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This Week: Scene-Level Representations

« Seminar 7: Semantic Scene Graphs and Explicit Representations

Image Retrieval using Scene Graphs, Johnson et al., 2015

Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes, Zeng et al., 2018

Semantic Linking Maps for Active Visual Object Search, Zeng et al., 2020
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Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization, Hughes et al., 2022

» Seminar 8: Neural Radiance Fields and Implicit Representations

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., 2020

IMAP: Implicit Mapping and Positioning in Real-Time, Sucar et al., 2021
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields, Rosinol et al., 2022

NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance Fields, Yen-Chen et al., 2022
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NARF22: Neural Articulated Radiance Fields for Configuration-Aware Rendering, Lewis et al., 2022

L\, 2



https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2103.12352
https://arxiv.org/abs/2210.13641
https://yenchenlin.me/nerf-supervision/
https://arxiv.org/abs/2210.01166
https://openaccess.thecvf.com/content_cvpr_2015/papers/Johnson_Image_Retrieval_Using_2015_CVPR_paper.pdf
https://ieeexplore.ieee.org/abstract/document/8460538
https://arxiv.org/abs/2006.10807
https://arxiv.org/abs/2201.13360
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Today: Explicit Representation

« Seminar 7: Semantic Scene Graphs and Explicit Representations

Image Retrieval using Scene Graphs, Johnson et al., 2015

Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes, Zeng et al., 2018

Semantic Linking Maps for Active Visual Object Search, Zeng et al., 2020
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Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization, Hughes et al., 2022
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Semantic Robot Programming for
Goal-Directed Manipulation of
Cluttered Scenes

By: Zhen Zeng, Zheming Zhou, Zhigiang Sui, Odest Chadwicke Jenkins

Presented by:  Shaurya Gunderia, Sukruthi Chidananda
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The Authors

e Zhen Zeng
— Ph.D University of Michigan
» Research Scientist @ JP Morgan Al research
e Zheming Zhou
— Robotics Ph.D University of Michigan
* Applied Scientist @ Amazon Lab 126
e Zhiqiang Sui
— CS/Robotics Ph.D, University of Michigan
* Senior Software Engineer @ Nuro
e Odest Chadwicke Jenkins

— CS/Robotics Ph.D USC
* Professor of EECS/Robotics at Michigan

L\




DR
Navigating Cluttered Environments

e Cluttered environments pose major
challenges for robots

 Humans can navigate easily, not as easy
for robots

* Goal is to teach robots to understand
cluttered environments
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Benefits of Semantic Robot Programming

« Easier Programming: Based on high-level, natural language, making it easier and faster to use than traditional

programming
« Faster Deployment: Allows for quick robot programming, facilitating faster deployment in the industry
« Better Flexibility: Enables easy adaptation of robots to different tasks and environments, increasing flexibility.

* [Improved Human-Robot Interaction: Enables robots to understand and respond to human language, enhancing

human-robot interaction
* Increased Safety: Allows for programming of robots to perform risky taks, reducing the risk of harm to humans.

« Better Performance: Improves robot performance by enabling understanding of complex instructions and

efficient task performance
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Contributions

1. SRP enables robots to perform goal-directed manipulation in

cluttered environments
2. Uses semantic representation of environment and tasks

3. Understands user input and formulates high-level goals.

® Robot programming in cluttered environments is hard, SRP
addresses some of these challenges.
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Prior Work and Background

SRP builds on PbD and scene perception for

Human demonstration

manipulation

PbD learns low-level skills from users

Scene perception enables manipulation in real world

scenarios

DIGEST estimates scene graph for goal-directed S A ] Jnil.

manipulation in initial world states N

Prior methods struggle in cluttered environments -

Robot execution

rely on known object geometry, colors, etc.
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Semantic Robot Programming

* Traditionally — manually specify the robot’s movements for
each task

* SRP uses high level descriptions of task to allow robots to
autonomously generate movements

* The approach

— objects are represented as semantic entities with attrs.
such as location, size, shape.

