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DR
Project 3 Released

* |nstructions available on the website
* Here: deeprob.org/projects/project3/

e New PROPS Detection dataset

* Implement CNN for classification and Faster R-CNN for detection

* Due Tuesday, February 28th 11:59 PM EST

L\,


https://deeprob.org/projects/project3/
https://deeprob.org/datasets/props-detection/

DR

Recap: Deep Learning Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow
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So far: Image Classification
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Figure copyright Alex Krizhevsky, llya Sutskever, and P
Geoffrey Hinton, 2012. Reproduced with permission. 4096 Opcorn
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Computer Vision Tasks

Semantic Object
Classification Segmentation Detection

“Chocolate Pretzels”

Instance
Segmentation

- I
I ) Shelf Flipz, Keese's
No spatial extent
ﬁ
No objects, just pixels Multiple objects

L\,
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Classification

“Chocolate Pretzels”

—

No spatial extent

L\,

Computer Vision Tasks
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Transfer Learning:
Generalizing to New Tasks

L\,
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Transfer Learning with CNNs

. Train on ImageNet
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I'FJMRL'I Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014
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1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
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Image

IMI Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs

2. Use CNN as a
feature extractor

FC-4096
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MaxPool last layer
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Transfer Learning: Feature Extraction

1. Train on ImageNet

FC-1000

FC-4096

FC-4096

MaxPool
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2. Use CNN as a
feature extractor

FC-4096
006 ) Remove
MaxPool last layer

Conv-512
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MaxPool > Freeze
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Mean Accuracy per Category

Classification on Caltech-101
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+— Yang et al. (2009)
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IM Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 10
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Transfer Learning: Feature Extraction

1. Train on ImageNet

FC-1000

FC-4096
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2. Use CNN as a
feature extractor
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Bird Classification on Caltech-UCSD
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IMI Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition”, ICML 2014 11
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Transfer Learning: Feature Extraction

2. Use CNN as a

1. Train on ImageNet

FC-1000
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L\,

feature extractor
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Image Classification

89589
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B Prior State of the art m CNN + SVM m CNN + Augmentation + SVM

Razavian et al, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014 12



DR

Transfer Learning: Fine Tuning

1. Train on ImageNet

FC-1000

FC-4096
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MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

L\
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Transfer Learning: Fine Tuning

1. Train on ImageNet

FC-1000

FC-4096
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L\,

Add randomly —
initialized final FC
layer for new task

Initialize from
ImageNet model

New FC Layer
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Transfer Learning: Fine Tuning

. Train on ImageNet

FC-1000 Add randomly = [ NewFClayer
e el e e . FC-4096

FC-4096 . ..
— initialized final FC — Continue training
r— layer for new task oo > entire model for
Conv-512 Conv-512 new tas k
Conv-512 Conv-512

MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
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L\,
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Transfer Learning: Fine Tuning

1. Train on ImageNet

——(
FC-1000 Add randomly e T
e el e g . FC-4096

FC-4056 initialized final FC

3 FC-4096
FC-4096

layer for new task
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-512 Conv-512
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MaxPool | Initialize from MaxPool
Conv-256 I m a ge N et m O d e I Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64
Image \_ Image

L\

Some tricks:

Train with feature extraction first
before finetuning

Lower the learning rate: use ~1/10 of
LR used in original training
Sometimes freeze lower layers to
save computation

Train with BatchNorm in “test” mode

16
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FC-1000

FC-4096
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MaxPool
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Transfer Learning: Fine Tuning

ﬁ

L\

1. Train on ImageNet

Add randomly —
initialized final FC 4
layer for new task

Initialize from
ImageNet model

New FC Layer

FC-4096
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MaxPool
Conv-512
Conv-512

MaxPool
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MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
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MaxPool
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Image

Compared with feature extraction,

fine-tuning:

* Requires more data

* |s computationally expensive
* Can give higher accuracies

17
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Transfer Learning: Architecture Matters!

