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This Week: Object Tracking

• Seminar 6: Visual Odometry and Localization
1. Backprop KF: Learning Discriminative Deterministic State Estimators, Haarnoja et al., 2016

2. Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors, Jonschkowski et al., 2018

3. Multimodal Sensor Fusion with Differentiable Filters, Lee et al., 2020

4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021
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• Seminar 5: Recurrent Networks and Object Tracking
1. DeepIM: Deep Iterative Matching for 6D Pose Estimation, Li et al., 2018

2. PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking, Deng et al., 2019

3. 6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints, Wang et al., 2020

4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

https://proceedings.neurips.cc/paper/2016/file/697e382cfd25b07a3e62275d3ee132b3-Paper.pdf
http://www.roboticsproceedings.org/rss14/p01.pdf
https://arxiv.org/abs/2010.13021
https://openaccess.thecvf.com/content/CVPR2021/papers/Karkus_Differentiable_SLAM-Net_Learning_Particle_SLAM_for_Visual_Navigation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yi_Li_DeepIM_Deep_Iterative_ECCV_2018_paper.pdf
https://arxiv.org/abs/1905.09304
https://ieeexplore.ieee.org/abstract/document/9196679
https://arxiv.org/abs/2207.07115
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Presented by: Sarvesh Mayilvahanan, Hersh Vakharia

By:

BackpropKF
Tuomas Haarnoja, Anurag Ajay, Sergey Levine, Pieter Abbeel

Learning Discriminative Deterministic State Estimators



Kalman Filters cut through the noise
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The Authors
- Tuomas Haarnoja
- Research Scientist at DeepMind
- PhD from UC Berkeley

- Anurag Ajay
- PhD student at MIT, BS from UC Berkeley  

- Sergey Levine
- Associate Professor at UC Berkeley  

- Pieter Abbeel
- Professor at UC Berkeley
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Motivation
- Kalman Filters are unable to handle complex sensory input 

(images)

- Backprop KF allows Kalman Filters to use rich sensory input 

- Computational graph structure allows for backprop through 
the Kalman Filter 

- Allows for more robust state estimation
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Contributions
1. Formulation of Kalman Filter as Computational Graph

2. Representation of Uncertainty in Latent Observations

3. Novel Response Normalization
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Background
-Generative models (KF) cannot use rich sensory input
- Discriminative models (RNNs) do not use knowledge of 

dynamics
-Generative and Discriminative models have been applied 

separately but haven’t been successfully combined for 
state estimation
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What are Kalman Filters?
- Prior: current 

understanding of state
- Prediction: Propagate 

prior using dynamics
- Update: Correct 

prediction using 
observations
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https://en.wikipedia.org/wiki/Kalman_filter



Approach

11

- 3 main components
- Feedforward Network
- Kalman Filter
- Loss Function



Feedforward Network
- Takes in high-dimensional observation 
-Outputs condensed representation       in latent space
- Also provides uncertainty in observation  

- Novel normalization layer: learnable mean, stdv
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Kalman Filter
- Prediction step:
- Combine latent obs. uncertainty        and prev. state 

uncertainty 
- Update step:
- Use latent obs.       and Kalman gain 
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using observation model        
- Weighted L2 norm 

- Loss is backpropagated to update NN weights
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BKF Forward pass



Backpropagation



Results: Long Term Tracking w/ Occlusion

- Compared models
- Feedforward Model: pure CNN
- Piecewise KF: similar to BKF w/o uncertainty 

propagation, separate backpropagation
- LSTM: replaces KF w/ RNN
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Results: KITTI

18

- 11-fold cross validation
- Randomly sampled 

subsequences 
(100/200/400/800) 
timesteps

- Repeat experiment for 
subset of 10 folds



Conclusions
- Combination of Discriminative and Generative models 

outperforms models separately
- Uses domain knowledge, compressed representation of 

complex observations
- End-to-end training of entire model improves performance 

over separate training (piecewise KF)
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Directions for Future Work
- Future directions
- Can be applied to other probabilistic/deterministic filters 

(UKF, Particle Filters, etc.)
- Extend BKF using complex non-linear dynamics, larger 

latent space
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Thank you
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Presented by: Rahul Kashyap Swayampakula, Dhyey Manish Rajani, Surya Pratap Singh

By:

Differentiable SLAM-net
Learning Particle SLAM for Visual Navigation

Peter Karkus, Shaojun Cai, David Hsu



The Authors
• Peter Karkus

• Previously: PhD Candidate at National University of Singapore

• Shaojun Cai
• 2nd year PhD Candidate at National University of Singapore

• David Hsu 
• Provost's Chair Professor, Department of Computer Science, National 

University of Singapore

3



Background

• Simultaneous localization and mapping (SLAM) remains 
challenging for numerous downstream applications, such as 
indoor visual robot navigation, because of its inability to 
handle rapid turns, featureless walls, and poor camera quality. 

