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Abstract—Estimating the 6D pose of known objects is impor-

tant for robots to interact with the real world. The problem is

challenging due to the variety of objects as well as the complexity

of a scene caused by clutter and occlusions between objects. In

this work, we introduce PoseCNN, a new Convolutional Neural

Network for 6D object pose estimation. PoseCNN estimates the

3D translation of an object by localizing its center in the image

and predicting its distance from the camera. The 3D rotation

of the object is estimated by regressing to a quaternion repre-

sentation. We also introduce a novel loss function that enables

PoseCNN to handle symmetric objects. In addition, we contribute

a large scale video dataset for 6D object pose estimation named

the YCB-Video dataset. Our dataset provides accurate 6D poses

of 21 objects from the YCB dataset observed in 92 videos with

133,827 frames. We conduct extensive experiments on our YCB-

Video dataset and the OccludedLINEMOD dataset to show that

PoseCNN is highly robust to occlusions, can handle symmetric

objects, and provide accurate pose estimation using only color

images as input. When using depth data to further refine the

poses, our approach achieves state-of-the-art results on the chal-

lenging OccludedLINEMOD dataset. Our code and dataset are

available at https://rse-lab.cs.washington.edu/projects/posecnn/.

I. INTRODUCTION

Recognizing objects and estimating their poses in 3D has
a wide range of applications in robotic tasks. For instance,
recognizing the 3D location and orientation of objects is
important for robot manipulation. It is also useful in human-
robot interaction tasks such as learning from demonstration.
However, the problem is challenging due to the variety of
objects in the real world. They have different 3D shapes,
and their appearances on images are affected by lighting
conditions, clutter in the scene and occlusions between objects.

Traditionally, the problem of 6D object pose estimation is
tackled by matching feature points between 3D models and
images [20, 25, 8]. However, these methods require that there
are rich textures on the objects in order to detect feature
points for matching. As a result, they are unable to handle
texture-less objects. With the emergence of depth cameras,
several methods have been proposed for recognizing texture-
less objects using RGB-D data [13, 3, 2, 26, 15]. For template-
based methods [13, 12], occlusions significantly reduce the
recognition performance. Alternatively, methods that perform
learning to regress image pixels to 3D object coordinates in
order to establish the 2D-3D correspondences for 6D pose
estimation [3, 4] cannot handle symmetric objects.

In this work, we propose a generic framework for 6D object
pose estimation where we attempt to overcome the limitations

PoseCNN
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Fig. 1. We propose a novel PoseCNN for 6D object pose estimation, where
the network is trained to perform three tasks: semantic labeling, 3D translation
estimation, and 3D rotation regression.

of existing methods. We introduce a novel Convolutional
Neural Network (CNN) for end-to-end 6D pose estimation
named PoseCNN. A key idea behind PoseCNN is to decouple
the pose estimation task into different components, which
enables the network to explicitly model the dependencies
and independencies between them. Specifically, PoseCNN
performs three related tasks as illustrated in Fig. 1. First, it
predicts an object label for each pixel in the input image.
Second, it estimates the 2D pixel coordinates of the object
center by predicting a unit vector from each pixel towards the
center. Using the semantic labels, image pixels associated with
an object vote on the object center location in the image. In
addition, the network also estimates the distance of the object
center. Assuming known camera intrinsics, estimation of the
2D object center and its distance enables us to recover its
3D translation T. Finally, the 3D Rotation R is estimated by
regressing convolutional features extracted inside the bounding
box of the object to a quaternion representation of R. As we
will show, the 2D center voting followed by rotation regression
to estimate R and T can be applied to textured/texture-less
objects and is robust to occlusions since the network is trained
to vote on object centers even when they are occluded.

Handling symmetric objects is another challenge for pose
estimation, since different object orientations may generate
identical observations. For instance, it is not possible to
uniquely estimate the orientation of the red bowl or the wood
block shown in Fig. 5. While pose benchmark datasets such as
the OccludedLINEMOD dataset [17] consider a special sym-
metric evaluation for such objects, symmetries are typically
ignored during network training. However, this can result in
bad training performance since a network receives inconsistent
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Fig. 2: Multi-class network architecture for a single view; the figure shows the actual
number of layers used in our implementation. We note that the XYZ map which repre-
sents normalized 3D coordinates of each image pixel. If depth data is not available, this
stream is omitted.

probabilistic framework to fuse pose estimates from different views. However, it requires
computation of marginal probability over all subsets of a given number of views, which
is computationally prohibitive when the number of views and/or objects is large.

3 Single-View Multi-Class Pose Estimation Network

In this section, we introduce a CNN-based architecture for multi-class pose estimation
(Fig. 2). The input can be an RGB or RGB-D image region of interest (ROI) of an object
provided by arbitrary object detection algorithm. The network outputs represent both the
rotation R and the translation T of a 6-DoF pose (R, T ) in SE(3).

We first note that the a single rotation R relative to the camera corresponds to different
object appearances in image domain when T varies. This issue has been discussed in
[27] in the case of 1-D yaw angle estimation. To create a consistent mapping from the
ROI appearance to (R, T ), we initially rectify the annotated pose to align to the current
viewpoint as follows. We first compute the 3D orientation v towards the center of the
ROI (x, y): v = [(x� cx)/fx, (y � cy)/fy, 1], where (cx, cy) is the 2D camera center
and fx, fy are the focal lengths for X and Y axes. Subsequently, we compute rectified
XYZ axes [Xv, Yv, Zv] by aligning the Z axis [0, 0, 1] to v.

Xv = [0, 1, 0]⇥ Zv, Yv = Zv ⇥Xv, Zv =
v

kvk2
(1)

where symbol ⇥ indicates the cross product of two vectors. Finally, we project (R, T )
onto [Xv, Yv, Zv] and obtain the rectified pose ( eR, eT ): eR = Rv · R and eT = Rv · T ,

[2] Li et al., ECCV 2018

RGB Depth Instance Label RGB Depth Instance Label
Figure 1: Example RGB-D images and the corresponding instance labels from the Tabletop Object Dataset [7].
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Figure 2: Illustration of our method for learning RGB-D feature embeddings using a fully convolutional net-
work and a metric learning loss, where the loss function pushes pixels on the same object close to the cluster
center and pushes the cluster centers of different objects far from each other in the embedding space.

scenes. Therefore, we resort to using synthetic data for training, where it is easy to generate a large
scale dataset of many different objects.

Specifically, we utilize the Tabletop Object Dataset generated from [7] for training. This dataset
consists of 40,000 synthetic scenes of cluttered objects on a tabletop in home environments. For
each scene, a home environment is sampled from the SUNCG house dataset [23], and a table and
arbitrary objects are sampled from the ShapeNet dataset [24]. The number of objects for each scene
is between 5 to 25. The PyBullet [25] physics simulator is used to place objects on the table until
they come to rest. After that, 7 RGB-D images are captured for each scene from different viewpoints.
Fig. 1 shows some example images from the dataset.

3.2 Learning RGB-D Feature Embeddings

We can see that from Fig. 1, the synthetic RGB images are non-photorealistic, which causes a do-
main gap when applying the trained network to real images. As a result, previous works [7, 8]
mainly rely on using the depth images for segmentation, since it has been shown that networks
trained on synthetic depth images can generalize to real images well [5]. In our work, we investi-
gate how to utilize these non-photorealistic synthetic RGB images combined with depth images to
improve unseen object instance segmentation. Our solution is to learn RGB-D feature embeddings
for clustering in a metric learning framework.

Specifically, given an RGB image I 2 RH⇥W⇥3 and depth image D 2 RH⇥W , where H and
W are the image height and width, respectively, we first back-project the depth image D into an
“organized” point cloud P 2 RH⇥W⇥3 using the camera intrinsics. Then a Fully Convolutional
Network (FCN)  takes the RGB image and the point cloud image as input, and computes a dense
feature map F =  (I, P ) 2 RH⇥W⇥C , where C is the dimension of the feature embeddings. Our
FCN consists a backbone network and a set of deconvolutional layers to generate a dense feature
map. Different backbone networks can be used such as VGG [26], U-Net [27] or ResNet [28].

During inference, we simply apply a clustering algorithm after computing the feature map F to
group pixels together using their feature embeddings. Consequently, the goal of training is to make
sure pixels from the same object are close to each other while pixels from different objects are far
from each other in the embedding space. We apply a metric learning loss function to achieve this
goal similar to [29, 30]. First, suppose there are K objects in the input image. For each object, we
randomly sample N pixels to compute the loss, where N = 1000 in our experiments. Note that
background is treated as one of the objects. We found that sampling the same number of pixels
per object improves performance by balancing the importance of each object regardless of their
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Abstract

In this work, we present a novel data-driven method for

robust 6DoF object pose estimation from a single RGBD im-

age. Unlike previous methods that directly regressing pose

parameters, we tackle this challenging task with a keypoint-

based approach. Specifically, we propose a deep Hough

voting network to detect 3D keypoints of objects and then

estimate the 6D pose parameters within a least-squares fit-

ting manner. Our method is a natural extension of 2D-

keypoint approaches that successfully work on RGB based

6DoF estimation. It allows us to fully utilize the geomet-

ric constraint of rigid objects with the extra depth infor-

mation and is easy for a network to learn and optimize.

Extensive experiments were conducted to demonstrate the

effectiveness of 3D-keypoint detection in the 6D pose esti-

mation task. Experimental results also show our method

outperforms the state-of-the-art methods by large margins

on several benchmarks. Code and video are available at

https://github.com/ethnhe/PVN3D.git.

1. INTRODUCTION

In this paper, we study the problem of 6DoF pose esti-
mation, i.e. recognize the 3D location and orientation of an
object in a canonical frame. It is an important component in
many real-world applications, such as robotic grasping and
manipulation [6, 48, 55], autonomous driving [11, 5, 53],
augmented reality [31] and so on.

6DoF estimation has been proven a quite challenging
problem due to variations of lighting, sensor noise, occlu-
sion of scenes and truncation of objects. Traditional meth-
ods like [19, 30] used hand-crafted features to extract the
correspondence between images and object mesh models.
Such empirical human-designed features would suffer from
limited performance with changing illumination conditions

This work is supported by The National Key Research and Develop-
ment Program of China (2018YFC0831700).

Figure 1. Pipeline of PVN3D: With an input RGBD image (a),

we use a deep Hough voting network to predict the per-point trans-

lation offset to the selected keypoint (b). Each point on the same

object votes for the selected keypoint and the center of the clus-

ter is selected as a predicted keypoint (c). A least-squares fitting

method is then applied to estimate 6D pose parameters (d)-(e). The

model transformed by estimated pose parameters is shown in Fig-

ure (f).

and scenes with heavy occlusion. More recently, with the
explosive growth of machine learning and deep learning
techniques, Deep Neural Network (DNN) based methods
have been introduced into this task and reveal promising
improvements. [50, 52] proposed to regress rotation and
translation of objects directly with DNNs. However, these
methods usually had poor generalization due to the non-
linearity of the rotation space explained by [37]. Instead,
recent works utilized DNNs to detect 2D keypoints of an
object, and computed 6D pose parameters with Perspective-
n-Point (PnP) algorithms [37, 36, 41, 47]. Although these
two-stage approaches performed more stable, most of them
were built on top of the 2D projection. Errors that are small
in projection can be large in real 3D space. Also, differ-
ent keypoints in 3D space may be overlapped after 2D pro-
jection, making them hard to be distinguished. Moreover,
geometric constraint information of rigid objects would be

11632
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas
Stanford University

Abstract

Point cloud is an important type of geometric data
structure. Due to its irregular format, most researchers
transform such data to regular 3D voxel grids or collections
of images. This, however, renders data unnecessarily
voluminous and causes issues. In this paper, we design a
novel type of neural network that directly consumes point
clouds, which well respects the permutation invariance of
points in the input. Our network, named PointNet, pro-
vides a unified architecture for applications ranging from
object classification, part segmentation, to scene semantic
parsing. Though simple, PointNet is highly efficient and
effective. Empirically, it shows strong performance on
par or even better than state of the art. Theoretically,
we provide analysis towards understanding of what the
network has learnt and why the network is robust with
respect to input perturbation and corruption.

1. Introduction

In this paper we explore deep learning architectures
capable of reasoning about 3D geometric data such as
point clouds or meshes. Typical convolutional architectures
require highly regular input data formats, like those of
image grids or 3D voxels, in order to perform weight
sharing and other kernel optimizations. Since point clouds
or meshes are not in a regular format, most researchers
typically transform such data to regular 3D voxel grids or
collections of images (e.g, views) before feeding them to
a deep net architecture. This data representation transfor-
mation, however, renders the resulting data unnecessarily
voluminous — while also introducing quantization artifacts
that can obscure natural invariances of the data.

For this reason we focus on a different input rep-
resentation for 3D geometry using simply point clouds
– and name our resulting deep nets PointNets. Point
clouds are simple and unified structures that avoid the
combinatorial irregularities and complexities of meshes,
and thus are easier to learn from. The PointNet, however,

* indicates equal contributions.

mug?

table?

car?

Classification Part Segmentation

PointNet

Semantic Segmentation

Input Point Cloud (point set representation)

Figure 1. Applications of PointNet. We propose a novel deep net
architecture that consumes raw point cloud (set of points) without
voxelization or rendering. It is a unified architecture that learns
both global and local point features, providing a simple, efficient
and effective approach for a number of 3D recognition tasks.

still has to respect the fact that a point cloud is just a
set of points and therefore invariant to permutations of its
members, necessitating certain symmetrizations in the net
computation. Further invariances to rigid motions also need
to be considered.

Our PointNet is a unified architecture that directly
takes point clouds as input and outputs either class labels
for the entire input or per point segment/part labels for
each point of the input. The basic architecture of our
network is surprisingly simple as in the initial stages each
point is processed identically and independently. In the
basic setting each point is represented by just its three
coordinates (x, y, z). Additional dimensions may be added
by computing normals and other local or global features.

Key to our approach is the use of a single symmetric
function, max pooling. Effectively the network learns a
set of optimization functions/criteria that select interesting
or informative points of the point cloud and encode the
reason for their selection. The final fully connected layers
of the network aggregate these learnt optimal values into the
global descriptor for the entire shape as mentioned above
(shape classification) or are used to predict per point labels
(shape segmentation).

Our input format is easy to apply rigid or affine transfor-
mations to, as each point transforms independently. Thus
we can add a data-dependent spatial transformer network
that attempts to canonicalize the data before the PointNet
processes them, so as to further improve the results.

