

DeepRob

Seminar 6 Visual Odometry and Localization University of Michigan and University of Minnesota

This Week: Object Tracking

Seminar 5: Recurrent Networks and Object Tracking

- 1. <u>DeepIM: Deep Iterative Matching for 6D Pose Estimation</u>, Li et al., 2018
- 2. <u>PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking</u>, Deng et al., 2019
- 3. <u>6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints</u>, Wang et al., 2020
- 4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

Seminar 6: Visual Odometry and Localization

- 1. <u>Backprop KF: Learning Discriminative Deterministic State Estimators</u>, Haarnoja et al., 2016
- 2. <u>Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors</u>, Jonschkowski et al., 2018
- 3. <u>Multimodal Sensor Fusion with Differentiable Filters</u>, Lee et al., 2020
- 4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021

DR

Today: Visual Odometry and Localization

Seminar 5: Recurrent Networks and Object Tracking

- 1. <u>DeepIM: Deep Iterative Matching for 6D Pose Estimation</u>, Li et al., 2018
- 2. <u>PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking</u>, Deng et al., 2019
- 3. <u>6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints</u>, Wang et al., 2020
- 4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

Seminar 6: Visual Odometry and Localization

- 1. <u>Backprop KF: Learning Discriminative Deterministic State Estimators</u>, Haarnoja et al., 2016
- 2. <u>Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors</u>, Jonschkowski et al., 2018
- 3. <u>Multimodal Sensor Fusion with Differentiable Filters</u>, Lee et al., 2020
- 4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021

BackpropKF

Learning Discriminative Deterministic State Estimators By: Tuomas Haarnoja, Anurag Ajay, Sergey Levine, Pieter Abbeel

Presented by: Sarvesh Mayilvahanan, Hersh Vakharia

Kalman Filters cut through the noise

https://cstwiki.wtb.tue.nl/wiki/Embedded_Motion_Control_2015_Group_4

Kalman Filters cut through the noise

https://cstwiki.wtb.tue.nl/wiki/Embedded_Motion_Control_2015_Group_4

The Authors

 Tuomas Haarnoja
 Research Scientist at DeepMind - PhD from UC Berkeley

- Anurag Ajay
 PhD student at MIT, BS from UC Berkeley
- Sergey Levine Associate Professor at UC Berkeley

- Pieter Abbeel Professor at UC Berkeley

Motivation

- (images)
- the Kalman Filter
- Allows for more robust state estimation

- Kalman Filters are unable to handle complex sensory input

- Backprop KF allows Kalman Filters to use rich sensory input

- Computational graph structure allows for backprop through

Contributions

- 1. Formulation of Kalman Filter as Computational Graph
- 2. Representation of Uncertainty in Latent Observations
- 3. Novel Response Normalization

Background

- Generative models (KF) cannot use rich sensory input
- dynamics
- state estimation

- Discriminative models (RNNs) do not use knowledge of

- Generative and Discriminative models have been applied separately but haven't been successfully combined for

What are Kalman Filters?

- **Prior**: current understanding of state - Prediction: Propagate prior using dynamics - Update: Correct prediction using observations

https://en.wikipedia.org/wiki/Kalman_filter

- 3 main components
 - Feedforward Network
 - Kalman Filter
 - Loss Function

Approach

Feedforward Network

- Takes in high-dimensional observatior \mathbf{o}_t - Outputs condensed representation \mathbf{z}_t in latent space - Also provides uncertainty in observation $\mathbf{\hat{L}}_t$
- Novel normalization layer: learnable mean, stdv

Feedforward Network

- Takes in high-dimensional observatior \mathbf{o}_t - Outputs condensed representation \mathbf{z}_t in latent space - Also provides uncertainty in observation $\mathbf{\hat{L}}_t$
- Novel normalization layer: learnable mean, stdv

Feedforward Network

- Takes in high-dimensional observatior \mathbf{o}_t - Outputs condensed representation \mathbf{z}_t in latent space - Also provides uncertainty in observation $\mathbf{\hat{L}}_t$
- Novel normalization layer: learnable mean, stdv

