, we replace all equivariant layers
with standard convolutional layers. In no ASR, we replace

https://arxiv.org/abs/1412.3128
https://arxiv.org/abs/1501.03100
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/2103.14127


Visuotactile Affordances for Cloth Manipulation with
Local Control

Neha Sunil⇤1, Shaoxiong Wang⇤1, Yu She2, Edward Adelson1, Alberto Rodriguez1
1Massachusetts Institute of Technology 2Purdue University

<nsunil, wang sx, albertor>@mit.edu shey@purdue.edu adelson@csail.mit.edu

Abstract: Cloth in the real world is often crumpled, self-occluded, or folded in
on itself such that key regions, such as corners, are not directly graspable, mak-
ing manipulation difficult. We propose a system that leverages visual and tactile
perception to unfold the cloth via grasping and sliding on edges. By doing so,
the robot is able to grasp two adjacent corners, enabling subsequent manipula-
tion tasks like folding or hanging. As components of this system, we develop
tactile perception networks that classify whether an edge is grasped and estimate
the pose of the edge. We use the edge classification network to supervise a vi-
suotactile edge grasp affordance network that can grasp edges with a 90% success
rate. Once an edge is grasped, we demonstrate that the robot can slide along the
cloth to the adjacent corner using tactile pose estimation/control in real time. See
http://nehasunil.com/visuotactile/visuotactile.html for videos.

Keywords: Multi-modal learning, Cloth manipulation, Tactile control

Figure 1: Visuotactile affordance for sliding. Using the visual depth image as input, our affordance
network scores each pixel in terms of potential edge grasp success. The affordance image shown is
trained first in simulation and then fine-tuned with tactile self-supervision from real grasps. In this
particular cloth configuration, the adjacent corner is not directly visible or graspable, motivating first
grasping an edge and then sliding. We demonstrate tactile sliding in two configurations: (a) sliding
down with the cloth in a stable configuration and (b) horizontal sliding suitable for longer towels.

1 Introduction

The robotic manipulation of highly deformable objects is a growing research area due to its applica-
bility in various fields such as assembling cable harnesses in factories, industrial garment manufac-
turing, and assisted dressing and laundry folding in the home and healthcare industry. Our goal is a

⇤Authors with equal contribution.
This work was done at MIT.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.
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Figure 3: Action-conditioned visuo-tactile model network architecture.

original GelSight RGB images to 256⇥256, and subsequently
(for data augmentation) sample random 224⇥224 crops. This
kind of image resolution is standard for CNN-based object
recognition in computer vision, though it is substantially lower
than the native resolution of the GelSight. Although we did
not investigate the effect of image resolution on performance,
this is an interesting question for future work.

a) Network design: We process each image using a con-
volutional network. Specifically, we use the penultimate layer
of a 50-layer deep residual network [39]. We further emphasize
deformations in each GelSight image through background
subtraction i.e., we pass the neural network the difference
of the GelSight images before and after contact. The action
network is a multi-layer perceptron consisting of two fully-
connected layers with 1024 hidden units each. This network
takes as input vector representations of the action and pose.
The action is a 5-dimensional vector consisting of a 3D
motion, in-plane rotation, and change in force. Likewise, the
end effector pose is a 4-dimensional vector represented by
position and angle. Moreover, we also provided the network
with the 3D motion transformed into the gripper’s coordinate
system. To fuse these networks, we concatenate the outputs of
the four input branches (camera image, two GelSight images,
and the action network), and then pass them through a two-
layer fully-connected network that produces a grasp success
probability. The first layer of this fusion network contains 1024
hidden units. Our model architecture is shown in Fig. 3.

b) Training: To speed up training, we pretrain these
networks using weights from a model trained to classify
objects on ImageNet [40], and we tie the weights of the two
tactile networks. We then jointly optimize the model with
a batch size of 16 for 9,000 iterations (using a dataset of
18,070 examples), lowering the learning rate by a factor of
10 after 7000 iterations.

