

DeepRob

Seminar 3 Object Pose, Geometry, SDF, Implicit Surfaces University of Michigan and University of Minnesota

This Week: Rigid Body Objects

Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces

- SUM: Sequential scene understanding and manipulation, Sui et al., 2017 1.
- iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022 2.

Seminar 4: Dense Descriptors, Category-level Representations

- Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018 1.
- 2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019
- 3. <u>kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation</u>, Manuelli et al., 2019
- Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022 4.

Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces

- SUM: Sequential scene understanding and manipulation, Sui et al., 2017 1.
- 2. iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022

Seminar 4: Dense Descriptors, Category-level Representations

- Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018 1.
- Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019 2.
- <u>kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation</u>, Manuelli et al., 2019 3.
- Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022 4.

Today: Object Pose, Geometry, SDF, Implicit Surfaces

SUM Sequential Scene Understanding and Manipulation By: Zhiqiang Sui, Zheming Zhou, Zhen Zeng, Odest Chadwicke Jenkins

Presented by: Daniel Simmons

The Handsome Authors

• Zhiqiang Sui

- Former PhD Student at UMich
- Zheming Zhou
 - Former PhD Student at UMich
- Zhen Zeng
 - Former PhD Student at UMich
- Odest Chadwicke Jenkins
 - Professor at UMich

Robots can't deal with this

Need to find the cleaning items!

Recognizing objects in cluttered environments is a critical challenge for a variety of tasks

Cleaning up the mess

Video can be found at:

https://www.youtube.com/watch?v=ry0mqY5I-04

Addressing Limitations

- Previous models assumed object detection was always accurate
- Objects were assumed to be static
- Generative methods were often used to predict layout

1. Probability-evaluated object detection 2. Physics and state models

3. Pose evaluation

Approach

State Estimation

Given RGBD observations estimate as objects with labels and poses

 $Bel(q_t^l)$

• Iterated with a bayes filter to assess accuracy and particle Filter

Probability!

 $p(x_t^i|z_{0:t}, u_{1:t}) = p(b_t^i|z_t) p(o^i|b_t^i, z_t) p(q_t^i|b_t^i, o^i, z_{0:t}, u_{1:t})$

detection recognition

The Loop

8 experiments with a Fetch Mobile Manipulation Robot

• 15 objects, 625 particles with 20 resampling iterations

(a)

(c)

Trials

(b)

Ground Truth

Sequence Table

	Sequence (a)	Sequence (b)	Sequence (c)	Sequence (d)	Sequence (e)	Sequence (f)	Sequence (g)	Sequence (h)
Number of total objects	5	5	5	5	5	5	5	5
Number of Manipulation Errors	1	1	2	0	0	1	1	0
Number of Manipulation Trials	4	6	7	5	5	5	6	5
Completion Ratio	0.80	1.0	1.0	1.0	1.0	0.8	1.0	1.0

Sequence Table

	Sequence (a)	Sequence (b)	Sequence (c)	Sequence (d)	Sequence (e)	Sequence (f)	Sequence (g)	Sequence (h)
Number of total objects	5	5	5	5	5	5	5	5
Number of Manipulation Errors	1	1	<mark>2</mark>	0	0	1	1	0
Number of Manipulation Trials	4	6	7	5	5	5	6	5
Completion Ratio	0.80	1.0	1.0	1.0	1.0	0.8	1.0	1.0

Sequence Table

	Sequence (a)	Sequence (b)	Sequence (c)	Sequence (d)	Sequence (e)	Sequence (f)	Sequence (g)	Sequence (h)
Number of total objects	5	5	5	5	5	5	5	5
Number of Manipulation Errors	1	1	2	0	0	1	1	0
Number of Manipulation Trials	4	6	7	5	5	5	6	5
Completion Ratio	0.80	1.0	1.0	1.0	1.0	0.8	1.0	1.0

• Able to overcome mistakes

(a)

False Positives

- Object detection made mistakes
- Scene estimation recognized incorrect objects

Conclusions

- SUM is a generative and discriminative approach
 - Maintains belief over a sequence of actions
- Provides robust estimation and manipulation
 - Can parse and sort cluttered environments

Limitations and Directions for Future Work

- Limitations
 - Can solve for impossible joint positions
 - Frequent manipulation erros
- Future directions
 - Test with data other than RGBD
 - Apply motion to objects

Thank you

19

Next Time: Dense Descriptors, **Category-level Representations**

Seminar 3: Object Pose, Geometry, SDF, Implicit Surfaces

- SUM: Sequential scene understanding and manipulation, Sui et al., 2017 1.
- iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Oriz et al., 2022 2.

Seminar 4: Dense Descriptors, Category-level Representations

- Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018 1.
- 2. Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation, Wang et al., 2019
- 3. <u>kPAM: KeyPoint Affordances for Category-Level Robotic Manipulation</u>, Manuelli et al., 2019
- Single-Stage Keypoint-Based Category-Level Object Pose Estimation from an RGB Image, Lin et al., 2022 4.

DeepRob

Seminar 3 Object Pose, Geometry, SDF, Implicit Surfaces University of Michigan and University of Minnesota

