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This Week: Rigid Body Objects

• Seminar 4: Dense Descriptors, Category-level Representations
1. Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018

2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019

3. kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation, Manuelli et al., 2019

4. Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022
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• Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces
1. SUM: Sequential scene understanding and manipulation, Sui et al., 2017

2. iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022

https://arxiv.org/abs/1806.08756
https://geometry.stanford.edu/projects/NOCS_CVPR2019/
https://arxiv.org/abs/1903.06684
https://arxiv.org/abs/2109.06161
https://ieeexplore.ieee.org/abstract/document/8206164
https://arxiv.org/abs/2204.02296
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Autonomous Robotics

5

How can a robot autonomously set goals 

and formulate plans to achieve them?

1. Identify objects and their poses in the environment 

2. Create a goal and formulate a plan 

3. Execute plan



Semantic Scene Understanding
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Instance-level:  

• Determine specific objects 

• Not easily scalable 

• Require large number of detectors 

Category-level: 

• Generalized object identification 

• 3D CAD models are not required



Existing Pose Estimation Methods: Instance-Level
• Template matching methods align known 3D CAD models to observed 3D point clouds 

[1] or 2D images [2]
• Regression-based methods establish 2D-3D correspondence by regressing the 6 DoF 

pose [3] or predict the image coordinate of projected keypoints [4]
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Existing Pose Estimation Methods: Categroy-Level
• Normalized coordinate space (NOCS) requires 3D meshes for training [5]
• Other methods reply on RGBD image [6] to match features 

• Existing monocular methods have room for improvement [7, 8]
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Complete Network
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Feature Extraction via DLA-34
• Produce multiple 

intermediate feature 

maps of different spatial 

resolutions 

• Iterative connections join 

neighboring stages to 

refine representation 

• Hierarchical connections 

to better propagate 

features and gradients

[10]
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Object Detection Branch
• Generate a heatmap to indicate the centroid of objects 
• Output the object center sub-pixel offset to reduce discretization error
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Keypoint Detection Branch
• 8 Keypoint heatmaps to indicate the location of keypoints
• Output the keypoint sub-pixel offset to mitigate discretization error 
• Generate displacement vectors from bounding box center point 
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2D Keypoint Output Decoding
• Find high confidence peaks in heatmaps to determine object center or keypoints
• Displacement-based keypoints are given by 2D x-y displacements under the center point 
• Sub-pixel offsets to adjust the keypoint locations
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Cuboid Dimensions Branch
• Output cuboid aspect ratio (x/y, 1, z/y) with y axis being the up axis 
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convGRU for Sequential Feature Association
• Motivation: to help the prediction of last group (dimension branch) 
• Use a recurrent neural network for propagating information from earlier task
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Off-the-shelf PnP algorithm yields 6-DoF pose

16



Loss Functions
• Penalty-reduced focal loss for 

center point and keypoint 
heatmaps:

• L1 center sub-pixel offset and 
keypoint sub-pixel offset loss: 

• Overall loss:
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Results
Metrics:
• 3D Intersection over Union (IoU) with a threshold of 50%
• Mean normalized distance between the projections of 3D bounding box 

keypoints
• Viewpoint error of azimuth (lateral angle) with a threshold of 15° and 

elevation (vertical angle) with a threshold of 10° 
Objectron Dataset performance compared against:
• MobilePose 
• A two-stage network
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Results

• Significantly outperform 
MobilePose

• Two-stage method falls 
behind on 3D IoU metric 
due to its failure for end-
to-end training and 
taking dimensions into 
account 
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Ablation Experiment
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Conclusions
Primary Contributions: 

1. Detect unseen objects from known category and estimate their poses from a monocular 

RGB input

2. Incorporate convGRU feature association to improve the accuracy of scale estimation

3. Prediction of relative dimension of 3D bounding cuboid for category-level pose estimation

Future work:

1. Incorporate shape geometry embeddings

2. Leverage different backbone networks

3. Use iteration to refine results
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Thank you



Next Time: Object Tracking

• Seminar 6: Visual Odometry and Localization
1. Backprop KF: Learning Discriminative Deterministic State Estimators, Haarnoja et al., 2016

2. Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors, Jonschkowski et al., 2018

3. Multimodal Sensor Fusion with Differentiable Filters, Lee et al., 2020

4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021
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• Seminar 5: Recurrent Networks and Object Tracking
1. DeepIM: Deep Iterative Matching for 6D Pose Estimation, Li et al., 2018

2. PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking, Deng et al., 2019

3. 6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints, Wang et al., 2020

4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

https://proceedings.neurips.cc/paper/2016/file/697e382cfd25b07a3e62275d3ee132b3-Paper.pdf
http://www.roboticsproceedings.org/rss14/p01.pdf
https://arxiv.org/abs/2010.13021
https://openaccess.thecvf.com/content/CVPR2021/papers/Karkus_Differentiable_SLAM-Net_Learning_Particle_SLAM_for_Visual_Navigation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yi_Li_DeepIM_Deep_Iterative_ECCV_2018_paper.pdf
https://arxiv.org/abs/1905.09304
https://ieeexplore.ieee.org/abstract/document/9196679
https://arxiv.org/abs/2207.07115
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