1
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Figure 2: Illustration of our hierarchical feature learning architecture and its application for set
segmentation and classification using points in 2D Euclidean space as an example. Single scale point
grouping is visualized here. For details on density adaptive grouping, see Fig. 3

where � and h are usually multi-layer perceptron (MLP) networks.

The set function f in Eq. 1 is invariant to input point permutations and can arbitrarily approximate any
continuous set function [20]. Note that the response of h can be interpreted as the spatial encoding of
a point (see [20] for details).

PointNet achieved impressive performance on a few benchmarks. However, it lacks the ability to
capture local context at different scales. We will introduce a hierarchical feature learning framework
in the next section to resolve the limitation.

3.2 Hierarchical Point Set Feature Learning

While PointNet uses a single max pooling operation to aggregate the whole point set, our new
architecture builds a hierarchical grouping of points and progressively abstract larger and larger local
regions along the hierarchy.

Our hierarchical structure is composed by a number of set abstraction levels (Fig. 2). At each level, a
set of points is processed and abstracted to produce a new set with fewer elements. The set abstraction
level is made of three key layers: Sampling layer, Grouping layer and PointNet layer. The Sampling
layer selects a set of points from input points, which defines the centroids of local regions. Grouping
layer then constructs local region sets by finding “neighboring” points around the centroids. PointNet
layer uses a mini-PointNet to encode local region patterns into feature vectors.

A set abstraction level takes an N ⇥ (d + C) matrix as input that is from N points with d-dim
coordinates and C-dim point feature. It outputs an N 0 ⇥ (d+ C 0) matrix of N 0 subsampled points
with d-dim coordinates and new C 0-dim feature vectors summarizing local context. We introduce the
layers of a set abstraction level in the following paragraphs.
Sampling layer. Given input points {x1, x2, ..., xn}, we use iterative farthest point sampling (FPS)
to choose a subset of points {xi1 , xi2 , ..., xim}, such that xij is the most distant point (in metric
distance) from the set {xi1 , xi2 , ..., xij�1} with regard to the rest points. Compared with random
sampling, it has better coverage of the entire point set given the same number of centroids. In contrast
to CNNs that scan the vector space agnostic of data distribution, our sampling strategy generates
receptive fields in a data dependent manner.
Grouping layer. The input to this layer is a point set of size N ⇥ (d+ C) and the coordinates of
a set of centroids of size N 0 ⇥ d. The output are groups of point sets of size N 0 ⇥K ⇥ (d + C),
where each group corresponds to a local region and K is the number of points in the neighborhood of
centroid points. Note that K varies across groups but the succeeding PointNet layer is able to convert
flexible number of points into a fixed length local region feature vector.

In convolutional neural networks, a local region of a pixel consists of pixels with array indices within
certain Manhattan distance (kernel size) of the pixel. In a point set sampled from a metric space, the
neighborhood of a point is defined by metric distance.

Ball query finds all points that are within a radius to the query point (an upper limit of K is set in
implementation). An alternative range query is K nearest neighbor (kNN) search which finds a fixed
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Figure 2. Overview of our 6D pose estimation model. Our model generates object segmentation masks and bounding boxes from RGB

images. The RGB colors and point cloud from the depth map are encoded into embeddings and fused at each corresponding pixel. The

pose predictor produces a pose estimate for each pixel and the predictions are voted to generate the final 6D pose prediction of the object.

(The iterative procedure of our approach is not depicted here for simplicity)

6D pose of the objects from camera images, the poses are
defined with respect to the camera coordinate frame.

Estimating the pose of a known object in adversarial
conditions (e.g. heavy occlusion, poor lighting, . . . ) is
only possible by combining the information contained in
the color and depth image channels. However, the two data
sources reside in different spaces. Extracting features from
heterogeneous data sources and fusing them appropriately
is the key technical challenge in this domain.

We address this challenge with (1) a heterogeneous ar-
chitecture that processes color and depth information dif-
ferently, retaining the native structure of each data source
(Sec. 3.3), and (2) a dense pixel-wise fusion network that
performs color-depth fusion by exploiting the intrinsic map-
ping between the data sources (Sec. 3.4). Finally, the pose
estimation is further refined with a differentiable iterative
refinement module (Sec. 3.6). In contrast to the expensive
post-hoc refinement steps used in [16, 41], our refinement
module can be trained jointly with the main architecture and
only takes a small fraction of the total inference time.

3.1. Architecture Overview

Fig. 2 illustrates the overall proposed architecture. The
architecture contains two main stages. The first stage takes
color image as input and performs semantic segmentation
for each known object category. Then, for each segmented
object, we feed the masked depth pixels (converted to 3D
point cloud) as well as an image patch cropped by the
bounding box of the mask to the second stage.

The second stage processes the results of the segmenta-
tion and estimates the object’s 6D pose. It comprises four
components: a) a fully convolutional network that processes

the color information and maps each pixel in the image crop
to a color feature embedding, b) a PointNet-based [24] net-
work that processes each point in the masked 3D point cloud
to a geometric feature embedding, c) a pixel-wise fusion
network that combines both embeddings and outputs the es-
timation of the 6D pose of the object based on an unsuper-
vised confidence scoring, and d) an iterative self-refinement
methodology to train the network in a curriculum learning
manner and refine the estimation result iteratively. Fig. 2
depicts a), b) and c) and Fig. 3 illustrates d). The details our
architecture are described below.

3.2. Semantic Segmentation

The first step is to segment the objects of interest in the
image. Our semantic segmentation network is an encoder-
decoder architecture that takes an image as input and gener-
ates an N+1-channelled semantic segmentation map. Each
channel is a binary mask where active pixels depict objects
of each of the N possible known classes. The focus of this
work is to develop a pose estimation algorithm. Thus we
use an existing segmentation architecture proposed by [41].

3.3. Dense Feature Extraction

The key technical challenge in this domain is the correct
extraction of information from the color and depth channels
and their synergistic fusion. Even though color and depth
present a similar format in the RGB-D frame, their infor-
mation resides in different spaces. Therefore, we process
them separately to generate color and geometric features
from embedding spaces that retain the intrinsic structure of
the data sources.
Dense 3D point cloud feature embedding: Previous ap-
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Table 1. Performance comparison between voxel occupancy and level set representations on test data with two different resolutions, 203

and 323, measured by IoU (in %). Here ∆ denotes the difference in IoU.

IoU [%] 203 323

Category voxels φ ∆ R2N2 Matr voxels φ ∆

Bottle 65.7 78.4 (+12.7) 64.0 76.3 71.9 78.4 (+6.5)
Car 73.0 86.6 (+13.6) 78.5 80.8 81.9 86.0 (+4.1)
Chair 57.2 63.7 (+6.5) 58.0 61.0 59.2 61.9 (+2.7)
Sofa 62.1 68.9 (+6.8) 64.3 68.7 68.0 72.9 (+4.9)
Telephone 60.5 73.5 (+13.0) 63.3 63.2 67.8 71.9 (+4.1)

Table 2. Performance comparison between voxel occupancy and level set representations on test data with two different resolutions, 203

and 323, measured by the Chamfer distance. Here ∆ denotes the difference in Chamfer distance.

Chamfer 203 323

Category voxels φ ∆ R2N2 Matr voxels φ ∆

Bottle 0.0895 0.0593 (-0.0302) 0.0877 0.0564 0.0669 0.0520 (-0.0149)
Car 0.0917 0.0411 (-0.0506) 0.0675 0.0517 0.0623 0.0430 (-0.0193)
Chair 0.1003 0.0885 (-0.0118) 0.0975 0.0768 0.0829 0.0899 (+0.0070)
Sofa 0.0936 0.0649 (-0.0287) 0.0887 0.0648 0.0709 0.0595 (-0.0114)
Telephone 0.0963 0.0510 (-0.0453) 0.0799 0.0709 0.0658 0.0530 (-0.0128)

Figure 3. An overview of the network architecture used.

a predictor connected by a 64-dimensional vector embed-
ding space.

Specifically, the autoencoder network with convolution
and deconvolution layers, projects a 3D shape to the 64-
dimensional space, and decodes it back to a 3D shape. The
encoder composed of four convolutional layers and a fully
connected layer to project the data to the 64D embedding
vector. The decoder consists of five 3D convolutional lay-
ers with stride 1 connected by batch norm and ReLU non-
linearities to map the embedding vector back to 3D space.

Similar to MobileNetV2 [31] architecture, the CNN
comprised of five convolutional layers, two fully connected
layers, and an added 64 dimensional layer, initialised with

the ImageNet [7] weights, and projects a 2D image to the
64 dimensional space.

The two components are jointly optimised at training
time, taking the 3D CAD model along with its 2D image. At
test time, the encoder part of the auto-encoder is removed,
and then the ConvNet and the decoder are used to obtain a
3D representation and images in the shared latent space.

Note that the reason behind our choice of such a simple
architecture is to demonstrate that the improvement in the
representation is due to our representation of shape, rather
than adopting complex deep architectures.

Comparison. We compare the proposed implicit shape
representation to that of a voxel-based occupancy map rep-
resentation. This is done by training the network using two
distinct loss functions: the variational loss function, defined
in section 4 (with p = 2, ε = 0.15, α1 = 0.8, α2 = 1
and α3 = α4 = 0.1)1, and the voxel-based cross-entropy
loss defined in [12], Both formulations were trained with
2D images as inputs, for 3000 epochs using a batch size
of 64 and a learning rate of 10−6, the ground-truth shapes
are represented as manifolds and voxel occupancy maps re-
spectively. We observed the training times and convergence
behaviour of the two methods to be comparable. It is im-

1 A more thorough ablation study of the effect of these parameters is in
progress but is considered out of scope for this work.
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ject categories (e.g., chairs, sofa, beds or cars) and do not
take object symmetry into account [20, 42, 19]. On the
contrary, we estimate the pose of a variety of hand-scale
objects, which are often much more challenging than the
bigger room-scale objects due to larger pose variation. Our
method also predicts full 6D pose and size without assum-
ing the objects gravity direction. Finally, our method runs
at interactive frame rates (0.5 s per frame), which is signif-
icantly faster than alternative approaches (s70 s per frame
for [20], 25 mins per frame for [42]).

Training Data Generation: A major challenge with
training CNNs is the lack of training data with sufficient cat-
egory, instance, pose, clutter, and lighting variation. There
have been several efforts aimed at constructing real-world
datasets containing object labels (e.g., [40, 41, 50]). Unfor-
tunately, these datasets tend to be relatively small, mostly
due to the high cost (time and money) associated with
ground truth annotation. This limitation is a motivator for
other works (e.g., [35, 44, 51]) which generate data that
is exclusively synthetic allowing the generation of large
amounts of perfectly annotated training data at a smaller
cost. For the sake of simplicity, all these datasets ignore a
combination of factors (material, sensor noise, and lighting)
which creates a de-facto domain gap between the synthetic
and real data distributions. To reduce this gap, [13] have
generated datasets that mix real and synthetic data by ren-
dering virtual objects on real backgrounds. While the back-
grounds are realistic, the rendered objects are flying mid-
air and out of context [13], which prevent algorithms from
making use of important contextual cues.

We introduce a new mixed reality method to automati-
cally generate large amounts of data composed of synthetic
renderings of objects and real backgrounds in a context-
aware manner which makes it more realistic. This is sup-
ported by experiments that show that our context-aware
training data enables the model to generalize better to real-
word test data. We also present a real-world dataset to fur-
ther improve learning and for evaluation.

3. Background and Overview
Category-Level 6D Object Pose and Size Estimation:

We focus on the problem of estimating the 3 rotation, 3
translation, and 3 scale parameters (dimensions) of object
instances. The solution to this problem can be visualized
as a tight oriented bounding box around an object (see
Figure 1). Although not previously observed, these ob-
jects come from known object categories (e.g., camera) for
which training samples have been observed during training.
This task is particularly challenging since we cannot use
CAD models at test time and 6D pose is not well-defined
for unseen objects. To overcome this, we propose a new
representation that defines a shared object space enabling
the definition of 6D pose and size for unseen objects.

Figure 2. The Normalized Object Coordinate Space (NOCS) is a
3D space contained within a unit cube. For a given object cate-
gory, we use canonically oriented instances and normalize them to
lie within the NOCS. Each (x, y, z) position in the NOCS is vi-
sualized as an RGB color tuple. We train our network on the per-
spective projection of the NOCS on the RGB image, the NOCS
map (bottom left inset). At test time, the network regresses the
NOCS map which is then used together with the depth map for 6D
pose and size estimation.

Normalized Object Coordinate Space (NOCS): The
NOCS is defined as a 3D space contained within a unit cube
i.e., {x, y, z} 2 [0, 1]. Given a shape collection of known
object CAD models for each category, we normalize their
size by uniformly scaling the object such that the diagonal
of its tight bounding box has a length of 1 and is centered
within the NOCS space (see Figure 2). Furthermore, we
align the object center and orientation consistently across
the same category. We use models from ShapeNetCore [8]
which are already canonicalized for scale, position, and ori-
entation. Figure 2 shows examples of canonicalized shapes
in the camera category. Our representation allows each ver-
tex of a shape to be represented as a tuple (x, y, z) within
the NOCS (color coded in Figure 2).

Our CNN predicts the 2D perspective projection of the
color-coded NOCS coordinates, i.e., a NOCS map (bottom
left in Figure 2). There are multiple ways to interpret a
NOCS map: (1) as a shape reconstruction in NOCS of the
observed parts of the object, or (2) as dense pixel–NOCS
correspondences. Our CNN learns to generalize shape pre-
diction for unseen objects, or alternatively learns to pre-
dict object pixel–NOCS correspondences when trained on
a large shape collection. This representation is more robust
than other approaches (e.g., bounding boxes) since we can
operate even when the object is only partially visible.

Method Overview: Figure 3 illustrates our approach
which uses an RGB image and a depth map as input. The
CNN estimates the class label, instance mask, and the
NOCS map from only the RGB image. We do not use the
depth map in the CNN because we would like to exploit
existing RGB datasets like COCO, which do not contain
depth, to improve performance. The NOCS map encodes

[1] Florence et al., CoRL 2018 [2] Wang et al., CVPR 2018

[4] Lin et al., ICRA 2022[3] Manuelli et al., ISRR 2019

Dense Object Nets NOCS

kPAM

4 Experimental

Data Collection and Pre-Processing. The minimum requirement for raw data is to collect an RGBD
video of an object or objects. Figure 1 shows our experimental setup; we utilize a 7-DOF robot arm (Kuka
IIWA LBR) with an RGBD sensor (Primesense Carmine 1.09) mounted at the end-effector. With the robot
arm, data collection can be highly automated, and we can achieve reliable camera poses by using forward
kinematics along with knowledge of the camera extrinsic calibration. For dense reconstruction we use
TSDF fusion [28] of the depth images with camera poses provided by forward kinematics. An alternative
route to collecting data which does not require a calibrated robot is to use a dense SLAM method (for
example, [29, 30]). In between collecting RGBD videos, the object of interest should be moved to a variety
of configurations, and the lighting can be changed if desired. While for many of our data collections a
human moved the object between configurations, we have also implemented and demonstrated (see our
video) the robot autonomously rearranging the objects, which highly automates the object learning process.
We employ a Schunk two-finger gripper and plan grasps directly on the object point cloud (Appendix
C). If multiple different objects are used, currently the human must still switch the objects for the robot
and indicate which scenes correspond to which object, but even this information could be automated by
the robot picking objects from an auxiliary bin.