B. Regrasp Optimization
Once the action-conditional model f has been learned,

we use it to select the action that maximize the expected
probability of success of the grasp after performing the action

a⇤
t = arg maxa f (st,a) . (1)

We perform this optimization using stochastic search: we
randomly sample potential actions and predict the success
probability using the learned model f , and then select the
action with the highest success probability. Although this
optimization can be computationally expensive (in our exper-
iments, approximately 0.6 s for 5000 samples), in practice we
find that it performs well.

V. DATA COLLECTION

To collect the data necessary to train our model, we de-
signed a self-supervised automated data collection process.
In each trial, depth data from the front Kinect was used to
approximately identify the starting position of the object and
enclose it within a cylinder. We then set the end-effector (x, y)
coordinates to the position of the center of the cylinder plus a
small random perturbation, and set its height to be a random
value between the floor and the height of the cylinder. Its
orientation � was set uniformly at random. Moreover, we
randomized the gripping force F to collect a large variety
of behaviors, from firm, stable grasps, to occasional slips, to
overly gentle grasps that fail more often. After moving to the
chosen position and orientation, and closing the gripper with
the desired gripping force, the gripper attempt to lift the object
and wait in the air for 4 s. If the object was still in the gripper
at the end of this time, the robot would place the object back
at a randomized position, and a new trial would start.

The labels for this data (i.e., whether the grasp was suc-
cessful) were also automatically generated using deep neural
network classifiers (running two instances, one for each finger)
trained to detect contacts using the raw GelSight images
observed1. We performed additional manual labeling on a
small set of samples for which the automatic classification
was borderline ambiguous (e.g., if both sensor were not
confident of the presence of contacts after lifting), or in the
rare cases when a visual inspection would indicate a wrong

1This model was initially trained using manually collected data, and
iteratively fine-tuned in a self-supervised manner using the very same au-
tomatically collected, but manually labeled, data.

Figure 1: Tactile pose estimation. (Bottom row) In simulation, we render geometric contact shapes
of the object from a dense set of possible contacts between object and tactile sensor. (Top row) The
real sensor generates a tactile image from which we estimate its geometric contact shape. We then
match it against the simulated set of contact shapes to find the distribution of contact poses that are
more likely to have generated it. For efficiency and robustness, we do the contact shape matching in
an embedding learned for that particular object.

Accounting by the discriminative power of tactile sensing, the proposed approach is motivated by
scenarios where the main requirement is estimation accuracy and where object models will be avail-
able beforehand. Many industrial scenarios fit this category.

Most previous solutions to tactile pose estimation require prior exploration of the object [5, 6]. Ac-
quiring this tactile experience can be expensive, and in many cases, unrealistic. In this paper, instead,
we learn the perception model directly from the object geometry. The results in Sec. 4 show that the
model learned in simulation directly transfers to the real world. We attribute this both to the object-
specific nature of the learned model and to the high-resolution nature of the tactile sensors used.

Also, key to the approach is that, by simulating a dense set of tactile imprints, the algorithm can
reason over pose distributions, not only the best estimate. The learned embedding allows us to
efficiently compute the likelihood of each contact shape in the simulated dense set to match with the
predicted contact shape from the tactile sensor. This results in a probability distribution over object
poses rather than just a single pose estimate. Predicting distributions is key given that tactile sensing
provides local observations, which sometimes might not be sufficiently discriminative.

Finally, by maintaining probability distributions in pose space, we can incorporate extra constraints
over the likelihood of each pose. We illustrate it in the case of multi-contact, where information from
multiple tactile observations must be combined simultaneously. By operating in a discretization of
the pose space, the framework can potentially handle other pose constraints including those coming
from other perception systems (e.g., vision), previous observations, or kinematics.

In summary, the main contribution of this work is a framework for tactile pose estimation for objects
with known geometry, with the following primary strengths:

1. Provides accurate pose estimation from the first touch, without requiring any previous in-
teractions with the object.

2. Reasons over pose distributions by efficiently computing probabilities between a real con-
tact shape and a dense set of simulated contact shapes.

