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This Week: Rigid Body Objects

• Seminar 4: Dense Descriptors, Category-level Representations
1. Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018

2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019

3. kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation, Manuelli et al., 2019

4. Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022
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• Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces
1. SUM: Sequential scene understanding and manipulation, Sui et al., 2017

2. iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022

https://arxiv.org/abs/1806.08756
https://geometry.stanford.edu/projects/NOCS_CVPR2019/
https://arxiv.org/abs/1903.06684
https://arxiv.org/abs/2109.06161
https://ieeexplore.ieee.org/abstract/document/8206164
https://arxiv.org/abs/2204.02296
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Presented by: Daniel Simmons

By:

SUM
Sequential Scene Understanding and Manipulation

Zhiqiang Sui, Zheming Zhou, Zhen Zeng, Odest Chadwicke Jenkins

https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593


The Handsome Authors

• Zhiqiang Sui
• Former PhD Student at UMich

• Zheming Zhou
• Former PhD Student at UMich

• Zhen Zeng
• Former PhD Student at UMich

• Odest Chadwicke Jenkins
• Professor at UMich
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Robots can’t deal with this

• Need to find  the cleaning 
items!

3
Human 

Environment



Cleaning up the mess

• Recognizing objects in cluttered environments is a critical 

challenge for a variety of tasks
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• Video can be found at:

https://www.youtube.com/watch?v=ry0mqY5I-04



Addressing Limitations

• Previous models assumed object detection was always 

accurate

• Objects were assumed to be static

• Generative methods were often used to predict layout
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Approach

1. Probability-evaluated object detection

2. Physics and state models

3. Pose evaluation
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State Estimation

• Given RGBD observations estimate as objects with labels and poses

• Iterated with a bayes filter to assess accuracy and particle Filter

7



The Loop
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Trials

• 8 experiments with a Fetch Mobile Manipulation Robot

• 15 objects, 625 particles with 20 resampling iterations
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Dataset

Ground TruthDepth Map

Clutter



Sequence Table

Sequence
(a)

Sequence
(b)

Sequence
(c)

Sequence
(d)

Sequence
(e)

Sequence
(f)

Sequence
(g)

Sequence
(h)

Number of 
total objects 5 5 5 5 5 5 5 5
Number of 

Manipulation 
Errors

1 1 2 0 0 1 1 0

Number of 
Manipulation 

Trials
4 6 7 5 5 5 6 5

Completion 
Ratio 0.80 1.0 1.0 1.0 1.0 0.8 1.0 1.0
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False Positives

• Able to overcome mistakes

• Object detection 
made mistakes

• Scene estimation 
recognized 
incorrect objects
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Conclusions

• SUM is a generative and discriminative approach

– Maintains belief over a sequence of actions

• Provides robust estimation and manipulation

– Can parse and sort cluttered environments
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Limitations and Directions for Future Work

• Limitations
• Can solve for impossible joint positions

• Frequent manipulation erros

• Future directions
• Test with data other than RGBD

• Apply motion to objects
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Thank you



Next Time: Dense Descriptors, 
Category-level Representations

• Seminar 4: Dense Descriptors, Category-level Representations
1. Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018

2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019

3. kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation, Manuelli et al., 2019

4. Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022
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• Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces
1. SUM: Sequential scene understanding and manipulation, Sui et al., 2017

2. iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022

https://arxiv.org/abs/1806.08756
https://geometry.stanford.edu/projects/NOCS_CVPR2019/
https://arxiv.org/abs/1903.06684
https://arxiv.org/abs/2109.06161
https://ieeexplore.ieee.org/abstract/document/8206164
https://arxiv.org/abs/2204.02296
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