Kalman Filter

- Prediction step: $\mu'_{\mathbf{x}_t} \Sigma'_{\mathbf{x}_t}$ - Combine latent obs. uncertainty $\hat{\mathbf{L}}_t$ and prev. state uncertainty $\Sigma_{\mathbf{x}_{t-1}}$ - Update step: $\mu_{\mathbf{x}_t} \Sigma_{\mathbf{x}_t}$ - Use latent obs. \mathbf{z}_t and Kalman gain \mathbf{K}_t

Kalman Filter

- Prediction step: $\mu'_{\mathbf{x}_t} \Sigma'_{\mathbf{x}_t}$ - Combine latent obs. uncertainty $\hat{\mathbf{L}}_t$ and prev. state uncertainty $\Sigma_{\mathbf{x}_{t-1}}$ - Update step: $\mu_{\mathbf{x}_t} \Sigma_{\mathbf{x}_t}$ - Use latent obs. \mathbf{z}_t and Kalman gain \mathbf{K}_t

Kalman Filter

- Prediction step: $\mu'_{x_t} \Sigma'_{x_t}$
- Combine latent obs. uncertainty $\hat{\mathbf{L}}_t$ and prev. state uncertainty $\Sigma_{\mathbf{x}_{t-1}}$
- Update step: $\mu_{\mathbf{x}_t} \Sigma_{\mathbf{x}_t}$
 - Use latent obs. \mathbf{z}_t and Kalman gain \mathbf{K}_t

- Compare noiseless obsyt using observation rCydel - Weighted L2 norm

- Loss is backpropagated to update NN weights

Loss Function

with predicted me $\mu_{\mathbf{x}_t}$

- Compare noiseless obsyt using observation rCydel - Weighted L2 norm

- Loss is backpropagated to update NN weights

Loss Function

with predicted me $\mu_{\mathbf{x}_t}$

- Compare noiseless obsyt using observation rCydel - Weighted L2 norm

- Loss is backpropagated to update NN weights

Loss Function

with predicted me μ_{x_t}

BKF Forward pass

- O high dimensional raw observation
- g discriminative model to predict low dimension observation z
- **k** Kalman filter update

q – deterministic output
 function, such as

 $q(\mathbf{s}_t) = (\mathbf{C}_{\mathbf{y}} \boldsymbol{\mu}_{\mathbf{x}_t}, \mathbf{C}_{\mathbf{y}} \boldsymbol{\Sigma}_{\mathbf{x}_t} \mathbf{C}_{\mathbf{y}}^\mathsf{T})$

phi – output state

Backpropagation

DR

O – high dimensional raw observation

g – discriminative model to
 predict low dimension
 observation z

k – Kalman filter update

q – deterministic output function, such as

 $q(\mathbf{s}_t) = (\mathbf{C}_{\mathbf{y}}\boldsymbol{\mu}_{\mathbf{x}_t}, \mathbf{C}_{\mathbf{y}}\boldsymbol{\Sigma}_{\mathbf{x}_t}\mathbf{C}_{\mathbf{y}}^{\mathsf{T}})$

phi – output state

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{t=1}^{T} \frac{d\mathbf{z}_{t}}{d\theta} \frac{d\mathbf{s}_{t}}{d\mathbf{z}_{t}} \frac{d\mathcal{L}}{d\mathbf{s}_{t}}$$

- Compared models - Feedforward Model: pure CNN - Piecewise KF: similar to BKF w/o uncertainty propagation, separate backpropagation - LSTM: replaces KF w/ RNN

Results: Long Term Tracking w/ Occlusion

• • •			
	State Estimation Model	# Parameters	RMS test err
	feedforward model	7394	0.2322 ± 0
• •	piecewise KF	7397	0.1160 ± 0
	LSTM model (64 units)	33506	0.1407 ± 0
	LSTM model (128 units)	92450	0.1423 ± 0
	BKF (ours)	7493	$0.0537\pm$