3. Integrates pose constraints, such as those arising from multi-contact scenarios where mul-
tiple observations and sensor poses must be considered.

2 Related Work

Tactile perception has been extensively explored in the robotics community. Relevant to this paper,
this has resulted in the development of high-resolution tactile sensors and their use in a wide range of
robotic manipulation applications. In this section, we review works that study tactile pose estimation
and refer the reader to [7] for a more in-depth review of tactile applications.

2

ShapeMap 3-D: Efficient shape mapping through dense touch and vision

Sudharshan Suresh⇤ 1, Zilin Si⇤ 1,
Joshua G. Mangelson2, Wenzhen Yuan1, and Michael Kaess1

Abstract— Knowledge of 3-D object shape is of great im-
portance to robot manipulation tasks, but may not be readily
available in unstructured environments. While vision is often
occluded during robot-object interaction, high-resolution tactile
sensors can give a dense local perspective of the object.
However, tactile sensors have limited sensing area and the shape
representation must faithfully approximate non-contact areas.
In addition, a key challenge is efficiently incorporating these
dense tactile measurements into a 3-D mapping framework. In
this work, we propose an incremental shape mapping method
using a GelSight tactile sensor and a depth camera. Local shape
is recovered from tactile images via a learned model trained
in simulation. Through efficient inference on a spatial factor
graph informed by a Gaussian process, we build an implicit
surface representation of the object. We demonstrate visuo-
tactile mapping in both simulated and real-world experiments,
to incrementally build 3-D reconstructions of household objects.

I. INTRODUCTION

For general-purpose manipulation in unstructured scenes,
robots must have accurate understanding of object properties.
In particular, knowledge of 3-D shape and its uncertainty
enables a breadth of downstream tasks like grasping, dex-
terous manipulation, and non-prehensile actions. Agents in
household or warehouse environments may encounter apriori
unknown objects, which they must reconstruct on the fly.

Vision and depth-based 3-D perception is well-studied [1],
but can often fail in the context of manipulation. During
some interactions, we only partially observe the scene due
to self-occlusion, occlusion from clutter, and fixed viewpoint.
Also, visual sensing is degraded by poor illumination, limited
range, and ambiguities from transparent or specular objects.

Studies show humans can optimally fuse touch and vision
to reconstruct shape [2], reinforcing their complementarity.
Vision gives coarse global context, while touch gives precise
local information. The development of vision-based tactile
sensing [3, 4, 5, 6, 7, 8, 9, 10], like the GelSight [4], has led
to renewed interest in the shape mapping problem. Fusing
both modalities requires globally integrating tactile signals
at the distal end, joint kinematics, and vision.

⇤Authors with equal contribution
1Sudharshan Suresh, Zilin Si, Wenzhen Yuan, and Michael Kaess are

with the Robotics Institute, Carnegie Mellon University <sudhars1, zsi,
wenzheny, kaess>@andrew.cmu.edu

2Joshua G. Mangelson is with the Electrical and Computer Engineering
Department, Brigham Young University joshua_mangelson@byu.edu

This work was partially supported by the National Science Foundation
under award IIS-2008279. We thank Timothy Man for sensor hardware
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Code: www.github.com/rpl-cmu/shape-map-3D
Dataset: www.github.com/CMURoboTouch/YCB-Sight

GelSight images

Depth-map

Incremental shape estimation

Depth only 20 touches 40 touches

Implicit surface 

Uncertainty

Fig. 1: We perform incremental 3-D shape mapping with a vision-based
tactile sensor, GelSight, and an overlooking depth-camera. We combine
multi-modal sensor measurements into our Gaussian process spatial graph
(GP-SG), for efficient incremental mapping. The depth-camera gives us an
occluded noisy estimate of 3-D shape, after which we sequentially add
tactile measurements as Gaussian potentials into our GP-SG. The tactile
measurements are recovered from GelSight images via a learned model
trained in simulation. The results demonstrate accurate implicit surface
reconstruction and uncertainty prediction for interactive perception tasks.