Training Dense Descriptors. For training, at each iteration we randomly sample between some subset of
specified image comparison types (Single Object Within Scene, Different Object Across Scene, Multi Ob-
ject Within Scene, Synthetic Multi Object), and then sample some set of matches and non-matches for each.
In this work, we use only static-scene reconstructions, so pixel matches between images can be easily found
by raycasting and reprojecting against the dense 3D reconstruction model, and appropriately checking for oc-
clusions and field-of-view constraints. For the dense descriptor mapping we train a 34-layer, stride-8 ResNet
pretrained on ImageNet, but we expect any fully-convolutional network (FCN) that has shown effectiveness
on semantic segmentation tasks to work well. Additional training details are contained in the Appendix D.

5 Results

  

Objects used 
•  47 objects total 
•  275 scenes 
8 hats 
 
 
 
 

15 shoes 
 
 
 
 

15 mugs 
 
   
 
 

9 additional objects 

Figure 2: Learned object descriptors can be consistent across significant deformation (a) and, if desired, across object
classes (b-d). Shown for each (a) and (b-d) are RGB frames (top) and corresponding descriptor images (bottom) that
are the direct output of a feed-forward pass through a trained network. (e)-(f) shows that we can learn descriptors for
low texture objects, with the descriptors masked for clear visualization. Our object set is also summarized (right).

5.1 Single-Object Dense Descriptors

We observe that with our training procedures described in Section 3.2, for a wide variety of objects we can
acquire dense descriptors that are consistent across viewpoints and configurations. The variety of objects
includes moderately deformable objects such as soft plush toys, shoes, mugs, and hats, and can include very
low-texture objects (Figure 2). Many of these objects were just grabbed from around the lab (including the
authors’ and labmates’ shoes and hats), and dense visual models can be reliably trained with the same net-
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Dense Object Descriptors 
and Category-Level Representations
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Single-Stage Keypoint-Based Category-Level

Object Pose Estimation from an RGB Image

Yunzhi Lin1,2, Jonathan Tremblay1, Stephen Tyree1, Patricio A. Vela2, Stan Birchfield1
1NVIDIA: {jtremblay, styree, sbirchfield}@nvidia.com

2Georgia Institute of Technology: {yunzhi.lin, pvela}@gatech.edu

Abstract— Prior work on 6-DoF object pose estimation has

largely focused on instance-level processing, in which a tex-

tured CAD model is available for each object being detected.

Category-level 6-DoF pose estimation represents an important

step toward developing robotic vision systems that operate in

unstructured, real-world scenarios. In this work, we propose a

single-stage, keypoint-based approach for category-level object

pose estimation that operates on unknown object instances

within a known category using a single RGB image as input.

The proposed network performs 2D object detection, detects

2D keypoints, estimates 6-DoF pose, and regresses relative

bounding cuboid dimensions. These quantities are estimated

in a sequential fashion, leveraging the recent idea of convGRU

for propagating information from easier tasks to those that

are more difficult. We favor simplicity in our design choices:

generic cuboid vertex coordinates, single-stage network, and

monocular RGB input. We conduct extensive experiments on

the challenging Objectron benchmark, outperforming state-of-

the-art methods on the 3D IoU metric (27.6% higher than the

MobilePose single-stage approach and 7.1% higher than the

related two-stage approach).

I. INTRODUCTION

Scene awareness is a fundamental skill for robotic ma-
nipulators to operate in unconstrained environments. This
ability includes locating objects and their poses, also known
as the 6-DoF pose estimation problem (i.e., 6 degrees of
freedom, from 3D position + orientation). Accurate, real-
time pose information of nearby objects in the scene would
allow robots to engage in semantic interaction.

The problem of pose estimation is a rich topic in the
computer vision community, yet most existing methods have
focused on instance-level object pose estimation [1], [2],
[3]. Such methods suffer from lack of scalability: a detector
trained for the ‘cracker box’ in the YCB object dataset [4],
for example, will work reliably on instances of that specific
object (similar size and texture), but the same network may
fail to detect an instance with different textures (e.g., due
to seasonal promotional changes) and will yield poor pose
estimates of boxes with matching texture but different size.
Further, the detector is expected to ignore all other types
of cracker boxes or food-containing cuboids. As a result, the
number of instance-level detectors required increases rapidly
with scene complexity.

Work was completed while the first author was an intern at NVIDIA.
This work was supported in part by NSF Award #2026611.
Project: https://sites.google.com/view/centerpose

Fig. 1. Given a single RGB image containing previously unseen
instances of known categories (in this case cereal boxes, cups, and shoes),
our proposed method detects objects and estimates 6-DoF poses and 3D
bounding box dimensions up to a scale factor. We use a separate network
for each category.

To alleviate this challenge, we focus on category-level
pose estimation. Our goal is to detect and infer the pose
and relative size of all objects within a specific category
using a monocular RGB image processed by a single-stage
neural network. For example, in Fig. 1 our network predicts
the pose of each object in a specific category, along with its
dimensions (expressed as relative width, height, and length),
using a single set of trained weights.

A few recent works have considered category-level ob-
ject pose estimation [5], [6], [7], [8], [9], [10], [11]. By
removing the requirement of exact CAD models of object
instances at inference time, these methods promise to scale
better for real-world applications. To train the network,
one could use a large collection of 3D CAD models (e.g.,
from ShapeNet [12]) to render synthetic samples with com-
plex annotations, such as pixel-wise segmentation masks
or normalized object coordinate spaces (NOCS [6]). Yet
the domain gap between synthetic and real data remains
an obstacle, sometimes even after fine-tuning on annotated
real-world data [13]. In the meantime, many techniques
require depth in addition to color (RGB) images [6], [8], [9].
While monocular RGB-based methods [14], [15] have not
received much attention, they have great potential for wide
applicability and for handling certain material properties,

ar
X

iv
:2

10
9.

06
16

1v
2 

 [c
s.C

V
]  

12
 M

ay
 2

02
2

.

Fig. 1: kPAM is a framework for defining and accomplishing category level manipulation tasks.
The key distinction of kPAM is the use of semantic 3D keypoints as the object representation
(a), which enables flexible specification of manipulation targets as geometric costs/constraints on
keypoints. Using this framework we can handle wide intra-class shape variation (a) and reliably
accomplish category-level manipulation tasks such as perceiving (b), grasping (c), and (d) placing
any mug on a rack by its handle. A video demo for this task is available on our project page.

While a large body of work addresses robotic picking for arbitrary objects [7, 9,
31], existing methods have not demonstrated pick and place with an interpretable and
generalizable approach. One way to achieve generalization at the object category level,
and perhaps the most straightforward approach is to attempt to extend existing instance-
level pick and place pipelines with category-level pose estimators [21,29]. However, as
detailed in Sec. 4, representing an object with a parameterized pose defined on a fixed
geometric template, as these works do, may not adequately capture large intra-class
shape or topology variations, and can lead to physically infeasible target pose for certain
instances in the category. Other recent work has developed dense correspondence visual
models, including at a category level, as a general representation for robot manipulation
[4], but did not formulate how to specify and solve the task of manipulating objects into
specific configurations. As a different route to address category-level pick and place,
without an explicit object representation, [6] trains end-to-end policies in simulation to
generalize across the object category. It is unclear, however, how to measure the reward
function for this type of approach in a fully general way without an object representation
that can adequately capture the human’s intention for the task.

Contributions. Our main contribution is a novel formulation of the category-level
pick and place task which uses semantic 3D keypoints as the object representation.
This keypoint representation enables a simple and interpretable specification of the ma-
nipulation target as geometric costs and constraints on the keypoints, which flexibly
generalizes existing pose-based manipulation targets. Using this formulation, we con-
tribute a manipulation pipeline that factors the problem into 1) instance segmentation,
2) 3D keypoint detection, 3) optimization-based robot action planning 4) geometric
grasping and action execution. This factorization allows us to leverage well-established
solutions for these submodules and combine them into a general and effective manipu-
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PoseRBPF: A Rao-Blackwellized Particle Filter for
6D Object Pose Tracking

Xinke Deng⇤†, Arsalan Mousavian⇤, Yu Xiang⇤, Fei Xia⇤‡, Timothy Bretl†, Dieter Fox⇤§
⇤NVIDIA †University of Illinois at Urbana-Champaign

‡Stanford University §University of Washington

Abstract—Tracking 6D poses of objects from videos provides

rich information to a robot in performing different tasks such

as manipulation and navigation. In this work, we formulate

the 6D object pose tracking problem in the Rao-Blackwellized

particle filtering framework, where the 3D rotation and the 3D

translation of an object are decoupled. This factorization allows

our approach, called PoseRBPF to efficiently estimate the 3D

translation of an object along with the full distribution over the

3D rotation. This is achieved by discretizing the rotation space in

a fine-grained manner, and training an auto-encoder network to

construct a codebook of feature embeddings for the discretized

rotations. As a result, PoseRBPF can track objects with arbitrary

symmetries while still maintaining adequate posterior distribu-

tions. Our approach achieves state-of-the-art results on two 6D

pose estimation benchmarks. A video showing the experiments

can be found at https://youtu.be/lE5gjzRKWuA.

I. INTRODUCTION

Estimating the 6D pose of objects from camera images, i.e.,
3D rotation and 3D translation of an object with respect to
the camera, is an important problem in robotic applications.
For instance, in robotic manipulation, 6D pose estimation of
objects provides critical information to the robot for planning
and executing grasps. In robotic navigation tasks, localizing
objects in 3D provides useful information for planing and
obstacle avoidance. Due to its significance, various efforts have
been devoted to tackling the 6D pose estimation problem from
both the robotics community [7, 4, 43, 40] and the computer
vision community [32, 21, 12].

Traditionally, the 6D pose of an object is estimated using
local-feature or template matching techniques, where features
extracted from an image are matched against features or
viewpoint templates generated for the 3D model of the object.
The 6D object pose can then be recovered using 2D-3D
correspondences of these local features or by selecting the best
matching viewpoint onto the object [7, 11, 12]. More recently,
machine learning techniques have been employed to detect key
points or learn better image features for matching [2, 18].
Thanks to advances in deep learning, convolutional neural
networks have recently been shown to significantly boost the
estimation accuracy and robustness [15, 44, 30, 38, 43],

So far, the focus of image-based 6D pose estimation has
been on the accuracy of single image estimates; most tech-
niques ignore temporal information and provide only a single
hypothesis for an object pose. In robotics, however, temporal
data and information about the uncertainty of estimates can
also be very important for tasks such as grasp planning or

Fig. 1. Overview of our PoseRBPF framework for 6D object pose tracking.
Our method leverages a Rao-Blackwellized particle filter and an auto-encoder
network to estimate the 3D translation and a full distribution of the 3D rotation
of a target object from a video sequence.

active sensing. Temporal tracking in video data can improve
pose estimation [28, 5, 17, 8]. In the context of point-cloud
based pose estimation, Kalman filtering has also been used to
track 6D poses, where Bingham distributions have been shown
to be well suited for orientation estimation [36]. However,
unimodal estimates are not sufficient to adequately represent
the complex uncertainties arising from occlusions and possible
object symmetries.

In this work, we introduce a particle filter-based approach
to estimate full posteriors over 6D object poses. Our ap-
proach, called PoseRBPF, factorizes the posterior into the
3D translation and the 3D rotation of the object, and uses
a Rao-Blackwellized particle filter that samples object poses
and estimates discretized distributions over rotations for each
particle. To achieve accurate estimates, the 3D rotation is
discretized at 5 degree resolution, resulting in a distribution
over 72⇥ 37⇥ 72 = 191, 808 bins for each particle (elevation
ranges only from -90 to 90 degree). To achieve real time per-
formance, we pre-compute a codebook over embeddings for all
discretized rotations, where embeddings come from an auto-
encoder network trained to encode the visual appearance of an
object from arbitrary viewpoints at a certain scale (inspired by
[37]). For each particle, PoseRBPF first uses the 3D translation
to determine the center and size of the object bounding box in
the image, then determines the embedding for that bounding
box, and finally updates the rotation distribution by comparing
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Sensory memory path

Short-term memory path

Long-term memory path
Memory 
reading

(Sec. 3.2)

Sensory 
memory
(Sec 3.5)

Initialize
Memory 
reading

(Sec. 3.2)

Initialize

Initialize as empty

Conditional update
Memory 
reading

(Sec. 3.2)

Insert new memory every 𝑟-th frame

Memory consolidation if full

Forget obsolete features

Working memory (Sec. 3.4)

Long-term memory (Sec. 3.3)

Fig. 2. Overview of XMem. The memory reading operation extracts relevant features
from all three memory stores and uses those features to produce a mask. To incorporate
new memory, the sensory memory is updated every frame while the working memory
is only updated every r-th frame. The working memory is consolidated into the long-
term memory in a compact form when it is full, and the long-term memory will forget
obsolete features over time.

into a single representation, thus having zero GPU memory increase over time.
However, both of these methods eagerly compress new high-resolution feature
memory into a compact representation, thus sacrificing segmentation accuracy.
Our multi-store feature memory avoids eager compression and achieves much
higher accuracy in both short-term and long-term predictions.

3 XMem

3.1 Overview

Figure 2 provides an overview of XMem. For readability, we consider a single
target object. However, note that XMem is implemented to deal with multiple
objects, which is straightforward. Given the image and target object mask at
the first frame (top-left of Figure 2), XMem tracks the object and generates
corresponding masks for subsequent query frames. For this, we first initialize
the di↵erent feature memory stores using the inputs. For each subsequent query
frame, we perform memory reading (Section 3.2) from long-term memory (Sec-
tion 3.3), working memory (Section 3.4), and sensory memory (Section 3.5)
respectively. The readout features are used to generate a segmentation mask.
Then, we update each of the feature memory stores at di↵erent frequencies. We
update the sensory memory every frame and insert features into the working
memory at every r-th frame. When the working memory reaches a pre-defined
maximum of Tmax frames, we consolidate features from the working memory into
the long-term memory in a highly compact form. When the long-term memory is
also full (which only happens after processing thousands of frames), we discard
obsolete features to bound the maximum GPU memory usage. These feature
memory stores work in conjunction to provide high-quality features with low
GPU memory usage even for very long videos.

