

DeepRob

Seminar 4 Dense Descriptors, Category-level Representations University of Michigan and University of Minnesota

This Week: Rigid Body Objects

Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces

- SUM: Sequential scene understanding and manipulation, Sui et al., 2017 1.
- iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022 2.

Seminar 4: Dense Descriptors, Category-level Representations

- Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018 1.
- 2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019
- 3. <u>kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation</u>, Manuelli et al., 2019
- Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022 4.

Today: Dense Descriptors, **Category-level Representations**

Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces

- SUM: Sequential scene understanding and manipulation, Sui et al., 2017 1.
- iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022 2.

Seminar 4: Dense Descriptors, Category-level Representations

- Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018 1.
- 2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019
- 3. <u>kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation</u>, Manuelli et al., 2019
- Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022 4.

Single-Stage Keypoint-Based Category Level Object Pose Estimation from an RGB Image

By: Yunzhi Lin, Jonathan Tremblay, Stephen Tyree, Patricio A. Vela, Stan Birchfield

Presented by: Brandon Apodaca, Yu Zhu

Autonomous Robotics

How can a robot autonomously set goals

and formulate plans to achieve them?

- 1. Identify objects and their poses in the environment
- 2. Create a goal and formulate a plan
- 3. Execute plan

Semantic Scene Understanding

Instance-level:

- Determine specific objects
- Not easily scalable
- Require large number of detectors

Category-level:

- Generalized object identification
- 3D CAD models are not required

DR **Existing Pose Estimation Methods: Instance-Level**

- Template matching methods align known 3D CAD models to observed 3D point clouds [1] or 2D images [2]
- Regression-based methods establish 2D-3D correspondence by regressing the 6 DoF pose [3] or predict the image coordinate of projected keypoints [4]

DR Existing Pose Estimation Methods: Categroy-Level

- Normalized coordinate space (NOCS) requires 3D meshes for training [5]
- Other methods reply on RGBD image [6] to match features
- Existing monocular methods have room for improvement [7, 8]

DR

Complete Network

Feature Extraction via DLA-34

- Produce multiple \bullet intermediate feature maps of different spatial resolutions
- Iterative connections join lacksquareneighboring stages to refine representation
- Hierarchical connections \bullet to better propagate features and gradients

Object Detection Branch

- Generate a heatmap to indicate the centroid of objects
- Output the object center sub-pixel offset to reduce discretization error

Keypoint Detection Branch

2D Keypoint Output Decoding

- Find high confidence peaks in heatmaps to determine object center or keypoints
- Sub-pixel offsets to adjust the keypoint locations

Displacement-based keypoints are given by 2D x-y displacements under the center point

Cuboid Dimensions Branch

Output cuboid aspect ratio (x/y, 1, z/y) with y axis being the up axis

DR

- Motivation: to help the prediction of last group (dimension branch) Use a recurrent neural network for propagating information from earlier task

convGRU for Sequential Feature Association

DR Off-the-shelf PnP algorithm yields 6-DoF pose

- Output heads H/4 x W/4 x (c)

Loss Functions

- Penalty-reduced focal loss for center point and keypoint heatmaps:
- L1 center sub-pixel offset and keypoint sub-pixel offset loss:

 $\lambda_{{
m p}_{cen}}$

• Overall loss:

$$\begin{aligned} \mathcal{L}_{\text{all}} &= \lambda_{\text{p}_{cen}} \mathcal{L}_{\text{p}_{cen}} + \lambda_{\text{off}} \mathcal{L}_{\text{off}} + \lambda_{\text{bbox}} \mathcal{L}_{\text{bbox}} \\ &+ \lambda_{\text{p}_{key}} \mathcal{L}_{\text{p}_{key}} + \lambda_{\text{offkey}} \mathcal{L}_{\text{offkey}} \\ &+ \lambda_{\text{dis}} \mathcal{L}_{\text{dis}} + \lambda_{\text{dim}} \mathcal{L}_{\text{dim}} \\ &= \lambda_{\text{off}} = \lambda_{\text{p}_{key}} = \lambda_{\text{offkey}} = \lambda_{\text{dis}} = \lambda_{\text{dim}} = 1, \ \lambda_{\text{bbox}} = 0.1. \end{aligned}$$