Vision-based touch has higher spatial acuity than point-
contact or tactile arrays, which lends itself to 3-D recon-
struction [11, 12, 13, 14]. A key challenge is to efficiently
incorporating these dense measurements into a 3-D mapping
framework. Moreover, the tactile sensor’s coverage is limited
by its size and durability, and cameras only provide partial
visibility of the object. It’s desired that a shape representation
can faithfully approximate regions lacking measurements.

In this paper, we propose a framework that incrementally
reconstructs tabletop 3-D objects from a sequence of tactile
images and a noisy depth-map (Figure 1). We leverage
optical tactile simulation to learn local shape from GelSight-
object interactions. We represent 3-D shape as a signed dis-
tance function (SDF) sampled from a Gaussian process (GP),
and re-formulate shape mapping as probabilistic inference
on a spatial graph. We show that visuo-tactile measurements
can be incorporated into a factor graph as local Gaussian
potentials. This affords efficient access to the implicit sur-
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(a) RT-1 takes images and natural language instructions and outputs discretized base and arm actions. Despite
its size (35M parameters), it does this at 3 Hz, due to its efficient yet high-capacity architecture: a FiLM (Perez
et al., 2018) conditioned EfficientNet (Tan & Le, 2019), a TokenLearner (Ryoo et al., 2021), and a Trans-
former (Vaswani et al., 2017).

(b) RT-1’s large-scale, real-world training (130k demonstrations) and evaluation (3000 real-world trials) show
impressive generalization, robustness, and ability to learn from diverse data.

Figure 1: A high-level overview of RT-1’s architecture, dataset, and evaluation.

The two main challenges lie in assembling the right dataset and designing the right model. While
data collection and curation is often the “unsung hero” of many large-scale machine learning
projects (Radford et al., 2021; Ramesh et al., 2021), this is especially true in robotics, where datasets
are often robot-specific and gathered manually (Dasari et al., 2019; Ebert et al., 2021). As we will
show in our evaluations, good generalization requires datasets that combine both scale and breadth,
covering a variety of tasks and settings. At the same time, the tasks in the dataset should be suffi-
ciently well-connected to enable generalization, such that the model can discover the patterns be-
tween structural similar tasks and perform new tasks that combine those patterns in novel ways. We
utilize a dataset that we gathered over the course of 17 months with a fleet of 13 robots, containing
⇠130k episodes and over 700 tasks, and we ablate various aspects of this dataset in our evaluation.

The second challenge lies in the design of the model itself. Effective robotic multi-task learning
requires a high capacity model, and Transformer (Vaswani et al., 2017) models excel in this regard,
particularly when it is necessary to learn many tasks conditioned, as in our case, on language instruc-
tions. However, robotic controllers must also be efficient enough to run in real time, which presents
a major challenge for Transformers in particular. We propose a novel architecture that we call RT-1
(Robotics Transformer 1), which by encoding high-dimensional inputs and outputs, including cam-
era images, instructions and motor commands into compact token representations to be used by the
Transformer, allows for efficient inference at runtime to make real-time control feasible.

Our contribution is the RT-1 model and experiments with this model on a large and broad dataset of
real-world robotic tasks. Our experiments not only demonstrate that RT-1 can exhibit significantly
improved generalization and robustness compared to prior techniques, but also evaluate and ablate
many design choices in both the model and in the composition of the training set. Our results show
that RT-1 can perform over 700 training instructions at 97% success rate, and can generalize to new
tasks, distractors, and backgrounds 25%, 36% and 18% better than the next best baseline, respec-
tively. This level of performance allows us to execute very long-horizon tasks in the SayCan (Ahn
et al., 2022) framework, with as many as 50 stages. We further show that RT-1 can incorporate data
from simulation or even other robot types, retaining performance on the original tasks and improving
generalization to new scenarios. A short overview of RT-1 capabilities is presented in Fig. 1b2.

