

# DeepRob

### Seminar 5 Object Tracking University of Michigan and University of Minnesota







## This Week: Object Tracking

### Seminar 5: Recurrent Networks and Object Tracking

- 1. <u>DeepIM: Deep Iterative Matching for 6D Pose Estimation</u>, Li et al., 2018
- 2. <u>PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking</u>, Deng et al., 2019
- 3. <u>6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints</u>, Wang et al., 2020
- 4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

### Seminar 6: Visual Odometry and Localization

- 1. <u>Backprop KF: Learning Discriminative Deterministic State Estimators</u>, Haarnoja et al., 2016
- 2. <u>Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors</u>, Jonschkowski et al., 2018
- 3. <u>Multimodal Sensor Fusion with Differentiable Filters</u>, Lee et al., 2020
- 4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021





## Today: Object Tracking

### Seminar 5: Recurrent Networks and Object Tracking

- 1. <u>DeepIM: Deep Iterative Matching for 6D Pose Estimation</u>, Li et al., 2018
- 2. <u>PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking</u>, Deng et al., 2019
- 3. <u>6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints</u>, Wang et al., 2020
- 4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

### Seminar 6: Visual Odometry and Localization

- 1. <u>Backprop KF: Learning Discriminative Deterministic State Estimators</u>, Haarnoja et al., 2016
- 2. <u>Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors</u>, Jonschkowski et al., 2018
- 3. <u>Multimodal Sensor Fusion with Differentiable Filters</u>, Lee et al., 2020
- 4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021





# Deep Iterative Matching for 6D Pose Estimation By: Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, Dieter Fox

Presented by: Saurav Telge, Rutwik Patel





## The torch bearers of this research

- Yi Li
  - PhD student at University of Washington.
  - Advised by: Professor Dieter Fox.
- Gu Wang
  - PhD student at Tsinghua University.
  - Advised by: Professor Xiangyang Ji.



### y of Washington. eter Fox.

University. angyang Ji.









### Problem



### Pose estimation



### RGB Images

### Depth map









## Contributions

- 1. A framework for iterative pose matching.
- An untangled representation of rotation and translation of 3D objects.
- 3. A new loss function for estimating difference between predicted pose and target pose.



## Background









### Texture-less object



Textured object







### Approach

## DeepIM network architecture





DR



### High-resolution Zoom In

Untangled Transformation Representation



### Matching Loss





### Matching Loss







(a) Naïve Coordinate

 $\mathbf{t}_{\Delta} = (v_x, v_y, v_z)$ 





(b) Model Coordinate

(c) Camera Coordinate

$$\begin{aligned} v_x &= f_x (x_{\rm tgt}/z_{\rm tgt} - x_{\rm src}/z_{\rm src}), \\ v_y &= f_y (y_{\rm tgt}/z_{\rm tgt} - y_{\rm src}/z_{\rm src}), \\ v_z &= \log(z_{\rm src}/z_{\rm tgt}), \end{aligned}$$



### High-resolution Zoom In















### **Evaluation metrics**



evaluation metrics for 6D object pose estimation

### 2D Projection



| method                  | PoseCNN | PoseCNN | Dector D CININ | Faster R-CNN |
|-------------------------|---------|---------|----------------|--------------|
|                         |         | +OURS   | raster R-UNIN  | +OURS        |
| $5 \text{cm} 5^{\circ}$ | 19.4    | 85.2    | 11.9           | 83.4         |
| 6D Pose                 | 62.7    | 88.6    | 33.1           | 86.9         |
| Proj. 2D                | 70.2    | 97.5    | 20.9           | 95.7         |

Models for generating initials poses & improvement using the DeepIM network







| methods                 | [2]  | BB8         | SSD-6D      | Tekin       | PoseCNN [29] | PoseCNN [29] |
|-------------------------|------|-------------|-------------|-------------|--------------|--------------|
|                         |      | w ref. [20] | w ref. [11] | et al. [26] |              | +OURS        |
| $5 \text{cm} 5^{\circ}$ | 40.6 | 69.0        | -           | -           | 19.4         | 85.2         |
| 6D Pose                 | 50.2 | 62.7        | 79          | 55.95       | 62.7         | 88.6         |
| Proj. 2D                | 73.7 | 89.3        | -           | 90.37       | 70.2         | 97.5         |

Comparison with state-of-the-art methods on the LINEMOD dataset















DR

### Results

Examples of refined poses on the Occlusion LINEMOD dataset using the results from PoseCNN as initial poses







## pose refinement of unseen 3D models from the ModelNet dataset





## Conclusions



- image.
- augmented reality, and object recognition, among others.
- Limitations
- Future directions object detection, segmentation, and tracking.