6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints

Chen Wang2, Roberto Martı́n-Martı́n1, Danfei Xu1, Jun Lv2,
Cewu Lu2, Li Fei-Fei1, Silvio Savarese1, Yuke Zhu1,3

Abstract— We present 6-PACK, a deep learning approach
to category-level 6D object pose tracking on RGB-D data. Our
method tracks in real time novel object instances of known
object categories such as bowls, laptops, and mugs. 6-PACK
learns to compactly represent an object by a handful of 3D
keypoints, based on which the interframe motion of an object
instance can be estimated through keypoint matching. These
keypoints are learned end-to-end without manual supervision
in order to be most effective for tracking. Our experiments show
that our method substantially outperforms existing methods on
the NOCS category-level 6D pose estimation benchmark and
supports a physical robot to perform simple vision-based closed-
loop manipulation tasks. Our code and video are available at
https://sites.google.com/view/6packtracking.

I. INTRODUCTION

Estimating 6D pose of objects, i.e., translation and ori-
entation in 3D, offers a concise and informative form of
state representation for robotic applications, such as manip-
ulation [14, 24, 39] and navigation [9, 34, 48]. In robotic
manipulation, the ability of tracking object 6D poses in real-
time gives rise to fast feedback control [24]. Pioneering work
in 6D tracking [3, 39] has achieved remarkable accuracy and
robustness given the 3D model of an object instance, often
referred as instance-level 6D tracking. However, the assump-
tion of known 3D model can be brittle in realistic settings,
where perfect geometry of novel objects is hard to acquire.
In this work, we propose to study the problem of category-
level 6D tracking, where the goal is to develop category-level
models capable of tracking novel object instances within a
specific category.

The problem of category-level tracking has been stud-
ied extensively in 2D domains. Classical methods rely on
handcrafted features as object representations for visual
tracking [18, 23, 49]. Recent work has embarked on an
exploration of new computational tools, in particular, deep
neural networks, and large amounts of training data to
improve tracking performance under visual variations and
heavy occlusions [17, 32]. However, a model for 6D pose
tracking would have to handle the larger search space of all
possible poses due to the increased dimensionality, leading to
a substantial computational burden over 2D visual trackers.

One remedy is to reduce category-level 6D tracking to
a 3D detection and 6D pose estimation problem. 3D de-
tection and pose estimation have been studied in a large

1Department of Computer Science, Stanford University, USA
2Department of Computer Science, Shanghai Jiao Tong University, China
3NVIDIA Research, USA

6D 𝚫Pose
from Keypoints

Current View Previous View

RGB-D
Change of 6D Pose 

between frames

Fig. 1. Overview of 6-PACK: Our model learns to robustly detect and
track a set of 3D category-based keypoints (yellow dots) based on anchors
(red dots) sampled around the previously estimated object pose using RGB-
D images. The keypoints from two consecutive frames are then used to
compute the 6D object pose change via least-squares optimization. The
entire process is fast (>10fps) to enable real-time robot interaction.

body of literature, especially in the context of autonomous
driving [34, 48]. Most relevant to us is NOCS [46] which
introduced a category-level model to estimate the 6D pose of
objects from RGB-D images. NOCS transforms every object
pixel to a shared coordinate frame as keypoints for pose
estimation. However, estimating poses from a large number
of crude keypoints makes their method susceptible to noises
from clutter and occlusion. Furthermore, these tracking-
by-detection methods cannot leverage temporal information
from previous frames. In contrast, we seek to develop a
tracking model that learns compact and discriminative object
representations for robust registration and leverages temporal
consistency for efficient search.

To this end, we propose 6-PACK, a vision-based 6D-
Pose Anchor-based Category-level Keypoint tracker. 6-
PACK tracks a small set of keypoints in RGB-D videos
and estimates object pose by accumulating relative pose
changes over time (see Fig. 1). This method does not require
the known 3D model. Instead, it circumvents the need of
defining and estimating the absolute 6D pose via a novel
anchor mechanism analogous to the proposal methodology
used in 2D object detection [36]. These anchors offer a base
for generating 3D keypoints. Unlike previous methods that
require manual keypoint annotations [31], we propose an
unsupervised learning approach that discovers the optimal
set of 3D keypoints for tracking. These keypoints serve as
a compact representation of the object, from which its pose
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Fig. 1: We propose DeepIM, a deep iterative matching network for 6D object pose estimation. The network is
trained to predict a relative SE(3) transformation that can be applied to an initial pose estimation for iterative
pose refinement. Given a 6D pose estimation of an object, which can be the output of other pose estimation methods
like PoseCNN (Xiang et al., 2018) (pose(0) in the figure) or the refined pose from previous iteration (pose(1) in
the figure), along with the 3D model of the object, we generate the rendered image showing the appearance of the
target object under this rough pose estimation. With the image pairs of rendered image and observed image, the
network predicts a relative transformation (�pose in the figure) which can be applied to refine the input pose.
The refined pose can be used as the input pose of next iteration and therefore the process can be repeated until
the refined pose converges or the number of iterations reaches a pre-determined number.

cation problem by discretizing the pose space (Hinter-
stoisser et al., 2012b) or into a pose regression prob-
lem (Xiang et al., 2018). These methods can deal with
textureless objects, but they are not able to achieve
highly accurate pose estimation, since small errors in
the classification or regression stage directly lead to
pose mismatches. A common way to improve the pose
accuracy is pose refinement: Given an initial pose es-
timation, a synthetic RGB image can be rendered and
used to match against the target input image. Then a
new pose is computed to increase the matching score.
Existing methods for pose refinement use either hand-
crafted image features (Tjaden et al., 2017) or matching
score functions (Rad and Lepetit, 2017).

In this work, we propose DeepIM, a new refinement
technique based on a deep neural network for iterative
6D pose matching. Given an initial 6D pose estima-
tion of an object in a test image, DeepIM predicts a
relative SE(3) transformation that matches a rendered
view of the object against the observed image, or in
other words, it predicts the relative rotation and trans-
lation that can refine the initial 6D pose estimation.
By iteratively re-rendering the object based on the im-
proved pose estimates, the two input images to the net-
work become more and more similar, thereby enabling
the network to generate more and more accurate pose

estimates. Fig. 1 illustrates the iterative matching pro-
cedure of our network for pose refinement.

This work makes the following main contributions.
i) We introduce a deep network for iterative, image-
based pose refinement that does not require any hand-
crafted image features and automatically learns an in-
ternal refinement mechanism. ii) We propose a disen-
tangled representation of the SE(3) transformation be-
tween object poses to achieve accurate pose estimates.
This representation also enables our approach to re-
fine pose estimates of unseen objects. iii) We have con-
ducted extensive experiments on the LINEMOD (Hin-
terstoisser et al., 2012b) and the Occlusion LINEMOD
(Brachmann et al., 2014) datasets to evaluate the ac-
curacy and various properties of DeepIM. These exper-
iments show that our approach achieves large improve-
ments over state-of-the-art RGB-only methods on both
datasets. Furthermore, initial experiments demonstrate
that DeepIM is able to accurately match poses for tex-
tureless objects (T-LESS (Hodan et al., 2017)) and for
unseen objects (Wu et al., 2015). The rest of the paper
is organized as follows. After reviewing related works in
Section 2, we describe our approach for pose matching
in Section 3. Experiments are presented in Section 4,
and Section 5 concludes the paper.
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Figure 3: Illustration of the computation graph for the BKF. The graph is composed of a feedforward
part, which processes the raw images ot and outputs intermediate observations zt and a matrix L̂t

that is used to form a positive definite observation covariance matrix Rt, and a recurrent part that
integrates zt through time to produce filtered state estimates. See Appendix A for details.

We compare the backprop KF to three alternative state estimators: the “feedforward model”, the
“piecewise KF”, and the “LSTM model”. The simplest of the models, the feedforward model, does
not consider the temporal structure in the task at all, and consists only of a feedforward convolutional
network that takes in the observations ot and outputs a point estimate ŷt of the label yt. This approach
is viable only if the label information can be directly inferred from ot, such as when tracking an
object. On the other hand, tasks that require long term memory, such as visual odometry, cannot
be solved with a plain feedforward network. The piecewise KF model corresponds to the simple
generative approach described in Section 3, which combines the feedforward network with a Kalman
filter that filters the network predictions zt to produce a distribution over the state estimate x̂t. The
piecewise model is based on the same computation graph as the BKF, but does not optimize the filter
and network together end-to-end, instead training the two pieces separately. The only difference
between the two graphs is that the piecewise KF does not implement the additional pathway for
propagating the uncertainty from the feedforward network into the filter, but instead, the filter needs
to learn to handle the uncertainty in zt independently. An example instantiation of BKF is depicted
in Figure 3. A detailed overview of the computational blocks shown in the figure is deferred to
Appendix A.

Finally, we compare to a recurrent neural network based on LSTM hidden units [10]. This model
resembles the backprop KF, except that the filter portion of the graph is replaced with a generic
LSTM layer. The LSTM model learns the dynamics from data, without incorporating the domain
knowledge present in the KF.

5.2 Neural Network Design

A special aspect of our network design is a novel response normalization layer that is applied to the
convolutional activations before applying the nonlinearity. The response normalization transforms
the activations such that the activations of layer i have always mean µi and variance �2

i regardless
of the input to the layer. The parameters µi and �2

i are learned along with other parameters. This
normalization is used in all of the convolutional networks in our evaluation, and resembles batch
normalization [11] in its behavior. However, we found this approach to be substantially more effective
for recurrent models that require backpropagation through time, compared to the more standard
batch normalization approach, which is known to require additional care when applied to recurrent
networks. It has been since proposed independently from our work in [2], which gives an in-depth
analysis of the method. The normalization is followed by a rectified linear unit (ReLU) and a max
pooling layer.

5.3 Synthetic Visual State Estimation Task

Our state estimation task is meant to reflect some of the typical challenges in visual state estimation:
the need for long-term tracking to handle occlusions, the presence of noise, and the need to process
raw pixel data. The task requires tracking a red disk from image observations, as shown in Figure
4. Distractor disks with random colors and radii are added into the scene to occlude the red disk,
and the trajectories of all disks follow linear-Gaussian dynamics, with a linear spring force that pulls
the disks toward the center of the frame and a drag force that prevents high velocities. The disks
can temporally leave the frame since contacts are not modeled. Gaussian noise is added to perturb
the motion. While these model parameters are assumed to be known in the design of the filter, it is
a straightforward to learn also the model parameters. The difficulty of the task can be adjusted by
increasing or decreasing the number of distractor disks, which affects the frequency of occlusions.
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(a) Prediction and measurement update; boxes represent models, colored boxes are learned

(b) Computing the gradient for end-to-end learning requires
density estimation from the predicted particles (gray circles,
darkness corresponds to particle weight). After converting the
particles into a mixture of Gaussians (blue), we can compute the
belief at the true state (orange bar at red x) and maximize it.

Fig. 3: DPF overview. Models in (a) can be learned end-to-end by maximizing the belief of the true state (b).

Resampling makes this Bayes filter implementation efficient
by focusing the belief approximation on probable states.

The particle filter implements the prediction step (Eq. 1)
by moving each particle stochastically, which is achieved by
sampling from a generative motion model,

8i : s[i]t ⇠ p(st | at, s
[i]
t�1). (3)

The particle filter implements the measurement update (Eq. 2)
by setting the weight of each particle to the observation
likelihood—the probability of the current observation condi-
tioned on the state represented by the particle,

8i : w[i]
t = p(ot | s[i]t ). (4)

The particle set is then resampled by randomly drawing
particles s[i]t proportionally to their weight w[i]

t before the filter
performs the next iteration of prediction and update.

IV. DIFFERENTIABLE PARTICLE FILTERS

Differentiable particle filters (DPFs) are a differentiable
implementation of the particle filter algorithm with end-to-end
learnable models. We can also view DPFs as a new recurrent
network architecture that encodes the algorithmic prior from
particle filters in the network structure (see Fig. 3a).

With end-to-end learning, we do not mean that every part
of a system is learned but that the objective for the learn-
able parts is end-to-end performance. For efficient end-to-end
learning in particle filters, we need learnable models and the
ability to backpropagate the gradient through the particle filter
algorithm—not to change the algorithm but to compute how
to change the models to improve the algorithm’s output.

This section describes our DPF implementation. Our source
code based on TensorFlow [1] and Sonnet [4] is available at
https://github.com/tu-rbo/differentiable-particle-filters.

A. Belief

DPFs represent the belief at time t by a set of weighted
particles, bel(st) = (St,wt), where S 2 Rn⇥d describes n
particles in d-dimensional state space with weights w 2 Rn.
At every time step, DPFs update the previous belief bel(st�1)
with action at and observation ot to get bel(st) (see Fig. 3a).

B. Prediction

The prediction step moves each particle by sampling from
a probabilistic motion model (Eq. 3). Motion models often as-
sume deterministic environments; they account for uncertainty
by generating noisy versions of the commanded or measured
action such that a different version of the action is applied
to each particle [21, chap. 5]. We follow the same approach
by splitting the motion model into an action sampler f , which
creates a noisy action â[i] per particle, and a dynamics model g,
which moves each particle i according to â[i].

â[i]
t = at + f✓(at, ✏

[i] ⇠ N ), (5)

s[i]t = s[i]t�1 + g(s[i]t�1, â
[i]
t ), (6)

where f✓ is a feedforward network (see Table I), ✓ are all
parameters of the DPF, and ✏[i] 2 Rd is a noise vector
drawn from a standard normal distribution. Using the noise
vector as input for a learnable generative model is known
as the reparameterization trick [14]. Here, this trick enables
f✓ to learn to sample from action-dependent motion noise.
The resulting noisy actions are fed into g, which simulates
how these actions change the state. Since we often know the
underlying dynamics model, we can implement its equations
in g. Alternatively, we can replace g by a feedforward network
g✓ and learn the dynamics from data (tested in Section V-A3).