2Helper robots shown in Fig. 1-5 are from Everyday Robots

2

Real-World Robotic Tasks
Two robots (xArm, Allegro hand)
Eight tasks (scenes, objects)

In-the-Wild Data
Over 4.5 million images
Five diverse data sources

Masked Autoencoder

Encoder

Decoder

(b) Autoencoder(a) Masking

Figure 1: Real-world robot learning with masked visual pre-training. We learn visual represen-
tations from a massive collection of Internet and egocentric data. We pre-train representations with
masked image modeling, freeze the encoder, and learn control policies for robotic tasks on top.

We evaluate our approach in an extensive real-world study and report results from 981 real-world
experiments. We consider basic motor control tasks (reach, push, pick), as well as tasks with varia-
tions in scenes and objects (Figure 1, right). We find that our approach achieves considerably higher
performance than CLIP (up to 75%), supervised pre-training (up to 81%), and training from scratch
(up to 81%). Furthermore, we observe that our representations lead to large improvements in sample
complexity, reaching the strongest baseline performance with half the number of demonstrations.

In addition, we demonstrate the benefits of scaling visual pre-training for robotics by training a
307M parameter vision encoder [9] on a massive collection of 4.5M images from ImageNet [11],
Epic Kitchens [17], Something Something [12], 100 Days of Hands [13], and Ego4D [15] datasets.
Importantly, we observe that it is not sufficient to scale the model alone and that larger models
require bigger datasets. To the best of our knowledge, ours is the largest vision model deployed for
robotics, and demonstrates clearly the benefits of visual pre-training scale for robot learning.

2 Related Work

End-to-end control is concerned with learning to predict robot actions (e.g., joint velocities, end-
effector poses, etc) directly from observations [18, 19, 20], without the need to perform explicit 3D
pose estimation [21], grasp planning [22], and motion planning [23]. However, these end-to-end
approaches tend to be too sample inefficient for real-world training. Some works have tried to find
a balance between these explicitly pipelined approaches and end-to-end approaches [24, 25, 26].

Supervised pre-training for robotics learns one or more pretext tasks through strong supervision
and then transfers the representations to downstream robotic tasks. Lin et al. [27] shows that rep-
resentations learned from semantic tasks such as detection and segmentation correlate with affor-
dance maps for object manipulation. Shridhar et al. [28] use language-supervised CLIP model [29]
for learning language-conditioned imitation policy. In concurrent work, Nair et al. [30] explore
pre-training visual representations using time contrastive learning and language descriptions from
human annotators. These methods all require expert labels or cross-domain supervision.

Self-supervised learning in robotics has been explored as a means of improving sample efficiency.
Examples include: learning a dynamic model from interaction with environments [31]; learning
visual representation from interaction with environments [32]; learning vision-based policies on
self-collected trajectories [33, 34]; learning visual autoencoders on trajectories [35]; learning spa-
tiotemporal representations through videos [36, 37]; learning visual correspondence [38]; utilizing
non-parametric nearest-neighbor retrieval [39]; and conducting visual self-supervised learning on
pre-collected demonstrations [40]. These methods require in-domain data collection, and thus may
be difficult to extend beyond the training environment and task. In contrast, our approach uses a
large-scale and diverse collection of real-world images and videos, making it more generalizable.

2

[2] Mohit Shridhar, Lucas Manuelli, Dieter Fox. “CLIPort: What and Where Pathways for Robotic Manipulation” CoRL, 2021.
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Pre-training for Robot Manipulation 
and Transformer Architectures