• Accurate and efficient estimation of the 6D pose of an object from a single RGB

• The 6D pose estimation has a wide range of applications in robotics,

Computationally expensive, Limited applicability, Sensitivity to initialization.

The iterative refinement process can also be extended to other tasks, such as











## Thank you

# THE PERSON LOOKING AT THIS MEMERIGHT NOW IS AWESOME



# PoseRBPF By: Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timothy Bretl, Dieter Fox

Presented by: Siddharth Rao Appala, Rishitha Gollamudi



# A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking



## Motivation

- The paper aims to develop a novel 6D pose tracking framework that tracks objects with 6 degrees of freedom over a video sequence.
- Tasks like robot manipulation and grasp planning require accurate 6D pose tracking with uncertainty estimates and robustness to object symmetries.
- This can be achieved by accounting for the temporal information.







## Contributions



- 1. distribution over 6D poses
- 2. symmetry labeling.



Introduced a novel 6D object pose estimation pipeline that combines Rao-Blackwellized particle filtering with a learned autoencoder to generate full

The proposed framework can track full distributions over 6D object poses for objects with arbitrary kinds of symmetries, without the need for any manual





### Traditional approaches - key point detection and local feature matching



DR

## Related Work & Short comings



## Related Work & Short comings



PoseCNN



DR

### Object detection based approaches

## Particle Filtering



- A particle filter is a statistical algorithm which express the distribution of a state space model by extracting random state particles from the posterior probability.
- RBPF decreases number of particles necessary to achieve same accuracy with regular PF
- Divide the state vector into two parts: one part that can be updated efficiently using a closed-form equation, and another part is updated using particle filtering.











### Approach



Based on the Rao Blackwellized Particle filter approach,

- The translation distribution is propagated using  $P(\mathbf{T}_k | \mathbf{T}_{k-1}, \mathbf{T}_{k-2}) = \mathcal{N} (\mathbf{T}_{k-1} + \alpha (\mathbf{T}_{k-1} - \mathbf{T}_{k-2}), \mathbf{\Sigma}_{\mathbf{T}})$
- The rotation distribution is propagated using -

$$P(\mathbf{R}_k|\mathbf{R}_{k-1}) = \mathcal{N}(\mathbf{R}_{k-1}, \mathbf{\Sigma}_{\mathbf{R}})$$

 $P(\mathbf{R}_k | \mathbf{T}_k^i, \mathbf{Z}_{1:k}) \propto P(\mathbf{R}_k | \mathbf{T}_k^i, \mathbf{Z}_k) P(\mathbf{R}_k | \mathbf{R}_{k-1}),$ 



## **Approach – Motion Priors**







### Autoencoder



### Approach - Autoencoder

### Codebook matching









### Approach - Weight update and resampling

Weight update:  $P(\mathbf{T}_k^i | \mathbf{Z}_{1:k}) \propto \sum P(\mathbf{Z}_k | \mathbf{T}_k^i, \mathbf{R}_k) P(\mathbf{R}_k | \mathbf{T}_{1:k-1}^i, \mathbf{Z}_{1:k-1}),$  $\mathbf{R}_k$ 1

0



## Approach - Summary

input :  $Z_k$ ,  $(T_{k-1}^{1:N}, P(\mathbf{R})_{k-1}^{1:N})$ **output:**  $(\mathbf{T}_{k}^{1:N}, P(\mathbf{R})_{k}^{1:N})$ begin  $\{w^i\}_{i=1}^N \leftarrow \emptyset$ ;  $(\bar{\mathbf{T}}_{k}^{1:N}, P(\bar{\mathbf{R}})_{k}^{1:N}) \leftarrow Propagate(\mathbf{T}_{k-1}^{1:N}, P(\mathbf{R})_{k-1}^{1:N});$ for  $(\bar{\mathbf{T}}_{k}^{i}, P(\bar{\mathbf{R}})_{k}^{i}) \in (\bar{\mathbf{T}}_{k}^{1:N}, P(\bar{\mathbf{R}})_{k}^{1:N})$  do  $P(\bar{\mathbf{R}})_k^i \leftarrow Codebook\_Match(\mathbf{Z}_k, \bar{\mathbf{T}}_k^i) * P(\bar{\mathbf{R}})_k^i;$  $w^i \leftarrow Evaluate(\mathbf{Z}_k, \bar{\mathbf{T}}_k^i, P(\bar{\mathbf{R}}_k^i));$ end  $(\mathbf{T}_{k}^{1:N}, P(\mathbf{R})_{k}^{1:N}) \leftarrow$  $Resample(\bar{\mathbf{T}}_{k}^{1:N}, P(\bar{\mathbf{R}})_{k}^{1:N}, \{w^{i}\}_{i=1}^{N});$ 