C. Measurement Update

The measurement update uses the observation to compute
particle weights (Eq. 4). DPFs implement this update and
additionally use the observation to propose new particles
(see Fig. 3a). The DPF measurement model consists of three
components: a shared observation encoder h, which encodes
an observation ot into a vector et, a particle proposer k, which
generates new particles, and an observation likelihood estima-

tor l, which weights each particle based on the observation.

et = h✓(ot), (7)

s[i]t = k✓(et, �
[i] ⇠ B), (8)

w[i]
t = l✓(et, s

[i]
t ), (9)

Differentiable Particle Filters

[2] Jonschkowski et al., RSS 2018

Multimodal Sensor Fusion with Differentiable Filters

Michelle A. Lee⇤, Brent Yi⇤, Roberto Martín-Martín, Silvio Savarese, Jeannette Bohg

Abstract— Leveraging multimodal information with recursive
Bayesian filters improves performance and robustness of state
estimation, as recursive filters can combine different modalities
according to their uncertainties. Prior work has studied how
to optimally fuse different sensor modalities with analytical
state estimation algorithms. However, deriving the dynamics
and measurement models along with their noise profile can
be difficult or lead to intractable models. Differentiable filters
provide a way to learn these models end-to-end while retaining
the algorithmic structure of recursive filters. This can be
especially helpful when working with sensor modalities that
are high dimensional and have very different characteristics. In
contact-rich manipulation, we want to combine visual sensing
(which gives us global information) with tactile sensing (which
gives us local information). In this paper, we study new dif-
ferentiable filtering architectures to fuse heterogeneous sensor
information. As case studies, we evaluate three tasks: two in
planar pushing (simulated and real) and one in manipulating
a kinematically constrained door (simulated). In extensive
evaluations, we find that differentiable filters that leverage
crossmodal sensor information reach comparable accuracies to
unstructured LSTM models, while presenting interpretability
benefits that may be important for safety-critical systems. We
also release an open-source library for creating and training dif-
ferentiable Bayesian filters in PyTorch, which can be found on
our project website: https://sites.google.com/view/
multimodalfilter.

I. INTRODUCTION

Object manipulation in robotics is inherently multimodal:
a robot can observe the object interaction with its cameras,
register the motion of its own motors, and sense the forces
and torques it applies with its end effector. The information
from these modalities can be used to continuously estimate
the state of those elements in the environment that are
relevant to the manipulation task. Since the information from
vision, proprioception, and haptics is complementary, using
multimodal sensory inputs can help overcome limitations of
single modalities due to occlusions, loss of contact, sensor
failure, or differing sensor rates. Fusing these modalities in an
optimal manner promises more accurate, robust and reliable
manipulation. This idea has fueled research in sensor fusion
and multimodal state estimation for decades [2, 7, 21].

Multimodal state estimation for manipulation is challenging.
Visual, proprioceptive and haptic data live in very different
sensor spaces that represent different physical properties,
have disparate dimensionality, and may arrive at different

*Equal contribution. All authors are with Stanford Artificial Intelligence
Lab (SAIL), Stanford University. [mishlee, brentyi, robertom, ssilvio,
bohg]@stanford.edu

This work has been partially supported by JD.com American Technologies
Corporation (“JD”) under the SAIL-JD AI Research Initiative. This article
solely reflects the opinions and conclusions of its authors and not JD or any
entity associated with JD.com.

Image Information

Force Reading 

t=0 sec t=20 sec t=45 sec

Proprioception

Fig. 1: We study the integration of modalities for recursive state estimation
with differentiable filters; (top) Information from force sensing (local
information), joint encoders and visual sensing (global information) is fused
with different architectures, including new crossmodal strategies that use
information from one modality to assess the uncertainty of another; (bottom)
By combining local and global information during manipulation, the pose
of an object (green peg) can be correctly estimated (red overlay).

rates. Moreover, the models that map these signals to the
task-relevant state (e.g. object motion) are often complex
and require full knowledge of the environment. To alleviate
the complexity of deriving these models, recently proposed
methods [8, 15, 19] learn the measurement, forward, and noise
models from labeled data. To apply deep neural networks
to this learning task, these methods turn the state estimation
process into a differentiable procedure that allows end-to-end
backpropagation of errors. While these methods demonstrate
improved performance and are more interpretable when
compared to completely unstructured LSTMs, this was only
shown with a single sensor modality or with sensors with
very similar characteristics, such as RGB images and depth.

To fuse sensor information with different characteristics,
an estimator needs to understand how to balance confidence
between modalities. We present three types of fusion mecha-
nisms for differentiable filters. The first one fuses data based
on uncertainty estimates per modality, i.e. unimodal informa-
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Figure 2: Differentiable SLAM-net. The global map is maintained by a collection of learned local grid maps. The trajectory is
tracked by a particle filter. Particles represent trajectories and they are updated with learned neural network components: the
mapping, transition, and observation models.

simulation platform [54] with three real-world indoor scene
datasets. We additionally experiment with the KITTI visual
odometry data [21]. SLAM-net achieves good performance
under challenging conditions where the widely used ORB-
SLAM [48] completely fails; and trained SLAM-nets trans-
fer over datasets. For downstream navigation we propose
an architecture similar to Neural SLAM [10], but with using
our differentiable SLAM-net module. Our approach signif-
icantly improves the state-of-the-art for the CVPR Habitat
2020 PointNav challenge [26].

2. Related work
Learning based SLAM. Learning based approaches to

SLAM have a large and growing literature. For example,
CodeSLAM[7] and SceneCode[66] learn a compact repre-
sentation of the scene; CNN-SLAM[59] learns a CNN-based
depth predictor as the front-end of a monocular SLAM sys-
tem; BA-net [58] learns the feature metric representation and
a damping factor for bundle adjustment. While these works
use learning, they typically only learn specific modules in
the SLAM system. Other approaches do end-to-end learning
but they are limited to visual odometry, i.e., they estimate
relative motion between consecutive frames without a global
map representation [67; 42]. Our method maintains a full
SLAM algorithm and learns all of its components end-to-
end.

Classic SLAM. Classic SLAM algorithms can be di-
vided into filtering and optimization based approaches [55].
Filtering-based approaches maintain a probability distribu-
tion over the robot trajectory and sequentially update the
distribution with sensor observations [14; 4; 16; 46; 47].
Optimization-based approaches apply bundle adjustment on
a set of keyframes and local maps; and they are popular
for both visual [55; 49; 48; 39] and lidar-based SLAM [29].
Our approach builds on a filtering-based algorithm, Fast-

SLAM [46; 47]. The original algorithm (apart from a few
adaptations [5; 41; 28]) works with a lidar sensor and hand-
designed model components. Robot odometry information
is typically used for its transition model, and either land-
marks [46] or occupancy grid maps [22] are used for its
observation model. In contrast, we learn neural network
models for visual input by backpropagation through a differ-
entiable variant of the algorithm. We choose this algorithm
over an optimization based method because of the availabil-
ity of differentiable particle filters [32; 35], and the suitability
of the algorithm for downstream robot navigation.

Differentiable algorithms. Differentiable algorithms
are emerging for a wide range of learning domains, including
state estimation [25; 32; 35; 43], visual mapping [24; 37],
planning [57; 34; 19; 51; 23; 65] and control tasks [2; 52;
18; 6]. Differentiable algorithm modules have been also
composed together for visual robot navigation [24; 36; 44].
This work introduces a differentiable SLAM approach that
fills a gap in this literature. While Jatavallabhula et al. [31]
have investigated differentiable SLAM pipelines, they focus
solely on the effect of differentiable approximations and do
not perform learning of any kind.

Visual navigation. A number of learning based
approaches has been proposed for visual navigation re-
cently [24; 3; 45; 36; 63; 10; 11; 53]. Modular approaches
include CMP [24], DAN [36] and Neural SLAM [10]. How-
ever, CMP assumes a known robot location, circumventing
the issue of localization. DAN assumes a known map that
is given to the agent. Neural SLAM [10; 53] addresses the
joint SLAM problem, but it relies solely on relative visual
odometry without local bundle adjustment or loop closure,
and thus it inherently accumulates errors over time. We pro-
pose a similar navigation architecture to Neural SLAM [10],
but utilizing our Differentiable SLAM-net module in place
of learned visual odometry.

2

Differentiable SLAM-net

[4] Karkus et al., CVPR 2021
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Semantic Scene Graphs and Explicit Representations

Figure 2: An example of a scene graph (bottom) and a grounding
(top). The scene graph encodes objects (“girl”), attributes, (“girl is
blonde”), and relationships (“girl holding racket”). The grounding
associates each object of the scene graph to a region of an image.
The image, scene graph, and grounding are drawn from our real-
world scene graphs dataset (Sect. 4).

3. Scene Graphs
To retrieve images containing particular semantic con-

tents, we need a formalized way of representing the contents
of a scene. This representation must be powerful enough to
describe the rich variety of scenes that can exist, without
being too cumbersome. To this end, we define two abstrac-
tions: a scene graph, which is a way of describing a scene,
and a scene graph grounding, which is a concrete associa-
tion of a scene graph to an image.

3.1. Definition
A scene graph is a data structure that describes the con-

tents of a scene. A scene graph encodes object instances,
attributes of objects, and relationships between objects.

This simple formulation is powerful enough to describe
visual scenes in great detail because it places no restriction
on the types of objects, attributes, and relationships that can
be represented. Fig. 2 (bottom) shows an example of a scene
graph. In this example we see that object instances may
be people (“girl”), places (“tennis court”), things (“shirt”),
or parts of other objects (“arm”). Attributes can describe
color (“cone is orange”), shape (“logo is round”), and pose
(“arm is bent”). Relationships can encode geometry (“fence
behind girl”), actions (“girl swinging racket”), and object
parts (“racket has handle”).

Formally, given a set of object classes C, a set of attribute
types A, and a set of relationship types R, we define a scene
graph G to be a tuple G = (O, E) where O = {o1, . . . , on}
is a set of objects and E ✓ O⇥R⇥O is a set of edges. Each
object has the form oi = (ci, Ai) where ci 2 C is the class
of the object and Ai ✓ A are the attributes of the object.

3.2. Grounding a scene graph in an image
A scene graph on its own is not associated to an image;

it merely describes a scene that could be depicted by an
image. However a scene graph can be grounded to an image
by associating each object instance of the scene graph to a
region in an image. Fig. 2 (top) shows an example of part
of a scene graph grounded to an image.

Formally, we represent an image by a set of candidate
bounding boxes B. A grounding of a scene graph G =
(O, E) is then a map � : O ! B. For ease of notation, for
o 2 O we frequently write �(o) as �o.

Given a scene graph and an image, there are many pos-
sible ways of grounding the scene graph to the image. In
Sect. 5 we formulate a method for determining the best
grounding of a scene graph to an image.

3.3. Why scene graphs?
An obvious alternative choice for representing the con-

tent of scenes is natural language. However, in order to
represent visual scenes at the level of detail shown in Fig. 2,
a full paragraph of description would be necessary:

A blonde white girl is standing in front of an orange cone on a
lined tennis court and is holding a long heavy yellow wide racket
that has a black handle. The girl is wearing a white shirt; there
is a bent arm in front of the shirt and another bent arm beside the
first. There is a round yellow logo on the shirt, and the logo is
beside hands that are on the handle of the racket. There is a black
fence behind the girl, and the girl has brown eyes above a closed
mouth. There are butterflies barrettes in long blonde hair, and the
hair is in a ponytail.

To make use of such a description for image retrieval, we
would need to resolve co-references in the text [53, 30, 39],
perform relationship extraction to convert the unstructured
text into structured tuples [47], and ground the entities of the
tuples into regions of the image described by the text [33].
Such pipelines are challenging even in constrained settings
[33], and would not scale to text of the detail shown above.

We can avoid these complexities by working directly
with grounded scene graphs. We find that with careful user
interface design, non-expert workers can quickly construct
grounded scene graphs of arbitrary complexity. Details can
be found in Sec. 4 and in our supplementary material.

4. Real-World Scene Graphs Dataset
To use scene graphs as queries for image retrieval, we

need many examples of scene graphs grounded to images.
To our knowledge no such dataset exists. To this end, we
introduce a novel dataset of real-world scene graphs.
4.1. Data collection

We manually selected 5,000 images from the intersection
of the YFCC100m [61] and Microsoft COCO [42] datasets,
allowing our dataset to build upon rather than compete with
these existing datasets.

[1] Johnson et al., CVPR 2015

Image Retrieval using Scene Graphs

[2] Zeng et al., ICRA 2018

Differentiable Scene Graphs

Moshiko Raboh1? , Roei Herzig1? , Jonathan Berant1,4, Gal Chechik2,3, Amir Globerson1

1Tel Aviv University, 2Bar-Ilan University, 3NVIDIA Research, 4AI2

Abstract

Reasoning about complex visual scenes involves per-
ception of entities and their relations. Scene Graphs
(SGs) provide a natural representation for reasoning tasks,
by assigning labels to both entities (nodes) and relations
(edges). Reasoning systems based on SGs are typically
trained in a two-step procedure: first, a model is trained
to predict SGs from images, and next a separate model
is trained to reason based on the predicted SGs. How-
ever, it would seem preferable to train such systems in an
end-to-end manner. The challenge, which we address here
is that scene-graph representations are non-differentiable
and therefore it isn’t clear how to use them as interme-
diate components. Here we propose Differentiable Scene
Graphs (DSGs), an image representation that is amenable
to differentiable end-to-end optimization, and requires su-
pervision only from the downstream tasks. DSGs pro-
vide a dense representation for all regions and pairs of
regions, and do not spend modelling capacity on regions
of the image that do not contain objects or relations of
interest. We evaluate our model on the challenging task
of identifying referring relationships (RR) in three bench-
mark datasets: Visual Genome, VRD and CLEVR. Us-
ing DSGs as an intermediate representation leads to new
state-of-the-art performance. The full code is available at
https://github.com/shikorab/DSG.

1. Introduction
Understanding the full semantics of rich visual scenes is

a complex task that involves detecting individual entities, as
well as reasoning about the combination of entities and the
relations between them. To represent entities and their re-
lations jointly, it is natural to view them as a graph, where
nodes are entities and edges represent relations. Such rep-
resentations are often called Scene Graphs (SGs) [23]. Be-
cause SGs allow to explicitly reason about images, substan-
tial efforts have been made to infer them from raw images
[22, 23, 50, 33, 57, 17, 58].

?Equal Contribution.

Intermediate Graph 
Representation

Visual-Reasoning 
Task

<Man, Throwing, Frisbee>

man

man throwing

catching

manchasing

frisbee

Visual 
Reasoning

Task 
Loss

𝑂𝑏𝑗𝑒𝑐𝑡

𝑆𝑢𝑏𝑗𝑒𝑐𝑡

𝑂𝑡ℎ𝑒𝑟𝑂𝑡ℎ𝑒𝑟

Figure 1. Differentiable Scene Graphs: An intermediate “graph-
like” representation that provides a distributed representation for
each entity and pair of entities in an image. Differentiable scene
graphs can be learned with gradient descent in an end-to-end man-
ner, only using supervision about a downstream visual reasoning
task (referring relationships here).