• Also, traditional SLAM algorithms require handcrafted 
features and manually-tuned parameters, limiting their 
applicability in complex environments.
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Related Work
1. Learning based SLAM

Uses learning for  (i) compact representation; (ii)  CNN-based depth predictor; (iii)  feature metric 
representation and Bundle Adjustment (BA). 

2. Classic SLAM
Filtering-based approaches(maintain & sequentially update a probability distribution.)
Optimization-based approaches (apply BA on keyframes and local maps; popular for both visual  and lidar-
based SLAM.)

3. Differentiable Algorithms
Only differential approximation for state estimation , visual mapping , planning and control tasks .

4. Visual Navigation Algorithms
Existing approaches either assume a known location or a known map or rely solely on relative visual 
odometry.



Contributions

• The navigation architecture with SLAM-net improves the state-

of-the-art for the Habitat Challenge 2020 PointNav task by a 

large margin (from 37% to 64% success)

• The authors conduct a comprehensive ablation study to analyze 

the contribution of each component of the proposed approach.

• The paper evaluates the proposed approach on various visual 

navigation tasks; method outperforms various baselines like 

FastSLAM, ORB-SLAM on RGB and RGB-D datasets. 
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What are the benefits if we solve this problem?

Solving the problem addressed can provide benefits like:

1.Improved accuracy
2.Reduced complexity
3.Increased versatility
4.Faster development
5.Better feature extraction and association.
6.Better relocalization and loop closure.
7.Better SLAM integration into navigation pipeline



Approach
• Differentiable SLAM-net
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Input: RGB-D (or RGB) images 
Output: 2D pose + global map

● Pose at time t, st = (xt, yt, θt)

● Trajectory till time t, s1..t = (x1..t, y1..t, θ1..t)

● sk
1..t = Trajectory of particle k / a trajectory 

hypothesis

● wk
t = Trust on particle k at time t



– Input: Current observation, ot, 
last observation, ot-1, & action, at-1,
if available

– Output: Probability distribution over 
2D relative pose, p(Δst)

– Serves 1 purpose:
• Generate trajectory hypotheses

– Transition model can be  broken into
a “Visual torso” and 3 GMM heads

– Visual torso works as a feature 
extractor

– GMM head generates the mean, std.
deviation, and log-likelihood

Transition model
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ot: 160 x 90 x 4 image

𝛥 = ot - ot-1

fvis
t = Visual features

μ = Mean
𝛔 = Std. 
deviation

log 𝛂 = Mixture log probabilities

● Pose at time t, st = (xt, yt, θt)

● Trajectory till time t, s1..t = (x1..t, y1..t, θ1..t)

● sk
1..t = Trajectory of particle k / a trajectory 

hypothesis

● wk
t = Trust on particle k at time t



– Input: Current observation, ot

– Output: Local map, mt

– Serves 2 purposes:
• Aid in loop closing for 2D pose 

estimation
• Generate global map

– Perspective transform:
• Converts observation to top-

down view (160 x 160)

– Each cell in local map is 12cm x 12cm

Mapping model

1
0

mt: 40 x 40 x Nch grid

ot: 160 x 90 x 4 image



– Input: Local maps, mt, trajectory hypotheses,
sk

1:t, with their particle weights, wk
t

– Output: Updated particle weights, wk
t

– Serves 1 purposes:
• Aid in generating 2D pose

– Current local map gets compared with most 
recent local maps to output “compatibility”

– Trajectory estimate:
• Weighted sum of particle poses

– Transform:
• Rotation and translational image 

transformations to local maps given the
relative poses

– Global map:
• By transforming local maps along 

the trajectory estimate

Observation model

1
1

sk
t = Current state of particle k

sk
t-𝞃 = A past state of particle k

log wk
t,𝞃 = log-likelihood of kth particle 

weight between time steps t and 𝞃



Differentiable SLAM-net Summarized

1
2

Input: RGB-D (or RGB) images Output: 2D pose + global map

Local 
Grid map

Global map

2D Pose



Training and inference

1
3

Training Data

● RGBD images
● 2D poses
● Ground truth global 

map 

Objective: The end-to-end training objective is the sum of Huber losses for the 2D pose error and 
1D orientation error