end Algorithm 1: 6D Object Pose Tracking with PoseRBPF







### Evaluation



### YCB Video dataset RGBD video sequences of 21 objects Metrics: ADD, ADD-S





T-LESS dataset RGB-D sequences of 30 non textured industrial objects Metrics: Visual Surface Discrepancy


#### Results - YCB Video dataset

|                       | RGB   |         |      |            |              |          |               |       |                |        |
|-----------------------|-------|---------|------|------------|--------------|----------|---------------|-------|----------------|--------|
|                       | PoseC | NN [43] | DOF  | PE [40]    | Pose<br>50 p | articles | Pose<br>200 p | eRBPF | PoseF<br>200 p | RBPF++ |
| objects               | ADD   | ADD-S   | ADD  | ADD-S      | ADD          | ADD-S    | ADD           | ADD-S | ADD            | ADD-S  |
| 002_master_chef_can   | 50.9  | 84.0    | 1.1  | -          | 56.1         | 75.6     | 58.0          | 77.1  | 63.3           | 87.5   |
| 003_cracker_box       | 51.7  | 76.9    | 55.9 | 69.8       | 73.4         | 85.2     | 76.8          | 87.0  | 77.8           | 87.6   |
| 004_sugar_box         | 68.6  | 84.3    | 75.7 | 87.1       | 73.9         | 86.5     | 75.9          | 87.6  | 79.6           | 89.4   |
| 005_tomato_soup_can   | 66.0  | 80.9    | 76.1 | 85.1       | 71.1         | 82.0     | 74.9          | 84.5  | 73.0           | 83.6   |
| 006_mustard_bottle    | 79.9  | 90.2    | 81.9 | 90.9       | 80.0         | 90.1     | 82.5          | 91.0  | 84.7           | 92.0   |
| 007_tuna_fish_can     | 70.4  | 87.9    | -    | -          | 56.1         | 73.8     | 59.0          | 79.0  | 64.2           | 82.7   |
| 008_pudding_box       | 62.9  | 79.0    | -    | -          | 54.8         | 69.2     | 57.2          | 72.1  | 64.5           | 77.2   |
| 009_gelatin_box       | 75.2  | 87.1    |      | -          | 83.1         | 89.7     | 88.8          | 93.1  | 83.0           | 90.8   |
| 010_potted_meat_can   | 59.6  | 78.5    | 39.4 | 52.4       | 47.0         | 61.3     | 49.3          | 62.0  | 51.8           | 66.9   |
| 011_banana            | 72.3  | 85.9    | -    | -          | 22.8         | 64.1     | 24.8          | 61.5  | 18.4           | 66.9   |
| 019_pitcher_base      | 52.5  | 76.8    | 1.0  | -          | 74.0         | 87.5     | 75.3          | 88.4  | 63.7           | 82.1   |
| 021_bleach_cleanser   | 50.5  | 71.9    |      | -          | 51.6         | 66.7     | 54.5          | 69.3  | 60.5           | 74.2   |
| 024_bowl              | 6.5   | 69.7    | 0.00 | -          | 26.4         | 88.2     | 36.1          | 86.0  | 28.4           | 85.6   |
| 025_mug               | 57.7  | 78.0    |      | -          | 67.3         | 83.7     | 70.9          | 85.4  | 77.9           | 89.0   |
| 035 power_drill       | 55.1  | 72.8    |      | -          | 64.4         | 80.6     | 70.9          | 85.0  | 71.8           | 84.3   |
| 036_wood_block        | 31.8  | 65.8    |      | 7.5        | 0.0          | 0.0      | 2.8           | 33.3  | 2.3            | 31.4   |
| 037_scissors          | 35.8  | 56.2    | 3753 | <b>7</b> 2 | 20.6         | 30.9     | 21.7          | 33.0  | 38.7           | 59.1   |
| 040_large_marker      | 58.0  | 71.4    | -    | -          | 45.7         | 54.1     | 48.7          | 59.3  | 67.1           | 76.4   |
| 051_large_clamp       | 25.0  | 49.9    | -    | -          | 27.0         | 73.2     | 47.3          | 76.9  | 38.3           | 59.3   |
| 052 extra large clamp | 15.8  | 47.0    | -    | -          | 50.4         | 68.7     | 26.5          | 69.5  | 32.3           | 44.3   |
| 061_foam_brick        | 40.4  | 87.8    | -    |            | 75.8         | 88.4     | 78.2          | 89.7  | 84.1           | 92.6   |
| ALL                   | 53.7  | 75.9    | -    | -          | 57.1         | 74.8     | 59.9          | 77.5  | 62.1           | 78.4   |