While scene graphs have been shown to be useful for
various tasks [22, 23, 20], using them as a component in a
visual reasoning system is challenging: (a) Because scene
graphs are discrete representations, it is difficult to learn
them in an end-to-end fashion from a downstream task. (b)
The alternative is to pre-train SG predictors separately from
supervised data, but this requires arduous and prohibitive
manual annotation. Moreover, pre-trained SG predictors
have low coverage, because the set of labels they are pre-
trained on rarely fits the needs of a downstream task. For
example, given an image of a parade and a question “point
to the officer on the black horse”, that horse might not be
a node in the graph, and the term “officer” might not be in
the vocabulary. Given these limitations, it is an open ques-
tion how to make scene graphs useful for visual reasoning
applications.

In this work, we describe Differentiable Scene-Graphs
(DSG), which address the above challenges (Figure 1).
DSGs are an intermediate representation trained end-to-
end from the supervision for a downstream reasoning
task. The key idea is to relax the discrete properties of scene
graphs such that each entity and relation is described with a
dense differentiable descriptor.

We demonstrate the benefits of DSGs in the task of re-
solving referring relationships (RR) [27] (see Figure 1).
Here, given an image and a triplet query hsubject, relation,
objecti, a model has to find the bounding boxes of the sub-
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[3] Raboh et al., WACV 2020

Differentiable Scene Graphs

Semantic Robot Programming for Goal-Directed Manipulation in
Cluttered Scenes

Zhen Zeng Zheming Zhou Zhiqiang Sui Odest Chadwicke Jenkins

Abstract— We present the Semantic Robot Programming
(SRP) paradigm as a convergence of robot programming by
demonstration and semantic mapping. In SRP, a user can
directly program a robot manipulator by demonstrating a
snapshot of their intended goal scene in workspace. The robot
then parses this goal as a scene graph comprised of object poses
and inter-object relations, assuming known object geometries.
Task and motion planning is then used to realize the user’s
goal from an arbitrary initial scene configuration. Even when
faced with different initial scene configurations, SRP enables the
robot to seamlessly adapt to reach the user’s demonstrated goal.
For scene perception, we propose the Discriminatively-Informed
Generative Estimation of Scenes and Transforms (DIGEST)
method to infer the initial and goal states of the world from
RGBD images. The efficacy of SRP with DIGEST perception
is demonstrated for the task of tray-setting with a Michigan
Progress Fetch robot. Scene perception and task execution are
evaluated with a public household occlusion dataset and our
cluttered scene dataset.

I. INTRODUCTION

Many service robot scenarios, such as setting up a dinner
table or organizing a shelf, require a computational represen-
tation of a user’s desired world state. For example, how is
the dinner table to be set, or how is the shelf to be organized.
More specifically, what are the objects involved in the task,
what are the desired poses of those objects, and what are the
important spatial relationships between objects. Towards nat-
ural and intuitive modes of human-robot communication, we
present the Semantic Robot Programming (SRP) paradigm
for declarative robot programming over user demonstrated
scenes. In SRP, we assume a robot is capable of goal-directed
manipulation [35] for realizing an arbitrary scene state in
the world. A user can program such goal-directed robots by
demonstrating their desired goal scene. SRP assumes such
scenes can be perceived from partial RGBD observations,
which has proven a challenging problem in itself.

Goal-directed manipulation requires a true closing of the
loop between perception and action, beyond the existing
intellectual silos. Advances in object detection [13], [28]
from appearance has improved greatly in filtering of back-
ground noise and focused attention to objects of interest.
However, the applicability of such vision-based methods
robot perception remains unclear, especially for the purposes
of goal-directed manipulation. This circumstance has given
rise to new approaches to semantic mapping [20], [31],

Z. Zeng, Z. Zhou, Z. Sui and O.C. Jenkins are with the
Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, USA, 48109-2121
[zengzhen|zhezhou|zsui|ocj]@umich.edu

Fig. 1: A robot preparing a tray through goal-directed manipulations.
Given the observation of the user desired goal state and the initial state of
the tabletop workspace, the robot first perceives the axiomatic scene graph
of the goal and initial state, and then plan and execute goal-directed actions
to prepare the tray the way the user desires.

[17] to computationally model a robot’s environment into
perceivable objects with robot-actionable affordances.

We posit semantic mapping offers a springboard to new
forms of robot programming, such as Semantic Robot Pro-
gramming, where semantic maps provide a generic abstrac-
tion layer for robot programming. In our approach to this
problem, we must bridge the gap of interoperation between
semantic mapping and existing methods for goal-directed
task planning [12], [21], grasp planning [37] and motion
planning [33]. We have previously proposed methods for
scene estimation [34], [35] from robot RGBD sensing that
used scene graphs expressed axiomatically as a semantic
mapping abstraction. This abstraction allowed for ready use
with modern task, grasp, and motion planning systems. The
resulting of closing this loop with a semantic abstraction
layer is envisioned to enable portable robot-executable ex-
pressions accessible across a variety of modalities, including:
natural language, visual programming, and put-that-there
gesturing [4], [19]. However, the computational cost of
inference over scenes is asymptotically intractable as the
number of objects grows.

In this paper, we propose the paradigm of Semantic Robot
Programming for robot manipulators with a complementary
method for more tractable scene perception. SRP is a declara-
tive approach to programming robots through demonstration,
where users only need to demonstrate their desired state

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia
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Semantic Robot Programming

Semantic Linking Maps for Active Visual Object Search

Zhen Zeng⇤ Adrian Röfer† Odest Chadwicke Jenkins⇤

Abstract— We aim for mobile robots to function in a variety
of common human environments. Such robots need to be
able to reason about the locations of previously unseen target
objects. Landmark objects can help this reasoning by narrowing
down the search space significantly. More specifically, we can
exploit background knowledge about common spatial relations
between landmark and target objects. For example, seeing a
table and knowing that cups can often be found on tables aids
the discovery of a cup. Such correlations can be expressed as
distributions over possible pairing relationships of objects. In
this paper, we propose an active visual object search strategy
method through our introduction of the Semantic Linking Maps
(SLiM) model. SLiM simultaneously maintains the belief over a
target object’s location as well as landmark objects’ locations,
while accounting for probabilistic inter-object spatial relations.
Based on SLiM, we describe a hybrid search strategy that selects
the next best view pose for searching for the target object based
on the maintained belief. We demonstrate the efficiency of our
SLiM-based search strategy through comparative experiments
in simulated environments. We further demonstrate the real-
world applicability of SLiM-based search in scenarios with a
Fetch mobile manipulation robot.

I. INTRODUCTION

Being able to efficiently search for objects in an environ-
ment is crucial for service robots to autonomously perform
tasks [9], [27], [7]. When asked where a target object can
be found, humans are able to give hypothetical locations
expressed by spatial relations with respect to other objects.
For example, a cup can be found “on a table” or “near a
sink”. Table and sink are considered landmark objects that
are informative for searching for the target object cup. Robots
should be able to reason similarly about objects locations, as
shown in Figure 1.

Previous works [10], [13], [26] assume landmark objects
are static, in that they mostly remain where they were
last observed. This assumption can be invalid for dynamic
landmark objects that change their location over time, such as
chairs, food carts and toolboxes. Temporal assumptions can
mislead the search process if the prior on the landmarks’
locations is too strong. Further, there also exists uncertainty
in the spatial relations between landmark objects and the
target object, and between landmark objects themselves. For
example, a cup can be “in” or “next to” a sink.

Considering the problem of dynamic landmarks, we pro-
pose the Semantic Linking Maps (SLiM) model to account
for uncertainty in the locations of landmark objects during
object search. Building on Lorbach et al. [18], we model
inter-object spatial relations probabilistically via a factor

⇤Z. Zeng, O.C. Jenkins are with the Department of Electrical Engineering
and Computer Science, Robotics Institute, University of Michigan, USA

†A. Röfer is with the Department of Computer Science, University of
Bremen, Germany

Fig. 1: Robot tasked to find a coffee machine.

graph. The marginal belief on inter-object spatial relations
inferred from the factor graph is used in SLiM to account
for probabilistic spatial relations between objects.

Using the maintained belief over target and landmark
objects’ locations from SLiM, we propose a hybrid strategy
for active object search. We select the next best view pose,
which guides the robot to explore promising regions that
may contain the target and/or landmark objects. Previous
works [30], [6], [25], [2] have shown the benefit of purpose-
fully looking for landmark objects (Indirect Search) before
directly looking for the target object (Direct Search). The
proposed hybrid search strategy draws insights from both
indirect and direct search. We demonstrate the efficiency of
the proposed hybrid search strategy in our experiments.

In this paper, we describe the Semantic Linking Maps
model as a Conditional Random Field (CRF). Our descrip-
tion of SLiM as a CRF allows us to simultaneously maintain
the belief over target and landmark object locations with
probabilistic modeling over inter-object spatial relations. We
also describe a hybrid search strategy based on SLiM that
draws upon ideas from both indirect and direct search
representations. This SLiM-based search makes use of the
maintained belief over objects’ locations by selecting the next
best view pose based on the current belief. In our experi-
ments, we show that the proposed object search approach
is more robust to noisy priors on landmark locations by
simultaneously maintaining belief over the locations of target
and landmark objects.
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NeRF-Supervision: Learning Dense Object Descriptors

from Neural Radiance Fields

Lin Yen-Chen1 Pete Florence2 Jonathan T. Barron2
Tsung-Yi Lin3⇤ Alberto Rodriguez1 Phillip Isola1

1MIT 2Google 3Nvidia
https://yenchenlin.me/nerf-supervision/

Fig. 1: Overview. We present a new, RGB-sensor-only, self-supervised pipeline for learning object-centric dense descriptors,
based on neural radiance fields (NeRFs) [1]. The pipeline consists of three stages: (a) We collect RGB images of the object
of interest and optimize a NeRF for that object; (b) The recovered NeRF’s density field is then used to automatically generate
a dataset of dense correspondences; (c) We use the generated dataset to train a model to estimate dense object descriptors,
and evaluate that model on previously-unobserved real images. Click the image to play the overview video in a browser.

Abstract— Thin, reflective objects such as forks and whisks

are common in our daily lives, but they are particularly chal-

lenging for robot perception because it is hard to reconstruct

them using commodity RGB-D cameras or multi-view stereo

techniques. While traditional pipelines struggle with objects

like these, Neural Radiance Fields (NeRFs) have recently been

shown to be remarkably effective for performing view synthesis

on objects with thin structures or reflective materials. In this

paper we explore the use of NeRF as a new source of supervision

for robust robot vision systems. In particular, we demonstrate

that a NeRF representation of a scene can be used to train

dense object descriptors. We use an optimized NeRF to extract

dense correspondences between multiple views of an object, and

then use these correspondences as training data for learning a

view-invariant representation of the object. NeRF’s usage of

a density field allows us to reformulate the correspondence

problem with a novel distribution-of-depths formulation, as

opposed to the conventional approach of using a depth map.

Dense correspondence models supervised with our method

significantly outperform off-the-shelf learned descriptors by

106% (PCK@3px metric, more than doubling performance)

and outperform our baseline supervised with multi-view stereo

by 29%. Furthermore, we demonstrate the learned dense

descriptors enable robots to perform accurate 6-degree of

freedom (6-DoF) pick and place of thin and reflective objects.

I. INTRODUCTION

Designing robust visual descriptors that are invariant to
scale, illumination, and pose is a long-standing problem in
computer vision [2, 3, 4]. Recently, learning-based visual

⇤Work done while at Google.

descriptors, supervised by dense correspondences between
images, have demonstrated superior performance compared
to hand-crafted descriptors [5, 6, 7, 8]. However, producing
the ground-truth dense correspondence data required for
training these models is challenging, as the geometry of
the scene and the poses of the cameras must somehow be
estimated from an image (or known a priori). As a result,
learning-based methods typically rely on either synthetically
rendering an object from multiple views [9, 10], or on aug-
menting a non-synthetic image with random affine transfor-
mations from which “ground truth” correspondences can be
obtained [6, 11, 12]. While effective, these approaches have
their limitations: the gap between real data and synthetic data
may hinder performance, and data augmentation approaches
may fail to identify correspondences involving out-of-plane
rotation (which occur often in robot manipulation).

To learn a dense correspondence model, Florence
et al. propose a self-supervised data collection approach
based on robot motion in conjunction with a depth cam-
era [13]. Their method generates dense correspondences
given a set of posed RGB-D images and then uses them
to supervise visual descriptors. However, this method works
poorly for objects that contain thin structures or highly
specular materials, as commodity depth cameras fail in these
circumstances. An object exhibiting thin structures or shiny
reflectance, well-exemplified by objects such as forks and
whisks, will result in a hole-riddled depth map (shown in
Fig. 2b) which prevents the reprojection operation from
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Neural Radiance Fields and Implicit Representations
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 5
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Fig. 2: An overview of our neural radiance field scene representation and di↵er-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is di↵erentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).

direction as a 3D Cartesian unit vector d. We approximate this continuous 5D
scene representation with an MLP network F⇥ : (x,d) ! (c, �) and optimize its
weights ⇥ to map from each input 5D coordinate to its corresponding volume
density and directional emitted color.

We encourage the representation to be multiview consistent by restricting
the network to predict the volume density � as a function of only the location
x, while allowing the RGB color c to be predicted as a function of both location
and viewing direction. To accomplish this, the MLP F⇥ first processes the input
3D coordinate x with 8 fully-connected layers (using ReLU activations and 256
channels per layer), and outputs � and a 256-dimensional feature vector. This
feature vector is then concatenated with the camera ray’s viewing direction and
passed to one additional fully-connected layer (using a ReLU activation and 128
channels) that output the view-dependent RGB color.

See Fig. 3 for an example of how our method uses the input viewing direction
to represent non-Lambertian e↵ects. As shown in Fig. 4, a model trained without
view dependence (only x as input) has di�culty representing specularities.