— tasks represented as semantic descriptions.

— planner generates a sequence of movements that satisfy
task description.
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The DIGEST Framework

* Framework for goal-directed manipulation in cluttered
scenes
* Has three modules
— Scene understanding: CV to identify objects
— Goal Formulation: formulates high-level goals using
knowledge base and user input
— Task planning: generates sequence of movements to
achieve goal using task planning
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Approach Visualized

5

on(tray, table)

o on(downy, table) task planner
= on(red_bowl, tray)
e on(clorox, red_bowl) 8

STty bl motion planning

on(downy, tray)
on(red_bowl, tray) ‘.'

(_B on(shampoo, red _bowl)
uoo ------ motion control
Axiomatic
Observation Scene Estimation - DIGEST Scene Graph Plan & Act
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Insights for SRP

* Scene Segmentation: Segment the scene into objects with
semantic attributes

* Object Affordances: Associate objects with actions that can
be performed on them (grasping, pushing, etc.)

* Task Representation: Develop a method for representing
tasks as semantic descriptions

* Planning: Develop a planner than can generate a sequence
of movements to satisfy a task description
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Results

* Evaluated on household occlusion dataset and cluttered
scene dataset.
— Accuracy based on % of correctly localized objects
— Object is correctly localized if pose error within
position/rotation threshold
* SRP outperformed traditional programming methods, based
on success rate and time taken for completion
 Number of actions also reduced

L\ |
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© o
E SN &

accuracy

S
F

S
00 e

O
S N

S
oC pu—

S
o

o
S N

PH/CS Dataset Performance

At=0.0lm At = 0.05m
— l -
P 0.8
>
o 2 0.6
= "
r/—/_’ 5 04F
<
r"' 02F
————— e ey ; 0 ! ] N | \ |
0 30 60 90 120 150 180 0O 30 60 90 120 150 180
A6 A6
At =0.Im At = 0.2m
— l -
0.8
5 0.6 [fF-
S J
S 04F
e
- 0.2F
1 1 ] 1 1 ] O 1 1 1 1 1 ]
0 30 60 90 120 150 180 0 30 60 90 120 150 180
A6 A6
wemem DIGEST —— 2P mmm OUR-CVFH « BF-ICP

accuracy

accuracy

'
0.8

0.6
0.4}

0.2
0

0

0.8
0.6

At =0.0lm At =0.05m
l_
08F
-
§ 0.6F
— 2 04}
3
0.2
1 1 1 | J 0 e | 1 1 L | )
30 60 90 120 150 180 0 30 60 90 120 150 180
A6 A6
At =0.1m At = 0.2m
l-
08 _///
-
S 061
=
5 04
<
0.2
| 1 1 ! 1 J 0 | | 1 | | J
30 60 90 120 150 180 0 30 60 90 120 150 180
A6 A6
s DIGEST W FPFH




DR

SRP in Action

-

1. pickup spray bottle 2. Put

5. Pickup blue cup 6. Put blue cup away 7. Pickup clorox 8. Place clorox on tray

Final scene achieved by the
Robot via scene-level PbD
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Conclusions

SRP framework for goal-directed manipulation in cluttered
scenes

Enables easier/faster programming and improved
deployment, flexibility, human-robot interaction, safety,
and performance

DIGEST achieve high accuracy in object localization and
task planning metrics

Potential in various industries such as manufacturing,
healthcare
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Limitations and Directions for Future Work

* Expand range of tasks that can be accomplished with

semantic robot programming
o Better CV algorithms for scene segmentation

e Use ML to incorporate prior knowledge/experience

=
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Thank you
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Next Time: Implicit Representations

» Seminar 8: Neural Radiance Fields and Implicit Representations

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., 2020

IMAP: Implicit Mapping and Positioning in Real-Time, Sucar et al., 2021
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields, Rosinol et al., 2022

NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance Fields, Yen-Chen et al., 2022
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NARF22: Neural Articulated Radiance Fields for Configuration-Aware Rendering, Lewis et al., 2022
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