PoseRBPF++ - 50% of the particles around PoseCNN predictions and the other 50% from the particles of the previous time step



т З







#### Results - TLESS dataset

|        | 12    | With      | out GT 2D E | BBs       |
|--------|-------|-----------|-------------|-----------|
|        |       | RGB       |             | 1         |
| Object | SSD   | RetinaNet | RetinaNet   | RetinaN   |
|        | [37]  | [37]      | PoseRBPF    | [37] + I0 |
| 1      | 5.65  | 8.87      | 27.60       | 22.32     |
| 2      | 5.46  | 13.22     | 26.60       | 29.49     |
| 3      | 7.05  | 12.47     | 37.70       | 38.26     |
| 4      | 4.61  | 6.56      | 23.90       | 23.07     |
| 5      | 36.45 | 34.80     | 54.40       | 76.10     |
| 6      | 23.15 | 20.24     | 73.00       | 67.64     |
| 7      | 15.97 | 16.21     | 51.60       | 73.88     |
| 8      | 10.86 | 19.74     | 37.90       | 67.02     |
| 9      | 19.59 | 36.21     | 41.60       | 78.24     |
| 10     | 10.47 | 11.55     | 41.50       | 77.65     |
| 11     | 4.35  | 6.31      | 38.30       | 35.89     |
| 12     | 7.80  | 8.15      | 39.60       | 49.30     |
| 13     | 3.30  | 4.91      | 20.40       | 42.50     |
| 14     | 2.85  | 4.61      | 32.00       | 30.53     |
| 15     | 7.90  | 26.71     | 41.60       | 83.73     |
| 16     | 13.06 | 21.73     | 39.10       | 67.42     |
| 17     | 41.70 | 64.84     | 40.00       | 86.17     |
| 18     | 47.17 | 14.30     | 47.90       | 84.34     |
| 19     | 15.95 | 22.46     | 40.60       | 50.54     |
| 20     | 2.17  | 5.27      | 29.60       | 14.75     |
| 21     | 19.77 | 17.93     | 47.20       | 40.31     |
| 22     | 11.01 | 18.63     | 36.60       | 35.23     |
| 23     | 7.98  | 18.63     | 42.00       | 42.52     |
| 24     | 4.74  | 4.23      | 48.20       | 59.54     |
| 25     | 21.91 | 18.76     | 39.50       | 70.89     |
| 26     | 10.04 | 12.62     | 47.80       | 66.20     |
| 27     | 7.42  | 21.13     | 41.30       | 73.51     |
| 28     | 21.78 | 23.07     | 49.50       | 61.20     |
| 29     | 15.33 | 26.65     | 60.50       | 73.04     |
| 30     | 34.63 | 29.58     | 52.70       | 92.90     |
| Mean   | 14.67 | 18.35     | 41.67       | 57.14     |





### Qualitative Results





YCB Video dataset





#### **TLESS** dataset





- over object poses.
- occlusion.
- PoseRBPF achieves state-of-the-art results on two benchmarks.



#### Conclusions

• In conclusion, PoseRBPF is a 6D pose tracking framework that uses a particle filtering approach with a learned autoencoder to estimate full distributions

• The proposed method overcomes the shortcomings of existing approaches by estimating uncertainties and providing robustness against symmetry and





#### Limitations and Future Work

#### Limitations

- PoseRBPF does not generalize well to unseen objects as codebooks are generated only for objects in the training set.
- Each object requires a codebook entry for each of the 191,808 possible orientations, making it highly inefficient to store.

Future work



Methods to generate object independent codebook entries can be explored.