4 Volume Rendering with Radiance Fields

Our 5D neural radiance field represents a scene as the volume density and di-
rectional emitted radiance at any point in space. We render the color of any ray
passing through the scene using principles from classical volume rendering [16].
The volume density �(x) can be interpreted as the di↵erential probability of a
ray terminating at an infinitesimal particle at location x. The expected color
C(r) of camera ray r(t) = o + td with near and far bounds tn and tf is:

C(r) =

Z
tf

tn

T (t)�(r(t))c(r(t),d)dt , where T (t) = exp

✓
�
Z

t

tn

�(r(s))ds

◆
. (1)

[1] Mildenhall et al., ECCV 2020

NeRF

Object-Centric Neural Scene Rendering

Michelle Guo
Stanford University

Alireza Fathi
Google Research

Jiajun Wu
Stanford University

Thomas Funkhouser
Google Research

(c) Compose Scene (d) Move Light (e) Move Camera (f) Move Objects(b) Object Library(a) Params

Figure 1: We propose an object-centric neural scene representation for image synthesis. Given a scene description (a), and
a repository of neural object-centric scattering functions (OSF) trained independently and frozen for each object (b), we can
compose the objects into scenes (c), and render photorealistic images as we move lights (d), cameras (e), and/or objects (f).

Abstract

We present a method for composing photorealistic scenes

from captured images of objects. Our work builds upon

neural radiance fields (NeRFs), which implicitly model the

volumetric density and directionally-emitted radiance of a

scene. While NeRFs synthesize realistic pictures, they only

model static scenes and are closely tied to specific imaging

conditions. This property makes NeRFs hard to generalize

to new scenarios, including new lighting or new arrange-

ments of objects. Instead of learning a scene radiance field

as a NeRF does, we propose to learn object-centric neural

scattering functions (OSFs), a representation that models

per-object light transport implicitly using a lighting- and

view-dependent neural network. This enables rendering

scenes even when objects or lights move, without retrain-

ing. Combined with a volumetric path tracing procedure,

our framework is capable of rendering both intra- and inter-

object light transport effects including occlusions, specular-

ities, shadows, and indirect illumination. We evaluate our

approach on scene composition and show that it generalizes

to novel illumination conditions, producing photorealistic,

physically accurate renderings of multi-object scenes.

1. Introduction

Synthesizing images of dynamic scenes is an important
problem in computer vision and graphics, with applications
in AR/VR and robotics [18, 42]. For synthetic scenes, a user
typically designs a set of 3D objects separately [5], then

composes them into scenes to be rendered with specified
camera, material, and lighting parameters. While this tra-
ditional graphics approach allows flexible scene composi-
tions, it produces photorealistic images only when detailed
models are available for geometry, lighting, materials, and
cameras, which are difficult to obtain for real-world scenes.

Recently, a number of works have demonstrated high-
quality results on novel view synthesis from real-world im-
ages using implicit methods [17, 33, 34]. Most notably,
neural radiance fields (NeRFs) [23] achieve photorealistic
quality by implicitly modeling the volumetric density and
directional emitted radiance of a scene. However, a NeRF
assumes static scenes and fixed illumination (Figure 2). It
learns a radiance field, which estimates only the resulting
radiance along a ray after all light transport has occurred in
a scene. Thus, for dynamic scenes where lights and objects
can move, a NeRF model would have to be trained sepa-
rately for every new scene configuration.

To address this issue, we propose object-centric neural
scattering functions (OSFs) to synthesize dynamic scenes
of objects learned from 2D images (Figure 1). We repre-
sent each object as a learned 7D scattering function with in-
puts (x, y, z,�i, ✓i,�o, ✓o), where (x, y, z) is the spatial lo-
cation, (�i, ✓i) is the incoming light direction, and (�o, ✓o)
is the outgoing light direction. The function outputs the vol-
umetric density as well as the fraction of light arriving from
direction (�i, ✓i) that scatters in outgoing direction (�o, ✓o).

Since each object’s scattering function is a radiance
transfer function rather than a radiance field, it is intrinsic
to the object (independent of the scene it is in) and can be
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Neural Descriptor Fields:
SE(3)-Equivariant Object Representations for Manipulation

Anthony Simeonov⇤,1, Yilun Du⇤,1, Andrea Tagliasacchi2,3,
Joshua B. Tenenbaum1, Alberto Rodriguez1, Pulkit Agrawal†,1, Vincent Sitzmann†,1

1Massachusetts Institute of Technology 2Google Research 3University of Toronto
⇤Authors contributed equally, order determined by coin flip. †Equal Advising.

Small Handful (~5-10) of Demonstrations Test-time executions: Unseen objects in out-of-distribution poses

Fig. 1: Given a few (⇠5-10) demonstrations of a manipulation task (left), Neural Descriptor Fields (NDFs) generalize the task to novel
object instances in any 6-DoF configuration, including those unobserved at training time, such as mugs with arbitrary 3D translation and
rotation (right). NDFs are continuous functions that map 3D spatial coordinates to spatial descriptors. We generalize this to functions
which encode SE(3) poses, such as those used for grasping and placing. NDFs are trained self-supervised for the surrogate task of 3D
reconstruction, do not require labeled keypoints, and are SE(3)-equivariant, guaranteeing generalization to unseen object configurations.

Abstract— We present Neural Descriptor Fields (NDFs), an

object representation that encodes both points and relative

poses between an object and a target (such as a robot gripper

or a rack used for hanging) via category-level descriptors. We

employ this representation for object manipulation, where given

a task demonstration, we want to repeat the same task on a new
object instance from the same category. We propose to achieve

this objective by searching (via optimization) for the pose

whose descriptor matches that observed in the demonstration.

NDFs are conveniently trained in a self-supervised fashion via

a 3D auto-encoding task that does not rely on expert-labeled

keypoints. Further, NDFs are SE(3)-equivariant, guaranteeing

performance that generalizes across all possible 3D object trans-

lations and rotations. We demonstrate learning of manipulation

tasks from few (⇠5-10) demonstrations both in simulation and

on a real robot. Our performance generalizes across both object

instances and 6-DoF object poses, and significantly outperforms

a recent baseline that relies on 2D descriptors. Project website:

https://yilundu.github.io/ndf/

I. INTRODUCTION

Task demonstrations are an intuitive and a powerful
mechanism for communicating complex tasks to a robot [1,
30, 35]. However, the ability of current methods to learn from
demonstrations is severely limited. Consider the task of teach-
ing the robot to pick up a mug and place it on a rack. After
learning, if we want the robot to place a novel instance of a
mug from any starting location and orientation, state-of-the-
art systems would require a large number of demonstrations
spanning the space of different initial positions, orientations
and mug instances. This requirement makes it extremely
tedious to communicate tasks using demonstrations. Moreover,
this approach based on data augmentation comes with no
algorithmic guarantees to generalization to out-of-distribution

object configurations.
Our goal is to build a robotic system that can learn

such pick-and-place tasks for unseen objects in a data-
efficient manner. In particular, we desire to construct a system
which can manipulate objects from the same category into
target configurations, irrespective of the object’s 3D location
and orientation (see Figure 1) from just a few training
demonstrations (⇠ 5� 10).

Consider the task of picking a mug. When task and
demonstration objects are identical, the robot can pick up
the object by transferring the demonstrated grasp to the new
object configuration. For this it suffices to attach a coordinate
frame to the demonstration mug, estimate the pose of this
frame on the new mug, and move the robot to the relative
grasp pose that was recorded in the demonstration with respect
to the coordinate frame. Let us now consider mugs that vary
in shape and size, wherein grasping requires aligning the
gripper to a local geometric feature whose location varies
depending on the shape of the mug. In this case, estimating the
coordinate frame on the new mug and moving to the relative
grasp pose recorded in the demonstration will fail, unless
the frame is attached to the specific geometric feature that is
used for grasping. However, the choice of which geometric
feature to use is under-specified unless we consider the task,
and different tasks require alignment to different features.

For example, to imitate grasping along the rim, we may
require to define a local frame such that identical gripper
poses expressed in this frame all lead to grasping along the
rim, irrespective of the height of the mug. On the other hand,
imitating a demonstration of object placing may require a new
coordinate frame that can align a placing target (e.g., a shelf)
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[5] Lewis et al., IROS 2022

NARF22: Neural Articulated Radiance Fields
for Configuration-Aware Rendering

Stanley Lewis Jana Pavlasek Odest Chadwicke Jenkins

Abstract— Articulated objects pose a unique challenge for
robotic perception and manipulation. Their increased number
of degrees-of-freedom makes tasks such as localization com-
putationally difficult, while also making the process of real-
world dataset collection unscalable. With the aim of addressing
these scalability issues, we propose Neural Articulated Radiance
Fields (NARF22), a pipeline which uses a fully-differentiable,
configuration-parameterized Neural Radiance Field (NeRF) as
a means of providing high quality renderings of articulated
objects. NARF22 requires no explicit knowledge of the object
structure at inference time. We propose a two-stage parts-based
training mechanism which allows the object rendering models
to generalize well across the configuration space even if the
underlying training data has as few as one configuration rep-
resented. We demonstrate the efficacy of NARF22 by training
configurable renderers on a real-world articulated tool dataset
collected via a Fetch mobile manipulation robot. We show the
applicability of the model to gradient-based inference methods
through a configuration estimation and 6 degree-of-freedom
pose refinement task. The project webpage is available at:
https://progress.eecs.umich.edu/projects/narf/.

I. INTRODUCTION

Robots operating in environments made for humans must
be capable of interacting with a wide variety of articulated
objects such as doors, drawers, and hand tools. In order
to perform manipulation tasks involving articulated objects,
robots must be capable of localizing the objects and their
configurations. Robust, configuration-aware perception of
these objects remains a challenge for robots operating in real-
world environments due to the high-dimensionality introduced
by articulated degrees-of-freedom and the diversity of object
geometries a robot might encounter.

In recent years, data-driven methods have demonstrated
impressive results in rigid-body pose estimation from visual
data [1]–[3]. These methods have benefited greatly from the
availability of standardized real-world datasets [4], [5]. Data-
driven articulated object estimation is challenging due to the
difficulty of generating large-scale datasets which include
examples of the full range of configurations. Existing real-
world datasets with RGB-D observations and configuration
information have been limited to small-scale data collection
comprising of a handful of scenes and objects [6], [7]. Fol-
lowing the success of methods for rigid-body pose estimation
using synthetic data [8], there has been an emergence of
synthetic datasets for articulated objects [9], [10]. However,
the photorealism of the synthetic images is dependent on the
quality of the textured mesh models and rendering engine used.

S. Lewis, J. Pavlasek, and O. C. Jenkins are with the Robotics Institute,
University of Michigan, Ann Arbor, MI, USA, {stanlew, pavlasek,
ocj}@umich.edu. The authors would like to thank and acknowledge the
work of Stephen Seymour of Morehouse College and Hengxu You, which
ultimately led to the contributions contained in this paper.

𝑋𝑋1

𝑋𝑋2

𝑋𝑋3

(a) Training Images (b) Articulation Model (c) Neural Renderer

(d) Configuration-Aware Renderings

(f) Refined Pose + 
Configuration

(e) Initial Estimate

⋯

Fig. 1: Given robot observations of articulated objects at a small number of
configurations (a), along with their poses and articulation models (b), our
configuration-aware Neural Articulated Radiance Field (NARF22) method (c)
learns to render the object at arbitrary configurations (d). NARF22 renderings
of the object at novel configurations and poses can be used to perform pose
and configuration estimation of the object (f) given an initial guess (e).

Furthermore, scaling such datasets to more object instances
and categories may necessitate high-quality textured mesh
models, which are expensive to create. It stands to reason
that being able to generate high-quality articulated object
images and meta-data would assist in furthering data-driven
approaches to the articulated object pose estimation task.

Recently, volumetric neural rendering techniques have
seen impressive advancements [11], [12]. Neural Radiance
Fields (NeRFs) generate highly realistic images of a scene at
any given viewpoint by evaluating a differentiable function
along rays traced through the scene to obtain colors and
densities at each pixel location. This technique has the
potential to have significant impact on perception for robotics,
and has recently shown success when applied to rigid body
pose estimation [13]. The ability to generate photorealistic
rendering of an object at any given pose would enable a
robot to efficiently evaluate hypotheses about object state
against its observations, using the popular render-and-compare
strategy [14], [15].

This paper introduces a Neural Articulated Radiance
Field (NARF22) for creating NeRF style renderers that
are paramaterized not only by pose, but additionally by
articulated object configuration.1 The configuration-aware

1Note that NARF22 is distinct from NARF [16] for 3 DoF range image
feature extraction.
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Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning
and Large-Scale Data Collection

Sergey Levine SLEVINE@GOOGLE.COM
Peter Pastor PETERPASTOR@GOOGLE.COM
Alex Krizhevsky AKRIZHEVSKY@GOOGLE.COM
Deirdre Quillen DEQUILLEN@GOOGLE.COM

Google

Abstract
We describe a learning-based approach to hand-
eye coordination for robotic grasping from
monocular images. To learn hand-eye coordi-
nation for grasping, we trained a large convo-
lutional neural network to predict the probabil-
ity that task-space motion of the gripper will re-
sult in successful grasps, using only monocular
camera images and independently of camera cal-
ibration or the current robot pose. This requires
the network to observe the spatial relationship
between the gripper and objects in the scene,
thus learning hand-eye coordination. We then
use this network to servo the gripper in real time
to achieve successful grasps. To train our net-
work, we collected over 800,000 grasp attempts
over the course of two months, using between 6
and 14 robotic manipulators at any given time,
with differences in camera placement and hard-
ware. Our experimental evaluation demonstrates
that our method achieves effective real-time con-
trol, can successfully grasp novel objects, and
corrects mistakes by continuous servoing.

1. Introduction
When humans and animals engage in object manipulation
behaviors, the interaction inherently involves a fast feed-
back loop between perception and action. Even complex
manipulation tasks, such as extracting a single object from
a cluttered bin, can be performed with hardly any advance
planning, relying instead on feedback from touch and vi-
sion. In contrast, robotic manipulation often (though not
always) relies more heavily on advance planning and anal-
ysis, with relatively simple feedback, such as trajectory
following, to ensure stability during execution (Srinivasa
et al., 2012). Part of the reason for this is that incorpo-
rating complex sensory inputs such as vision directly into

Figure 1. Our large-scale data collection setup, consisting of 14
robotic manipulators. We collected over 800,000 grasp attempts
to train the CNN grasp prediction model.

a feedback controller is exceedingly challenging. Tech-
niques such as visual servoing (Siciliano & Khatib, 2007)
perform continuous feedback on visual features, but typi-
cally require the features to be specified by hand, and both
open loop perception and feedback (e.g. via visual servo-
ing) requires manual or automatic calibration to determine
the precise geometric relationship between the camera and
the robot’s end-effector.