$$\sum_{ij} \begin{cases} (1 - \hat{Y}_{ij})^{\alpha} \log(\hat{Y}_{ij}) & \text{if } Y_{ij} = \\ (1 - Y_{ij})^{\beta} (\hat{Y}_{ij})^{\alpha} \log(1 - \hat{Y}_{ij}) & \text{otherw} \\ 2, \beta = 4 \end{cases}$$

$$\sum_{p} \left\| \hat{O}_{\tilde{p}} - \left(\frac{p}{R} - \tilde{p} \right) \right\| \qquad \tilde{p} = \left\lfloor \frac{p}{R} \right\rfloor$$

Metrics:

- 3D Intersection over Union (IoU) with a threshold of 50% Mean normalized distance between the projections of 3D bounding box
- keypoints
- Viewpoint error of azimuth (lateral angle) with a threshold of 15° and elevation (vertical angle) with a threshold of 10°

Objectron Dataset performance compared against:

- MobilePose
- A two-stage network

Results

Results

•	Significantly outperform	Stage	Method	Bike	Book	Bottle*	Camera	Cereal_box	Chair	Cup*	Laptop	Shoe	Mean
	MobiloDoco					Average p	precision at	0.5 3D IoU (1	`)				
	INIODIIEF05e	One	MobilePose [14]	0.3109	0.1797	0.5433	0.4483	0.5419	0.6847	0.3665	0.5225	0.4171	0.4461
		Two	Two-stage [15]	0.6127	0.5218	0.5744	0.8016	0.6272	0.8505	0.5388	0.6735	0.6606	0.6512
		One	Ours	0.0419	0.5505	0.8021	0./188	0.8211	0.8471	0.7704	0.0700	0.0018	0.7218
•	Two-stage method falls Mean pixel error of 2D projection of cuboid vertices (4)												
	behind on 3D IoU metric	One	MobilePose [14]	0.1581	0.0840	0.0818	0.0773	0.0454	0.0892	0.2263	0.0736	0.0655	0.1001
	due to its failure for end-	Two	Two-stage [15]	0.0828	0.0477	0.0405	0.0449	0.0337	0.0488	0.0541	0.0291	0.0391	0.0467
		One	Ours	0.0872	0.0505	0.0400	0.0511	0.0379	0.0394	0.0370	0.0322	0.0403	0.0320
	to-end training and	Average precision at 15° azimuth error (\uparrow)											
	taking dimensions into	One	MobilePose [14]	0.4376	0.4111	0.4413	0.5293	0.8780	0.6195	0.0893	0.6052	0.3934	0.4894
	account	Two	Two-stage [15]	0.8234	0.7222	0.8003	0.8030	0.9404	0.8840	0.6444	0.8561	0.5860	0.7844
	account	One	Ours	0.8022	0.7525	0.9501	0.8220	0.9301	0.8822	0.8945	0.7900	0.0/5/	0.8398
				Average precision at 10° elevation error (\uparrow)									
		One	MobilePose [14]	0.7130	0.6289	0.6999	0.5233	0.8030	0.7053	0.6632	0.5413	0.4947	0.6414
		Two	Two-stage [15]	0.9390	0.8616	0.8567	0.8437	0.9476	0.9272	0.8365	0.7593	0.7544	0.8584
		One	Ours	0.9072	0.8333	0.0001	0.8704	0.9407	0.8999	0.8502	0.6922	0.7900	0.8560

POSE ESTIMATION COMPARISON ON THE OBJECTRON TEST SET [15].

DIFFERENT STRATEGIES FOR 2D KEYPOINT OUTPUT DECODING (AVERAGE PRECISION AT 0.5 3D IOU METRIC ([†])).