# Thank You!







# 6-PACK

#### Category-level 6D Pose Tracker with Anchor-Based Keypoints By: Chen Wang, Roberto Martín-Martín, Danfei Xu, Jun Lv Cewu Lu, Li Fei-Fei, Silvio Savarese, Yuke Zhu

Presented by: Abigail Rafter, Joshua Friesen





### The Authors

- Chen Wang PhD student at Stanford
- Roberto Martin-Martin PhD student at Stanford
- Danfei Xu PhD student at Stanford
- Jun Lv PhD student at Shanghai Jiao Tong University
- Cewu Lu Professor at Shanghai Jiao Tong University
- Fei-Fei Li Professor at Stanford University
- Silvio Savarese Professor at Stanford University
- Yuke Zhu Professor at UT Austin





# 6D Pose Tracking

- Common form of state representation for robotics

#### What Exists

Requires known 3D models 



#### Pose tracking in real-time allows for fast feedback control

#### Proposed

- Category-level 6D tracking
- Anchor-based keypoints





#### Contributions

- 1. Anchor-Based Keypoints
- 2. Temporal 6D Category-Level Pose Tracking
- 3. State Of The Art Accuracy & Real Time Performance

Anchor-based **Keypoints** 









## Background

#### 1. Matching View to Template



#### 3. Category Level Estimation





#### 2. Matching View with Render



#### 4. Anchor-based Keypoints









![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_2.jpeg)

![](_page_49_Figure_3.jpeg)

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_2.jpeg)

![](_page_50_Figure_3.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_2.jpeg)

![](_page_51_Figure_3.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Figure_2.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_53_Figure_2.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_54_Figure_2.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_55_Figure_2.jpeg)

![](_page_56_Picture_0.jpeg)

![](_page_56_Figure_2.jpeg)

![](_page_57_Picture_0.jpeg)

![](_page_57_Figure_2.jpeg)

![](_page_58_Picture_0.jpeg)

![](_page_58_Figure_2.jpeg)

![](_page_59_Picture_0.jpeg)

![](_page_59_Figure_2.jpeg)

![](_page_60_Picture_0.jpeg)

![](_page_60_Figure_2.jpeg)

![](_page_61_Picture_0.jpeg)

![](_page_61_Figure_2.jpeg)

![](_page_62_Picture_0.jpeg)

![](_page_62_Picture_2.jpeg)

![](_page_63_Picture_0.jpeg)

#### • Dataset: NOCS-REAL275

![](_page_63_Picture_3.jpeg)

50

![](_page_64_Picture_0.jpeg)

- **Dataset:** NOCS-REAL275
- Evaluation metrics:
  - 5°5 cm: percentage of tracking results with orientation error  $< 5^{\circ}$  and • translation error < 5 cm
  - **IoU25**: percentage of volume overlap between the prediction and ground-truth 3D bounding box that is larger than 25%
  - **R**<sub>err</sub>: mean of orientation error in degrees
  - **T**<sub>err</sub>: mean of translation error in centimeters

![](_page_64_Picture_8.jpeg)

![](_page_65_Picture_0.jpeg)

![](_page_65_Picture_2.jpeg)

#### **Baselines**:

- **NOCS** [46]: State-of-the-art category-level 6D pose estimation method that uses per-pixel prediction
- **ICP** [50]: Standard point-to-plane ICP algorithm implemented in Open3D **KeypointNet** [41]: Implementation of proposed model without the anchor-based attention mechanism
- 6-PACK without temporal prediction: Predicted pose in the next frame is the previous estimated pose
- **6-PACK**: predicted pose in the next frame extrapolates from the last estimated inter-frame change of pose (constant velocity model)

![](_page_66_Picture_8.jpeg)

![](_page_67_Picture_0.jpeg)

![](_page_67_Picture_1.jpeg)

NOCS

6-Pack

![](_page_67_Picture_4.jpeg)