SORNet: Spatial Object-Centric Representations for

Sequential Manipulation

Wentao Yuan

University of Washington
Chris Paxton

NVIDIA
Karthik Desingh

University of Washington

Dieter Fox

University of Washington, NVIDIA

https://sites.google.com/view/sornet-extended

Abstract: Sequential manipulation tasks require a robot to perceive the state of
an environment and plan a sequence of actions leading to a desired goal state. In
such tasks, the ability to reason about spatial relations among object entities from
raw sensor inputs is crucial in order to determine when a task has been completed
and which actions can be executed. In this work, we propose SORNet (Spatial
Object-Centric Representation Network), a framework for learning object-centric
representations from RGB images conditioned on a set of object queries, repre-
sented as image patches called canonical object views. With only a single canon-
ical view per object and no annotation, SORNet generalizes zero-shot to object
entities whose shape and texture are both unseen during training. We evaluate
SORNet on various spatial reasoning tasks such as spatial relation classification
and relative direction regression in complex tabletop manipulation scenarios and
show that SORNet significantly outperforms baselines including state-of-the-art
representation learning techniques. We also demonstrate the application of the
representation learned by SORNet on visual-servoing and task planning for se-
quential manipulation on a real robot. Our code and data are available publicly at
https://github.com/wentaoyuan/sornet.

Keywords: Object-centric Representation, Spatial Reasoning, Manipulation

Figure 1: We propose SORNet (Spatial Object-Centric Representation Network), a method which
learns object embeddings from RGB observation given a set of object queries called canonical object
views. SORNet adapts to novel objects without the need for annotating new data and finetuning.
SORNet embeddings can be used to solve a variety of spatial reasoning tasks such as classifying
spatial relations and regressing relative directions between objects.
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Figure 1. Language-Conditioned Manipulation Tasks: CLIPORT is a broad framework applicable to a wide range of language-conditioned
manipulation tasks in tabletop settings. We conduct large-scale experiments in Ravens [2] on 10 simulated tasks (a-j) with 1000s of unique
instances per task. See Appendix A for challenges pertaining to each task. CLIPORT can even learn one multi-task model for all 10 tasks that
achieves better or comparable performance to single-task models. Similarly, we demonstrate our approach on a Franka Panda manipulator with
one multi-task model for 9 real-world tasks (k-o; only 5 shown) trained with just 179 image-action pairs.

To this end, we propose the first framework that combines the best of both worlds: end-to-end
learning for fine-grained manipulation with the multi-goal and multi-task generalization capabilities
of vision-language grounding systems. We introduce a two-stream architecture for manipulation
with semantic and spatial pathways broadly inspired by (or vaguely analogous to) the two-stream
hypothesis in cognitive psychology [16, 17, 18]. Specifically, we present CLIPORT, a language-
conditioned imitation-learning agent that integrates the semantic understanding (what) of CLIP [1]
with the spatial precision (where) of Transporter [2]. Transporter has been applied to a wide range
of rearragement tasks from industrial packing [2] to manipulating deformable objects [6]. The key
insight of the approach is formulating tabletop manipulation as a series of pick-and-place affordance
predictions, where the objective is to detect actions rather than detect objects and then learn a policy.
This action-centric approach to perception [19] is data efficient and effective at circumventing the
need for explicit “objectness” in learnt representations. However, Transporter is a tabula rasa system
that learns all visual representations from scratch and so every new goal or task requires collecting
a new set of demonstrations. To address this problem, we bake in a strong semantic prior while
learning policies. We condition our semantic stream with visual and language-goal features from
a pre-trained CLIP model [1]. Since CLIP is pre-trained to align image and language features
from millions of image-caption pairs from the internet, it provides a powerful prior for grounding
semantic concepts that are common across tasks like categories, parts, shapes, colors, texts, and
other visual attributes, all without a top-down pipeline that requires bounding boxes or instance
segmentations [13, 14, 15, 20]. This allows us to formulate tabletop rearrangement as a series of
language-conditioned affordance predictions, a predominantly vision-based inference problem, and
thus benefit from the strengths of data-driven paradigms like scale and generalization.