In this paper, we propose a learning-based approach to
hand-eye coordination, which we demonstrate on a robotic
grasping task. Our approach is data-driven and goal-
centric: our method learns to servo a robotic gripper to
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1 Introduction

Figure 1: Isaac Gym allows high performance training on a variety of robotics environments. We benchmark on
8 different environments that offer a wide range of complexity and show the strengths of the simulator in blazing
fast policy training on a single GPU. Top: Ant, Humanoid, Franka-cube-stack, Ingenuity. Bottom: Shadow Hand,
ANYmal, Allegro, TriFinger.

In recent years, reinforcement learning (RL) has become one of the most promising research areas in
machine learning and has demonstrated great potential for solving sophisticated decision-making
problems. Deep reinforcement learning (Deep RL) has achieved superhuman performance in very
challenging tasks, ranging from classic strategy games such as Go and Chess [1], to real-time
computer games like StarCraft [2] and DOTA [3]. It has also shown impressive results in robotic
settings, including legged locomotion [4] and dexterous manipulation [5].

Simulators play a key role in training robots improving both the safety and iteration speed in the
learning process. Training a humanoid robot that walks up and down stairs in the real world can
lead to damage to its machinery and the environment, including humans that are working on the
robot. An alternative is to train inside simulators that offer an efficient and scalable platform via
trial-and-error with no safety issues as observed in the real world. To date, most researchers have
relied on a combination of CPUs and GPUs to run reinforcement learning system [5]. Different parts
of the computer tackle different steps of the physics simulation and rendering process. CPUs are used
to simulate environment physics, calculate rewards, and run the environment, while GPUs are used to
accelerate neural network models during training and inference as well as rendering if required.

However, switching back and forth between CPU cores optimized for sequential tasks and GPUs
which offer large-scale parallelism is by nature inefficient, requiring data to be transferred between
different parts of the system at multiple points during the training process. Therefore, scalability of
deep reinforcement learning in robotics is faced with two critical bottlenecks: 1) enormous computa-
tional requirements and 2) limited simulation speed. These problems are especially challenging when
learning long-horizon behaviours for robots with high degrees of freedom.

Popular physics engines like MuJoCo[6], PyBullet[7], DART[8], Drake[9], V-Rep[10] etc. need large
CPU clusters to solve challenging RL tasks naturally face these bottlenecks. For instance, in [11],
almost 30,000 CPU cores (920 worker machines with 32 cores each) were used to train a robot to
solve the Rubik’s Cube task using RL. In a similar task, [5] used a cluster of 384 systems with 6144
CPU cores, plus 8 NVIDIA V100 GPUs, and required 30 hours of training for RL to converge.

One way to speed-up simulation and training is to make use of hardware accelerators. GPUs
have enjoyed enormous success in computer graphics are also naturally suited for highly parallel
simulations. This approach was taken by [12], and showed very promising results running simulation
on GPU, proving that it is possible to greatly reduce both training time as well as computational
resources required to solve very challenging tasks using RL. However, some bottlenecks were still
not addressed in the work – simulation was on GPU but physics state was copied back to CPU. There,
observations and rewards were calculated using optimized C++ code and later copied back to GPU

4

Simulating Robot Datasets

[2] Makoviychuk et al., 2021

Grounding Predicates 
through Actions

Grounding Predicates through Actions

Toki Migimatsu and Jeannette Bohg

Abstract— Symbols representing abstract states such as
“dish in dishwasher” or “cup on table” allow robots to reason
over long horizons by hiding details unnecessary for high-level
planning. Current methods for learning to identify symbolic
states in visual data require large amounts of labeled training
data, but manually annotating such datasets is prohibitively
expensive due to the combinatorial number of predicates
in images. We propose a novel method for automatically
labeling symbolic states in large-scale video activity datasets
by exploiting known pre- and post-conditions of actions. This
automatic labeling scheme only requires weak supervision
in the form of an action label that describes which action
is demonstrated in each video. We use our framework to
train predicate classifiers to identify symbolic relationships
between objects when prompted with object bounding boxes,
and demonstrate that such predicate classifiers can match the
performance of those trained with full supervision at a fraction
of the labeling cost. We also apply our framework to an
existing large-scale human activity dataset, and demonstrate
the ability of these predicate classifiers trained on human data
to enable closed-loop task planning in the real world.

I. INTRODUCTION

Enabling robots to perform long horizon tasks such as
preparing meals or assembling furniture is a widely studied
problem. Long horizon planning is rooted in early AI work
that studied how to give robots the ability to reason through
symbols [1]. Symbols allow robots to abstract away low-level
details of the environment and perform logical reasoning
at a higher level [2–5]. However, giving robots the ability
to perceive symbols in real-world environments is still an
unsolved problem. Without some form of sensory grounding,
propositions such as “drawer is open” are simply a set of
symbols that lack any actionable meaning for the robot. Thus,
robots often execute symbolic plans without closed-loop
visual feedback—if a robot fails to open a drawer, it has no
way of knowing, because it does not know what “drawer is
open” looks like. State-of-the-art methods for learning visual
groundings of symbols require large amounts of annotated
data [3, 6–8]. However, obtaining annotations of symbolic
states is prohibitively expensive due to the sheer number of
propositions in a single image. Furthermore, densely-labeled
datasets cannot easily be transferred between domains, since
different planning problems often require different symbols.

Rather than learning visual groundings from direct labels
of symbolic state, we propose to learn them indirectly
from visual examples of symbolic actions. Actions change
the symbolic state in a predefined manner according to
their pre- and post-conditions (e.g. the action “pick up cup

The authors are with the Department of Computer Science,
Stanford University, Stanford, CA 94309 USA (e-mail:
{takatoki,bohg}@cs.stanford.edu).
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Fig. 1: Example predictions of a predicate classifier trained on data labeled
with our proposed method. The top two rows show how the predicate
classifier can be used to determine whether the pre- or post-conditions of
an action are satisfied for closed-loop task planning—the first row shows
predictions on a 20BN video, and the second row shows predictions in our
real robot domain. Each entry shows the predicate probability predicted
by the classifier and the resulting binary classification. The red color
indicates that the desired pre/post-conditions have not yet been satisfied,
while green indicates that they have. The bottom shows a selection of
the 151 propositions output by the predicate classifier for one image.
More examples can be found on our project website: https://sites.
google.com/stanford.edu/groundingpredicates.

from table” changes the propositions “hand is empty” and
“cup is on table” to “hand is holding cup” and “cup is
not on table”). Labeling a dataset with actions is easier
than with symbolic states: it requires first defining the pre-
and post-conditions once for each action class, and then
annotating each visual example with only its action. Then,
partial labels of symbolic state come for free with the action
pre- and post-conditions. For task planning applications, the
action pre- and post-conditions will already be defined in
the task planning domain.

With this novel partial labeling scheme, we train networks
to infer symbolic states in images in 20BN Something Some-
thing v2 (20BN) [9], a large-scale human activity dataset.
The result is a system that can identify symbolic states
in real-world environments for robot manipulation (Fig. 1).
These classifiers open up many opportunities for long hori-
zon planning in the real world, such as closed-loop task plan-
ning or learning from demonstrations of sequential actions.

The main contributions of this paper are three-fold. 1) We
provide a framework for automatically labeling symbolic
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[3] Migimatsu and Bohg, ICRA 2021

All You Need is LUV: Unsupervised Collection

of Labeled Images Using UV-Fluorescent Markings

Brijen Thananjeyan , Justin Kerr , Huang Huang, Joseph E. Gonzalez, Ken Goldberg

Abstract— Large-scale semantic image annotation is a sig-

nificant challenge for learning-based perception systems in

robotics. Current approaches often rely on human labelers,

which can be expensive, or simulation data, which can visually

or physically differ from real data. This paper proposes

Labels from UltraViolet (LUV), a novel framework that enables

rapid, labeled data collection in real manipulation environments

without human labeling. LUV uses transparent, ultraviolet-

fluorescent paint with programmable ultraviolet LEDs to collect

paired images of a scene in standard lighting and UV lighting

to autonomously extract segmentation masks and keypoints via

color segmentation. We apply LUV to a suite of diverse robot

perception tasks to evaluate its labeling quality, flexibility, and

data collection rate. Results suggest that LUV is 180-2500 times

faster than a human labeler across the tasks. We show that LUV

provides labels consistent with human annotations on unpainted

test images. The networks trained on these labels are used to

smooth and fold crumpled towels with 83% success rate and

achieve 1.7mm position error with respect to human labels on

a surgical needle pose estimation task. The low cost of LUV

makes it ideal as a lightweight replacement for human labeling

systems, with the one-time setup costs at $300 equivalent to the

cost of collecting around 200 semantic segmentation labels on

Amazon Mechanical Turk. Code, datasets, visualizations, and

supplementary material can be found at https://sites.
google.com/berkeley.edu/luv.

I. INTRODUCTION

Supervised learning is a popular technique for training per-
ception and planning systems for robots, with encouraging
results in applications such as autonomous driving [13, 23,
36], robot object grasping [5, 11, 17, 23, 28], deformable
manipulation [12, 15, 24, 38, 43, 48, 49], and robot-assisted
surgery [19, 31, 46]. Supervised learning requires labeled
data, and a common approach is for humans to hand-
label images with segmentation masks, keypoints, and class
labels [15, 20, 46]. However this is time-consuming, error-
prone, and expensive [36], especially when dense or 3-D
annotations are required [5, 11, 12, 23, 43]. An alternative
approach is to use simulated data, where data annotation can
be densely and autonomously generated at scale at relatively
low cost [5, 12, 17, 18, 23, 28, 43]. However, sim-to-
real transfer is still an active area of research with many
current limitations and open questions [50]. Many applica-
tions would benefit from an efficient method to collect and
annotate real image annotations without human supervision.

In this paper, we present Labels from UltraViolet (LUV)
(Figure 1), a novel framework for rapidly collecting ground-
truth annotations without human labels. LUV uses an array
of ultraviolet lights placed around a manipulation workspace

Equal contribution
The AUTOLab at UC Berkeley (automation@berkeley.edu)

Data Collection Training

Execution
HSV Masks

Training Images

Segmentation  
Network

Capture UV Image2

Fluorescent  
Paint

Capture Standard Image 1

Shuffle Scene3

Unpainted Sample

Network Output

Fig. 1: Framework overview. Data collection: LUV collects paired
images in standard and UV lighting. Relevant keypoints and objects
are coated with transparent, UV-fluorescent markings which are
used to extract annotations from the UV images for the standard
images. Training: The annotations are used to train a segmentation
network to predict masks from images under standard lighting.
In contrast to prior approaches to obtain segmentation labels for
images, LUV requires no human annotator or simulator. Execution:

During execution, the trained network is evaluated on standard
images of unpainted objects.

that can be switched automatically. We mark objects or key-
points in the scene with transparent, ultraviolet fluorescent
paints that are nearly invisible in visible light but highly vis-
ible under ultraviolet radiation. For physical configurations,
LUV takes two images: one with standard lighting and one
with the ultraviolet lights turned on. LUV provides precise
labels for the standard image by using the paired ultraviolet
image and trains a network on the resulting dataset to make
predictions on subsequent scenes under standard lighting.
LUV has several desirable qualities of a scalable system for
ground-truth data collection:

1) accurate segmentation masks and keypoints on real
images that do not alter the physical appearance,

2) flexibility to a wide variety of materials and tasks,
3) rapid data collection with no human annotation,
4) inexpensive setup with off-the-shelf parts costing less

than $300 total.
5) unambiguous labels with no human subjectivity [4].
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[4] Thananjeyan et al., IROS 2022

All You need is LUV

Understanding Human Hands in Contact at Internet Scale

Dandan Shan1, Jiaqi Geng*1, Michelle Shu*2, David F. Fouhey1

1University of Michigan, 2Johns Hopkins University
{dandans,jiaqig,fouhey}@umich.edu, msh1@jhu.edu

Abstract

Hands are the central means by which humans manip-
ulate their world and being able to reliably extract hand
state information from Internet videos of humans engaged
in their hands has the potential to pave the way to systems
that can learn from petabytes of video data.

This paper proposes steps towards this by inferring a
rich representation of hands engaged in interaction method
that includes: hand location, side, contact state, and a box
around the object in contact. To support this effort, we
gather a large-scale dataset of hands in contact with ob-
jects consisting of 131 days of footage as well as a 100K
annotated hand-contact video frame dataset. The learned
model on this dataset can serve as a foundation for hand-
contact understanding in videos. We quantitatively evaluate
it both on its own and in service of predicting and learning
from 3D meshes of human hands.

1. Introduction
The hand is the key to how humans interact with the

world. If machines are to understand our actions and in-
tentions as well as the world we have build for and with our
hands, they must have a deep understanding of our hands.
For instance, in Figure 1, we can readily recognize that there
are two hands (one left and one right), opening a bag and
even imagine how one might pull up the flap. The goal of
this paper is to build the foundation for studying hands en-
gaged in interaction with objects at Internet scale.

Hand analysis is, of course, an area of long-standing in-
terest in the field with work on pose estimation [41, 34], re-
construction [21, 42], and grasp analysis [30, 7]. These ap-
proaches, however, have largely focused on in-lab settings,
often with a pre-localized hand or in settings with limited
variety. While there has been substantial progress, deploy-
ing these on the rich world of Internet videos [3, 39] poses
a challenge due to the dizzying diversity in viewpoint and
context. A single system must handle data ranging from
a fifty pixel high hand in a cooking video to an enormous
thousand pixel high hand closeup showing DIY.

t 100DOH

Figure 1. The goal of this paper is to infer a rich representation
for helping understand hands engaged in contact with the world at
Internet scale. Our system produces a rich output in terms of hand
location (boxes), side (left/right), contact state (here – a portable
object) and what object each hand is in contact with. To support
this, we collect a new large-scale hand video interaction dataset,
100 Days of Hands (100DOH). We use this, plus videos from
VLOG [14], to make a 100K image dataset annotated with our
rich representation.

Our work aims to enable hand analysis at Internet scale
and diversity. To this end, we introduce a model, described
in Section 4 that identifies, for every single hand in a single
RGB image (demonstrated on a wide variety of scales and
contexts): a hand box; its side (left/right); its contact state
(none / self / other person / non-portable object / portable
object); and, for the hand in contact, an object box around
the object or person in contact. These enable crucial down-
stream problems like reconstruction and grasp analysis. For
example, the detection of hand location and side enables the
use of recent mesh reconstruction systems [21, 42].

This system, along with an existing mesh reconstruction
method [21], yields a system that can detect hands, their
contact state, their 3D reconstruction, and what object they
are touching. We believe this output enables large-scale
fine-grained learning about human-object interaction. As
an example, we introduce a method to identify bad mesh
reconstructions (necessary for learning from meshes) and
provide a demonstration of learning on consumer videos.
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