|         |           |      |      |          |          | _ |
|---------|-----------|------|------|----------|----------|---|
|         |           | NOCS | ICP  | Keypoint | Ours w/o |   |
|         |           | [46] | [50] | Net [41] | temporal |   |
| bottle  | 5°5cm     | 5.5  | 10.1 | 5.9      | 23.7     | Γ |
|         | IoU25     | 48.7 | 29.9 | 23.1     | 92.0     |   |
|         | Rerr      | 25.6 | 48.0 | 28.5     | 15.7     |   |
|         | $T_{err}$ | 14.4 | 15.7 | 9.5      | 4.2      |   |
|         | 5°5cm     | 62.2 | 40.3 | 16.8     | 53.0     | Γ |
| houl    | IoU25     | 99.6 | 79.7 | 74.7     | 100.0    |   |
| TWOD    | Rerr      | 4.7  | 19.0 | 9.8      | 5.3      |   |
|         | $T_{err}$ | 1.2  | 4.7  | 8.2      | 1.6      |   |
|         | 5°5cm     | 0.6  | 12.6 | 1.8      | 8.4      | Γ |
| asmora  | IoU25     | 90.6 | 53.1 | 30.9     | 91.0     |   |
| camera  | Rerr      | 33.8 | 80.5 | 45.2     | 43.9     |   |
|         | $T_{err}$ | 3.1  | 12.2 | 8.5      | 5.5      |   |
|         | 5°5cm     | 7.1  | 17.2 | 4.3      | 25.0     |   |
| Can     | IoU25     | 77.0 | 40.5 | 42.6     | 89.9     |   |
| Call    | Rerr      | 16.9 | 47.1 | 28.8     | 12.5     |   |
|         | $T_{err}$ | 4.0  | 9.4  | 13.1     | 5.0      |   |
|         | 5°5cm     | 25.5 | 14.8 | 49.2     | 62.4     | Γ |
| lanton  | IoU25     | 94.7 | 50.9 | 94.6     | 97.8     |   |
| тарсор  | Rerr      | 8.6  | 37.7 | 6.5      | 4.9      |   |
|         | $T_{err}$ | 2.4  | 9.2  | 4.4      | 2.5      |   |
|         | 5°5cm     | 0.9  | 6.2  | 3.1      | 22.4     |   |
| muq     | IoU25     | 82.8 | 27.7 | 52.0     | 100.0    |   |
| mug     | $R_{err}$ | 31.5 | 56.3 | 61.2     | 20.3     |   |
|         | $T_{err}$ | 4.0  | 9.2  | 6.7      | 1.8      |   |
|         | 5°5cm     | 17.0 | 16.9 | 13.5     | 32.5     | Γ |
| Overall | IoU25     | 82.2 | 47.0 | 53.0     | 95.1     |   |
| Overall | Rerr      | 20.2 | 48.1 | 30.0     | 17.1     |   |
|         | $T_{err}$ | 4.9  | 10.5 | 8.4      | 3.4      |   |

![](_page_67_Figure_7.jpeg)

![](_page_68_Picture_0.jpeg)

![](_page_68_Picture_1.jpeg)

NOCS

6-Pack

![](_page_68_Picture_4.jpeg)

|         |                  | NOCS | ICP  | Keypoint | Ours w/o |   |
|---------|------------------|------|------|----------|----------|---|
|         |                  | [46] | [50] | Net [41] | temporal |   |
| bottle  | 5°5cm            | 5.5  | 10.1 | 5.9      | 23.7     |   |
|         | IoU25            | 48.7 | 29.9 | 23.1     | 92.0     |   |
|         | Rerr             | 25.6 | 48.0 | 28.5     | 15.7     |   |
|         | $T_{err}$        | 14.4 | 15.7 | 9.5      | 4.2      |   |
|         | 5°5cm            | 62.2 | 40.3 | 16.8     | 53.0     |   |
| houl    | IoU25            | 99.6 | 79.7 | 74.7     | 100.0    |   |
| TWOD    | Rerr             | 4.7  | 19.0 | 9.8      | 5.3      |   |
|         | T <sub>err</sub> | 1.2  | 4.7  | 8.2      | 1.6      |   |
|         | 5°5cm            | 0.6  | 12.6 | 1.8      | 8.4      |   |
| asmora  | IoU25            | 90.6 | 53.1 | 30.9     | 91.0     |   |
| camera  | Rerr             | 33.8 | 80.5 | 45.2     | 43.9     |   |
|         | $T_{err}$        | 3.1  | 12.2 | 8.5      | 5.5      |   |
|         | 5°5cm            | 7.1  | 17.2 | 4.3      | 25.0     |   |
| Can     | IoU25            | 77.0 | 40.5 | 42.6     | 89.9     |   |
| Call    | Rerr             | 16.9 | 47.1 | 28.8     | 12.5     |   |
|         | $T_{err}$        | 4.0  | 9.4  | 13.1     | 5.0      |   |
|         | 5°5cm            | 25.5 | 14.8 | 49.2     | 62.4     |   |
| lanton  | IoU25            | 94.7 | 50.9 | 94.6     | 97.8     |   |
| Taptop  | Rerr             | 8.6  | 37.7 | 6.5      | 4.9      |   |
|         | $T_{err}$        | 2.4  | 9.2  | 4.4      | 2.5      |   |
|         | 5°5cm            | 0.9  | 6.2  | 3.1      | 22.4     |   |
| muq     | IoU25            | 82.8 | 27.7 | 52.0     | 100.0    |   |
| mug     | R <sub>err</sub> | 31.5 | 56.3 | 61.2     | 20.3     |   |
|         | $T_{err}$        | 4.0  | 9.2  | 6.7      | 1.8      |   |
|         | 5°5cm            | 17.0 | 16.9 | 13.5     | 32.5     |   |
| Overall | IoU25            | 82.2 | 47.0 | 53.0     | 95.1     |   |
| Overall | Rerr             | 20.2 | 48.1 | 30.0     | 17.1     |   |
|         | $T_{err}$        | 4.9  | 10.5 | 8.4      | 3.4      |   |
|         |                  |      |      |          |          | - |