To study these benefits, we conduct large-scale experiments in the Ravens [2] framework with a
simulated suction-gripper robot. We propose 10 language-conditioned tasks with 1000s of unique
instances per task that require both semantic and spatial reasoning (see Figure 1 a-j). CLIPORT is
not only effective at solving these tasks, but surprisingly, it can even learn a multi-task model for
all 10 tasks that achieves better or comparable performance to single-task models. Further, our
evaluations indicate that our multi-task model can effectively transfer attributes like “pink block”
across tasks, having never seen pink blocks or the word ‘pink’ in the context of the evaluation task.
We also demonstrate our approach on a Franka Panda manipulator with one multi-task model for 9
real-world tasks trained with just 179 image-action pairs (see Figure 1 k-o).

2

Do As I Can, Not As I Say:
Grounding Language in Robotic Affordances

1 Michael Ahn⇤, Anthony Brohan⇤, Noah Brown⇤, Yevgen Chebotar⇤, Omar Cortes⇤, Byron David⇤,
Chelsea Finn⇤, Chuyuan Fu†, Keerthana Gopalakrishnan⇤, Karol Hausman⇤, Alex Herzog†,

Daniel Ho†, Jasmine Hsu⇤, Julian Ibarz⇤, Brian Ichter⇤, Alex Irpan⇤, Eric Jang⇤,
Rosario Jauregui Ruano⇤, Kyle Jeffrey⇤, Sally Jesmonth⇤, Nikhil J Joshi⇤, Ryan Julian⇤,

Dmitry Kalashnikov⇤, Yuheng Kuang⇤, Kuang-Huei Lee⇤, Sergey Levine⇤, Yao Lu⇤, Linda Luu⇤,
Carolina Parada⇤, Peter Pastor†, Jornell Quiambao⇤, Kanishka Rao⇤, Jarek Rettinghouse⇤,

Diego Reyes⇤, Pierre Sermanet⇤, Nicolas Sievers⇤, Clayton Tan⇤, Alexander Toshev⇤,
Vincent Vanhoucke⇤, Fei Xia⇤, Ted Xiao⇤, Peng Xu⇤, Sichun Xu⇤, Mengyuan Yan†, Andy Zeng⇤

⇤Robotics at Google, †Everyday Robots

Abstract: Large language models can encode a wealth of semantic knowledge
about the world. Such knowledge could be extremely useful to robots aiming to act
upon high-level, temporally extended instructions expressed in natural language.
However, a significant weakness of language models is that they lack real-world
experience, which makes it difficult to leverage them for decision making within
a given embodiment. For example, asking a language model to describe how to
clean a spill might result in a reasonable narrative, but it may not be applicable to
a particular agent, such as a robot, that needs to perform this task in a particular
environment. We propose to provide real-world grounding by means of pretrained
skills, which are used to constrain the model to propose natural language actions
that are both feasible and contextually appropriate. The robot can act as the lan-
guage model’s “hands and eyes,” while the language model supplies high-level
semantic knowledge about the task. We show how low-level skills can be com-
bined with large language models so that the language model provides high-level
knowledge about the procedures for performing complex and temporally extended
instructions, while value functions associated with these skills provide the ground-
ing necessary to connect this knowledge to a particular physical environment. We
evaluate our method on a number of real-world robotic tasks, where we show
the need for real-world grounding and that this approach is capable of complet-
ing long-horizon, abstract, natural language instructions on a mobile manipulator.
The project’s website, the video, and open sourced code in a tabletop domain can
be found at say-can.github.io.

Figure 1: LLMs have not interacted with their environment and observed the outcome of their responses, and
thus are not grounded in the world. SayCan grounds LLMs via value functions of pretrained skills, allowing
them to execute real-world, abstract, long-horizon commands on robots.

1 Introduction
Recent progress in training large language models (LLMs) has led to systems that can generate
complex text based on prompts, answer questions, or even engage in dialogue on a wide range of
topics. These models absorb vast quantities of knowledge from text corpora mined from the web,

1Authors listed in alphabetical order. Contributions in Appendix B.
Corresponding emails: {ichter,xiafei,karolhausman}@google.com.
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Even More!
• Interpretable Models
• Fairness and Ethics
• Articulated and Deformable Objects
• Transparent and Reflective Objects
• Dynamic Scenes
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