Results: KITTI

							- 11-fold cross validatic
	Test 100			Test 100/200/400/800			
# training trajectories	3	6	10	3	6	10	- Randomly sampled
Translational Error [m/m]	0.0057	0.0450	0.0065	0 0077	0.0010	0.0107	randonny Sampica
piecewise KF	0.3257	0.2452	0.2265	0.3277	0.2313	0.2197	
LSTM model (128 units)	0.5022	0.3456	0.2769	0.5491	0.4732	0.4352	subsequences
LSTM model (256 units)	0.5199	0.3172	0.2630	0.5439	0.4506	0.4228	000000000
BKF (ours)	0.3089	0.2346	0.2062	0.2982	0.2031	0.1804	(10000)
Rotational Error [deg/m]							(1))/2()/4()/8())
piecewise KF	0.1408	0.1028	0.0978	0.1069	0.0768	0.0754	
LSTM model (128 units)	0.5484	0.3681	0.3767	0.4123	0.3573	0.3530	
LSTM model (256 units)	0.4960	0.3391	0.2933	0.3845	0.3566	0.3221	timesteds
BKF (ours)	0.1207	0.0901	0.0801	0.0888	0.0587	0.0556	
							- Ronast avnariment (
							- περεαι ελρεππεπι
							enheat of 10 folde

Conclusions

Combination of Discriminative and Generative models outperforms models separately
Uses domain knowledge, compressed representation of complex observations
End-to-end training of entire model improves performance over separate training (piecewise KF)

Directions for Future Work

- Future directions (UKF, Particle Filters, etc.) latent space

- Can be applied to other probabilistic/deterministic filters - Extend BKF using complex non-linear dynamics, larger

Thank you

21

Differentiable SLAN-net Learning Particle SLAM for Visual Navigation By: Peter Karkus, Shaojun Cai, David Hsu

Rahul Kashyap Swayampakula, Dhyey Manish Rajani, Surya Pratap Singh Presented by:

The Authors

Peter Karkus

- Previously: PhD Candidate at National University of Singapore
- Shaojun Cai
 - 2nd year PhD Candidate at National University of Singapore
- David Hsu
 - University of Singapore

Provost's Chair Professor, Department of Computer Science, National

Background

- Simultaneous localization and mapping (SLAM) remains
- Also, traditional SLAM algorithms require handcrafted applicability in complex environments.

challenging for numerous downstream applications, such as indoor visual robot navigation, because of its inability to handle rapid turns, featureless walls, and poor camera quality.

features and manually-tuned parameters, limiting their

1. Learning based SLAM

representation and Bundle Adjustment (BA).

2. Classic SLAM

Filtering-based approaches(maintain & sequentially update a probability distribution.) based SLAM.)

- 3. Differentiable Algorithms
- 4. Visual Navigation Algorithms Existing approaches either assume a known location or a known map or rely solely on relative visual odometry.

Related Work

Uses learning for (i) compact representation; (ii) CNN-based depth predictor; (iii) feature metric

Optimization-based approaches (apply BA on keyframes and local maps; popular for both visual and lidar-

Only differential approximation for state estimation, visual mapping, planning and control tasks.

Contributions

- large margin (from 37% to 64% success)
- FastSLAM, ORB-SLAM on RGB and RGB-D datasets.

• The navigation architecture with SLAM-net improves the stateof-the-art for the Habitat Challenge 2020 PointNav task by a

• The authors conduct a comprehensive ablation study to analyze the contribution of each component of the proposed approach.

• The paper evaluates the proposed approach on various visual navigation tasks; method outperforms various baselines like

1.Improved accuracy 2.Reduced complexity 3.Increased versatility 4. Faster development 5.Better feature extraction and association. 6.Better relocalization and loop closure. 7.Better SLAM integration into navigation pipeline

What are the benefits if we solve this problem?