![](_page_68_Figure_7.jpeg)

![](_page_69_Picture_0.jpeg)

![](_page_69_Picture_1.jpeg)

NOCS

6-Pack

![](_page_69_Picture_4.jpeg)

|         |                  | NOCS | ICP  | Keypoint | Ours w/o |
|---------|------------------|------|------|----------|----------|
|         |                  | [46] | [50] | Net [41] | temporal |
| bottle  | 5°5cm            | 5.5  | 10.1 | 5.9      | 23.7     |
|         | IoU25            | 48.7 | 29.9 | 23.1     | 92.0     |
|         | Rerr             | 25.6 | 48.0 | 28.5     | 15.7     |
|         | T <sub>err</sub> | 14.4 | 15.7 | 9.5      | 4.2      |
|         | 5°5cm            | 62.2 | 40.3 | 16.8     | 53.0     |
| la aval | IoU25            | 99.6 | 79.7 | 74.7     | 100.0    |
| TWOD    | Rerr             | 4.7  | 19.0 | 9.8      | 5.3      |
|         | Terr             | 1.2  | 4.7  | 8.2      | 1.6      |
|         | 5°5cm            | 0.6  | 12.6 | 1.8      | 8.4      |
|         | IoU25            | 90.6 | 53.1 | 30.9     | 91.0     |
| camera  | Rerr             | 33.8 | 80.5 | 45.2     | 43.9     |
|         | Terr             | 3.1  | 12.2 | 8.5      | 5.5      |
|         | 5°5cm            | 7.1  | 17.2 | 4.3      | 25.0     |
|         | IoU25            | 77.0 | 40.5 | 42.6     | 89.9     |
| Can     | Rerr             | 16.9 | 47.1 | 28.8     | 12.5     |
|         | Terr             | 4.0  | 9.4  | 13.1     | 5.0      |
|         | 5°5cm            | 25.5 | 14.8 | 49.2     | 62.4     |
| lanton  | IoU25            | 94.7 | 50.9 | 94.6     | 97.8     |
| Taptop  | Rerr             | 8.6  | 37.7 | 6.5      | 4.9      |
|         | T <sub>err</sub> | 2.4  | 9.2  | 4.4      | 2.5      |
|         | 5°5cm            | 0.9  | 6.2  | 3.1      | 22.4     |
| m11.07  | IoU25            | 82.8 | 27.7 | 52.0     | 100.0    |
| mug     | Rerr             | 31.5 | 56.3 | 61.2     | 20.3     |
|         | T <sub>err</sub> | 4.0  | 9.2  | 6.7      | 1.8      |
|         | 5°5cm            | 17.0 | 16.9 | 13.5     | 32.5     |
| Overall | IoU25            | 82.2 | 47.0 | 53.0     | 95.1     |
| Overall | Rerr             | 20.2 | 48.1 | 30.0     | 17.1     |
|         | T <sub>err</sub> | 4.9  | 10.5 | 8.4      | 3.4      |
|         |                  |      |      |          |          |

![](_page_69_Figure_7.jpeg)

![](_page_70_Picture_0.jpeg)