Multi stage training

1
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1. First stage: Train the transition model
2. Second stage : Train the mapping and observation model 

together
3. Third stage: Fine tune the whole pipeline
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3. Third stage: Fine tune the whole pipeline



Multi stage training
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1. First stage: Pre train the transition model
2. Second stage : Pre train the mapping and observation model 

together
3. Third stage: Fine tune the whole pipeline



Training: Other details

1
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● Computational and space complexity: In backpropagation through large 
computational graph
○ To avoid this, 

■ Short trajectories
■ Less particles (K = 32 in this case)
■ Testing time: Full trajectories estimation with K = 128

● Learning rate is decayed
○ If the validation error does not improve for 4 epochs
○ Perform 4 such decay steps, after which training terminates, and the model 

with the lowest validation error is stored
● Implemented in Tensorflow based on the open-source code of PF-net



Visual Navigation with SLAM-net

1
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Coupled the SLAM-
net pipeline with 
motion planner 

Figure:  Visual navigation pipeline with the Differentiable SLAM-net, a path planner, and a motion controller.

● Makes the pipeline scalable
● Integrated with D-star planner
● Tested on Habitat 2020 PointNav challenge 
● Collision recovery mechanism 



Experiments

1
9

Datasets
Experiments are conducted in Habitat 
simulator

1. Gibson dataset:  
a. 72 scenes for training 
b. 7 scenes for validation and 7 

scenes for testing
2. Replica and Matterport data: Used 

for testing transfer learning 
3. KITTI data: 

a. 06 and 07 - validation
b. 09 and 10 - testing
c. Rest - training 

Comparison
1. ORB SLAM
2. Fast SLAM
3. Learned Visual odometry
4. Blind baseline

Discussion
1. Noisy images
2. Transfer learning
3. Planning 
4. Limitations



Analytical Results

2
0

Three different navigation policies: 
● The shortest-path expert (traj_expert); 
● The shortest path expert mixed with 

random actions (traj_exp_rand); 
● our final navigation pipeline (traj_nav).



Results



Results



Ablation Results



Limitations
• Limitations

• Limited evaluation on real-world datasets
• Limited comparison with recent learning-

based SLAM approaches
• Lack of analysis of failure cases

• High dependence on the depth aspect of data 
is relatively more.

• Future directions
• Explore multi-modal sensor fusion
• Generalization to other tasks
• Robustness analysis(depth  & dynamic 

invariance)



Conclusions
• Introduced a learning-based differentiable SLAM approach with strong 

performance on challenging visual localization data and on downstream 
robot navigation, achieving SOTA in the Habitat 2020 PointNav task. 

• The authors believe that their work on differentiable SLAM-net may lay 
foundation to a new class of methods that learn robust, task oriented features 
for SLAM for both optimization and particle filtering-based approaches.

• A differentiable SLAM pipeline can enable the development of end-to-end 
learning-based SLAM algorithms which leads to automatic learning of feature 
representations and parameter tuning.

2
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Thank you



Next Time: Scene-Level Representations

• Seminar 8: Neural Radiance Fields and Implicit Representations
1. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., 2020

2. iMAP: Implicit Mapping and Positioning in Real-Time, Sucar et al., 2021

3. NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields, Rosinol et al., 2022

4. NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance Fields, Yen-Chen et al., 2022

5. NARF22: Neural Articulated Radiance Fields for Configuration-Aware Rendering, Lewis et al., 2022
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• Seminar 7: Semantic Scene Graphs and Explicit Representations
1. Image Retrieval using Scene Graphs, Johnson et al., 2015

2. Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes, Zeng et al., 2018

3. Semantic Linking Maps for Active Visual Object Search, Zeng et al., 2020

4. Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization, Hughes et al., 2022

https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2103.12352
https://arxiv.org/abs/2210.13641
https://yenchenlin.me/nerf-supervision/
https://arxiv.org/abs/2210.01166
https://openaccess.thecvf.com/content_cvpr_2015/papers/Johnson_Image_Retrieval_Using_2015_CVPR_paper.pdf
https://ieeexplore.ieee.org/abstract/document/8460538
https://arxiv.org/abs/2006.10807
https://arxiv.org/abs/2201.13360
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