Solving the problem addressed can provide benefits like:

Approach

Differentiable SLAM-net

Input: RGB-D (or RGB) images

- Pose at time t, $s_t = (x_t, y_t, \theta_t)$
- Trajectory till time t, $s_{1..t} = (x_{1..t}, y_{1..t}, \theta_{1..t})$

Output: 2D pose + global map

• $s_{1,t}^{k}$ = Trajectory of particle k / a trajectory hypothesis

• w_{t}^{k} = Trust on particle k at time t

- Input: Current observation, o_t , last observation, o_{t-1} , & action, a_{t-1} , if available
- **Output:** Probability distribution over 2D relative pose, $p(\Delta s_t)$
- Serves 1 purpose:
 - Generate trajectory hypotheses
- Transition model can be broken into a "Visual torso" and 3 GMM heads
- Visual torso works as a feature extractor
- GMM head generates the mean, std. deviation, and log-likelihood

Transition model

- Input: Current observation, **o**_t
- Output: Local map, m_t
- Serves 2 purposes:
 - Aid in loop closing for 2D pose estimation
 - Generate global map
- Perspective transform:
 - Converts observation to topdown view (160 x 160)
- Each cell in local map is 12cm x 12cm

Mapping model

o_t: 160 x 90 x 4 image

0

- **Output:** Updated particle weights, **w**^k,
- Serves 1 purposes:
 - Aid in generating 2D pose
- Current local map gets compared with most recent local maps to output "compatibility"
- Trajectory estimate:
 - Weighted sum of particle poses
- Transform:
 - Rotation and translational image transformations to local maps given the relative poses
- Global map:
 - By transforming local maps along the trajectory estimate

DR

Observation model

s^k_t = Current state of particle k $s_{t-T}^{k} = A$ past state of particle k

log $w_{t,\tau}^{k}$ = log-likelihood of kth particle $\frac{1}{1}$ weight between time steps t and τ

Differentiable SLAM-net Summarized

Input: RGB-D (or RGB) images

Output: 2D pose + global map

Objective: The end-to-end training objective is the sum of **Huber losses** for the <u>2D pose error and</u> 1D orientation error

DR

Training and inference

Multi stage training

- 2. Second stage : Train the mapping and observation model together
- Third stage: Fine tune the whole pipeline 3.

DR

- First stage: Pre train the transition model
- 2. Second stage : Pre train the mapping and observation model together
- Third stage: Fine tune the whole pipeline 3.

DR

Multi stage training

Multi stage training

- First stage: Pre train the transition model
- 2. Second stage : Pre train the mapping and observation model together
- **Third stage**: Fine tune the whole pipeline 3.

DR

Training: Other details

- Computational and space complexity: In backpropagation through large computational graph
 - To avoid this,
 - Short trajectories
 - Less particles (K = 32 in this case) Testing time: Full trajectories estimation with *K* = 128
- Learning rate is decayed
 - If the validation error does not improve for 4 epochs 0
 - Perform 4 such decay steps, after which training terminates, and the model Ο with the lowest validation error is stored
- Implemented in Tensorflow based on the open-source code of PF-net

Visual Navigation with SLAM-net

Coupled the SLAMnet pipeline with motion planner

- Makes the pipeline scalable
- Integrated with D-star planner
- Collision recovery mechanism

Figure: Visual navigation pipeline with the Differentiable SLAM-net, a path planner, and a motion controller.

Tested on Habitat 2020 PointNav challenge

Experiments

Datasets

Experiments are conducted in Habitat simulator

- 1. Gibson dataset:
 - a. 72 scenes for training
 - b. 7 scenes for validation and 7 scenes for testing
- Replica and Matterport data: Used 2.
 - for testing transfer learning
- 3. KITTI data:
 - a. 06 and 07 validation
 - b. 09 and 10 testing
 - c. Rest training

Comparison

- ORB SLAM 1.
- 2. Fast SLAM
- 3. Learned Visual odometry
- 4. Blind baseline

Discussion

- Noisy images 1.
- Transfer learning 2.
- Planning 3.
- Limitations 4.