![](_page_70_Picture_1.jpeg)

|         |           |      |      |          |          | _ |
|---------|-----------|------|------|----------|----------|---|
|         |           | NOCS | ICP  | Keypoint | Ours w/o |   |
|         |           | [46] | [50] | Net [41] | temporal |   |
| bottle  | 5°5cm     | 5.5  | 10.1 | 5.9      | 23.7     | Γ |
|         | IoU25     | 48.7 | 29.9 | 23.1     | 92.0     |   |
|         | Rerr      | 25.6 | 48.0 | 28.5     | 15.7     |   |
|         | $T_{err}$ | 14.4 | 15.7 | 9.5      | 4.2      |   |
|         | 5°5cm     | 62.2 | 40.3 | 16.8     | 53.0     | Γ |
| houl    | IoU25     | 99.6 | 79.7 | 74.7     | 100.0    |   |
| TWOD    | Rerr      | 4.7  | 19.0 | 9.8      | 5.3      |   |
|         | $T_{err}$ | 1.2  | 4.7  | 8.2      | 1.6      |   |
|         | 5°5cm     | 0.6  | 12.6 | 1.8      | 8.4      | Γ |
| asmora  | IoU25     | 90.6 | 53.1 | 30.9     | 91.0     |   |
| camera  | Rerr      | 33.8 | 80.5 | 45.2     | 43.9     |   |
|         | $T_{err}$ | 3.1  | 12.2 | 8.5      | 5.5      |   |
|         | 5°5cm     | 7.1  | 17.2 | 4.3      | 25.0     |   |
| Can     | IoU25     | 77.0 | 40.5 | 42.6     | 89.9     |   |
| Call    | Rerr      | 16.9 | 47.1 | 28.8     | 12.5     |   |
|         | $T_{err}$ | 4.0  | 9.4  | 13.1     | 5.0      |   |
|         | 5°5cm     | 25.5 | 14.8 | 49.2     | 62.4     | Γ |
| lanton  | IoU25     | 94.7 | 50.9 | 94.6     | 97.8     |   |
| тарсор  | Rerr      | 8.6  | 37.7 | 6.5      | 4.9      |   |
|         | $T_{err}$ | 2.4  | 9.2  | 4.4      | 2.5      |   |
|         | 5°5cm     | 0.9  | 6.2  | 3.1      | 22.4     |   |
| muq     | IoU25     | 82.8 | 27.7 | 52.0     | 100.0    |   |
| mug     | $R_{err}$ | 31.5 | 56.3 | 61.2     | 20.3     |   |
|         | $T_{err}$ | 4.0  | 9.2  | 6.7      | 1.8      |   |
|         | 5°5cm     | 17.0 | 16.9 | 13.5     | 32.5     | Γ |
| Overall | IoU25     | 82.2 | 47.0 | 53.0     | 95.1     |   |
| Overall | Rerr      | 20.2 | 48.1 | 30.0     | 17.1     |   |
|         | $T_{err}$ | 4.9  | 10.5 | 8.4      | 3.4      |   |

![](_page_70_Figure_4.jpeg)

![](_page_71_Picture_0.jpeg)

#### Conclusions

- Summary: Anchor-based keypoint generation for 6D pose tracking
- problem

![](_page_71_Picture_5.jpeg)

#### 6-PACK demonstrates state-of-the-art performance on a challenging category-based 6D object pose tracking

#### 6-PACK enables real-time tracking and robot interaction


### Limitations and Future Work

- Only works on RGB-D data
- 10 Hz pose tracking on robot
- Only trained on 6 categories of objects







- [41] S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi, "Discovery of latent 3d keypoints via end-to-end geometric reasoning," arXiv preprint arXiv:1807.03146, 2018.
- [46] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas, "Normalized object coordinate space for category level 6d object pose and size estimation," arXiv preprint arXiv:1901.02970, 2019. [50] Q.-Y. Zhou, J. Park, and V. Koltun, "Open3D: A modern library for 3D data processing," arXiv:1801.09847, 2018.



#### References



# Thank you



56

### Next Time: Visual Odometry and Localization

#### Seminar 5: Recurrent Networks and Object Tracking

- 1. <u>DeepIM: Deep Iterative Matching for 6D Pose Estimation</u>, Li et al., 2018
- 2. <u>PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking</u>, Deng et al., 2019
- 3. <u>6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints</u>, Wang et al., 2020
- 4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

### Seminar 6: Visual Odometry and Localization

- 1. <u>Backprop KF: Learning Discriminative Deterministic State Estimators</u>, Haarnoja et al., 2016
- 2. <u>Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors</u>, Jonschkowski et al., 2018
- 3. <u>Multimodal Sensor Fusion with Differentiable Filters</u>, Lee et al., 2020
- 4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021



DR



## DeepRob

#### Seminar 5 Object Tracking University of Michigan and University of Minnesota