Strategy	w/o add. proc.	Bike	Book	Bottle*	Camera	Cereal_box	Chair	Cup*	Laptop	Shoe	Mean
Displacement	✓	0.6254	0.5263	0.7917	0.7191	0.8115	0.8492	0.7553	0.6737	0.6688	0.7134
Heatmap	✓	0.5788	0.5539	0.7970	0.7035	0.8138	0.8260	0.7626	0.6124	0.6079	0.6951
Distance [16]	×	0.6305	0.5436	0.7837	0.7111	0.8044	0.8460	0.7640	0.6692	0.6529	0.7117
Sampling [38]	×	0.6279	0.5516	0.7873	0.7182	0.8134	0.8466	0.7687	0.6751	0.6641	0.7170
Disp. + Heatmap	✓	0.6419	0.5565	0.8021	0.7188	0.8211	0.8471	0.7704	0.6766	0.6618	0.7218

DIFFERENT STRATEGIES FOR COMPUTING CUBOID DIMENSIONS.

Method	Mean	cuboid din	nension er	ror (↓)	Average precision at 0.5 3D IoU ([†])				
	Book	Laptop	Others	Mean	Book	Laptop	Others	Mean	
Keypoint lifting [14] (no dim. pred.) Estimated dim. (w/o convGRU) Estimated dim. (w/ convGRU) Ground truth dim. (oracle)	- 0.8474 0.7440 <i>0</i>	- 0.9124 0.6799 <i>0</i>	0.2434 0.2475 0	0.3849 0.3507 0	0.3999 0.5401 0.5565 <i>0.6955</i>	0.5159 0.6378 0.6766 <i>0.6942</i>	0.6540 0.7528 0.7519 <i>0.7907</i>	0.6104 0.7164 0.7218 <i>0.7694</i>	

DR

Ablation Experiment

Conclusions

Primary Contributions:

- Detect unseen objects from known category and estimate their poses from a monocular 1. RGB input
- Incorporate convGRU feature association to improve the accuracy of scale estimation 2.
- Prediction of relative dimension of 3D bounding cuboid for category-level pose estimation 3.

Future work:

- Incorporate shape geometry embeddings 1.
- 2. Leverage different backbone networks
- Use iteration to refine results 3.

References

[1] Zeng, Andy, et al. "Multi-view self-supervised deep learning for 6d pose estimation in the amazon picking challenge." 2017 IEEE international conference on robotics and automation (ICRA). IEEE, 2017.

[2] Li, Yi, et al. "Deepim: Deep iterative matching for 6d pose estimation." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

[3] Xiang, Yu, et al. "Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes." arXiv preprint arXiv:1711.00199 (2017).

[4] Rad, Mahdi, and Vincent Lepetit. "Bb8: A scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth." Proceedings of the IEEE international conference on computer vision. 2017.

[5] Wang, He, et al. "Normalized object coordinate space for category-level 6d object pose and size estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[6] Chen, Dengsheng, et al. "Learning canonical shape space for category-level 6d object pose and size estimation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

[7] Hou, Tingbo, et al. "MobilePose: Real-time pose estimation for unseen objects with weak shape supervision." arXiv preprint arXiv:2003.03522 (2020).

[8] Ahmadyan, Adel, et al. "Objectron: A large scale dataset of object-centric videos in the wild with pose annotations." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.

[9] Lin, Yunzhi, et al. "Single-stage keypoint-based category-level object pose estimation from an RGB image." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.

[10] Yu, Fisher, et al. "Deep layer aggregation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

Thank you

23

Next Time: Object Tracking

Seminar 5: Recurrent Networks and Object Tracking

- 1. <u>DeepIM: Deep Iterative Matching for 6D Pose Estimation</u>, Li et al., 2018
- 2. <u>PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking</u>, Deng et al., 2019
- 3. <u>6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints</u>, Wang et al., 2020
- 4. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model, Cheng and Schwing, 2022

Seminar 6: Visual Odometry and Localization

- 1. <u>Backprop KF: Learning Discriminative Deterministic State Estimators</u>, Haarnoja et al., 2016
- 2. <u>Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors</u>, Jonschkowski et al., 2018
- 3. <u>Multimodal Sensor Fusion with Differentiable Filters</u>, Lee et al., 2020
- 4. Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation, Karkus et al., 2021

DeepRob

Seminar 4 Dense Descriptors, Category-level Representations University of Michigan and University of Minnesota