Sensor		R	GBD	R	GBD	R	GBD	R	GB
Trajectory generator		traj_expert		traj_exp_rand		traj_nav		traj_exper	
Metric	runtime↓	SR↑	RMSE↓	SR↑	RMSE↓	SR↑	RMSE↓	SR↑	RMS
SLAM-net (ours)	0.06s	83.8%	0.16m	62.9%	0.28m	77.1%	0.19m	54.3%	0.26
Learned visual odometry	0.02s	60.0%	0.26m	24.8%	0.63m	30.5%	0.47m	28.6%	0.40
FastSLAM [47]	_	21.0%	0.58m	0.0%	3.27m	21.9%	0.69m	X	Х
ORB-SLAM [48]	0.08s	3.8%	1.39m	0.0%	3.59m	0.0%	3.54m	X	Х
Blind baseline	0.01s	16.2%	0.80m	1.0%	4.13m	3.8%	1.50m	16.2%	0.80

Three different navigation policies:

- The shortest-path expert (**traj_expert**);
- The shortest path expert mixed with random actions (**traj_exp_rand**);
- our final navigation pipeline (traj_nav).

DR

Analytical Results

	RGBD	RGB
	SR↑	SR↑
Default conditions	3.8%	Х
No sensor noise	7.5%	18.0%
No sensor and actuation noise	18.0%	20.4%
High frame rate	30.4%	Х
Ideal conditions	86.0%	43.5%

Results

Results

t = 31

Ablation Results

Sensor		RGBD	RGB
Metri	c	SR↑	SR↑
(1)	SLAM-net (default)	77.1%	55.2%
(2)	No joint training	66.7%	8.6%
(3)	Occupancy map only	75.2%	23.8%
(4)	Latent map only	70.5%	55.2%
(5)	Occupancy + latent map	77.1%	44.8%
(6)	Fixed comparisons (8)	44.8%	29.5%
(7)	Dynamic comparisons (4)	73.3%	41.9%
(8)	Dynamic comparisons (8)	77.1%	55.2%
9)	Dynamic comparisons (16)	77.1%	40.0%
10)	K=1 (VO)	30.5%	26.7%
(11)	K=8	60.0%	35.2%
(12)	K=32 (training)	72.4%	39.1%
(13)	K=64	75.2%	46.7%
(14)	K=128 (evaluation default)	77.1%	55.2%
(15)	K=256	79.1%	44.8%
(16)	K=512	82.9%	48.6%

Limitations

- Limitations
 - Limited evaluation on real-world datasets
 - Limited comparison with recent learningbased SLAM approaches
 - Lack of analysis of failure cases
 - High dependence on the depth aspect of data is relatively more.
- Future directions
 - Explore multi-modal sensor fusion
 - Generalization to other tasks
 - Robustness analysis(depth & dynamic invariance)

Trajectory Metric	Kitti-09 RMSE↓	Kitti-10 RMSE↓
SLAM-net (ours)	83.5m	15.8m
SLAM-net (best of 5)	56.9m	12.8m
Learned visual odometry	71.1m	73.2m
ORB-SLAM-RGB [49]	7.62m	8.68m

Conclusions

- The authors believe that their work on differentiable SLAM-net may lay
- representations and parameter tuning.

Introduced a learning-based differentiable SLAM approach with strong performance on challenging visual localization data and on downstream robot navigation, achieving SOTA in the Habitat 2020 PointNav task.

foundation to a new class of methods that learn robust, task oriented features for SLAM for both optimization and particle filtering-based approaches.

• A differentiable SLAM pipeline can enable the development of end-to-end learning-based SLAM algorithms which leads to automatic learning of feature

Thank you

46

Next Time: Scene-Level Representations

Seminar 7: Semantic Scene Graphs and Explicit Representations

- Image Retrieval using Scene Graphs, Johnson et al., 2015 1.
- 2. Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes, Zeng et al., 2018
- 3. Semantic Linking Maps for Active Visual Object Search, Zeng et al., 2020
- 4.

Seminar 8: Neural Radiance Fields and Implicit Representations

- NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., 2020 1.
- 2. <u>iMAP: Implicit Mapping and Positioning in Real-Time</u>, Sucar et al., 2021
- 3. <u>NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields</u>, Rosinol et al., 2022
- NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance Fields, Yen-Chen et al., 2022 4.
- NARF22: Neural Articulated Radiance Fields for Configuration-Aware Rendering, Lewis et al., 2022 5

DR

Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization, Hughes et al., 2022

DeepRob

Seminar 6 Visual Odometry and Localization University of Michigan and University of Minnesota