ImageNet Classification Challenge

30 28.2

25.8

152
layers

152
layers

152
layers

25

N
o

16.4

11.7 19 22

Iayers Iayers
8 layers || 8 layers

Error Rate
=

(B
o

5

Shallow
0
2010 2011 2012 2013 2014 2014 2015
Lin et al Sanchez & Krizhevsky etal ~ Zeiler &  Simonyan&  Szegedyetal  Heetal
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet)  (ResNet N t)

2016

Shao et al

2017

Hu et al
(SENet)

Improvements in CNN
architecture leads to
Improvements in many down

stream tasks thanks to transfer

learning!

18
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50

40

30

20

10

Transfer Learning: Architecture Matters!

Object Detection on COCO

46
26 39
29
15 19
N N
_

DPM Faster R-CNN  Faster R-CNN Faster R-CNN FPN Mask R-CNN FPN
(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50)  (ResNet-101)  (ResNeXt-152)

M Ross Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition 19
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Transfer Learning can help you converge faster

COCO object detection

[ (ol d

45

S — —

40

35 |

30 If you have enough data and train for

much longer, random initialization can
sometimes do as well as transfer learning

25
typical
fine-tuning
schedule

20

151

10 [

5| —random init
w/ pre-train

0 1 2 3 o S

He et al, "Rethinking ImageNet Pre-Training”, ICCV 2019 20
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Very active area of research!

L\,

Transfer Learning is persvasive!
It's the norm, not the exception

Pretraining for Robotics ( T4 .

Workshop at the 2023 International Conference on Robotics and Au
London, May 29 2023, full-day workshop “
Call for papers

Important dates (all times AoE)

e Submissions open: Feb 15th 2023

e Submission deadline: Apr 14th 2023

e Decision notification: Apr 30th 2023

e Cameraready deadline: May 14th 2023
e Workshop: May 29th 2023

21
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Classification: Transferring to New Tasks

Classification

“Chocolate Pretzels”

—

No spatial extent

L\,

22
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Today: Object Detection

Object
Detection

Flipz, Keese's

Multiple objects

23
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Object Detection: Task definition

Input: Single RGB image

Output: A set of detected objects;
For each object predict:

1. Category label (from a fixed set

L ‘ 1ERS
of Iabells) \ P
2. Bounding box (four numbers: st

‘ N\ e
“Go | R

" . 4 4 ' NV r-‘.fw‘ ;

o | ; 3 &
- - o . -

’ 'y 5 A Jv i‘,.

" |\ . ;w,; P ,:4'.3‘ (f:"g'.

L\,
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Object Detection: Challenges

Multiple outputs: Need to output
variable numbers of objects per
image

Multiple types of output: Need to
predict "what” (category label) as
well as “where” (bounding box)

|

NLS e 1 WWITE COENE
ARD 1oL Wi coow seTe

| JOK]ES
- mm..anpr

Large images: Classification works
at 224x224; need higher resolution
for detection, often ~800x600

"Ca Y * e - P < -
- - /’ A ) b —
. . / TV AVAV R 1
¢ ~ METAE] AN NVLAISES St ‘F B
e _ (AR Y . =ad -
| A = . Ty - el
—
N A"‘J. B - o Sy — . o
s -
- - - >
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Bounding Boxes

Bounding boxes are typically axis-
aligned

26



DR |
Bounding Boxes

Bounding boxes are typically axis-
aligned

jv .. >,
vy &N

Oriented boxes are much less
common

L\,

27
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Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the
visible portion of the object

1.

N WHITE CREME
COOKIE BITS.

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 o8
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Object Detection: Modal vs Amodal Boxes

Bounding boxes cover only the
visible portion of the object

\ BN ¢
[ AT TN
’ Y ARy D
1 . Lo, RN X

Amodal detection: box covers the
entire extent of the object, even
occluded parts

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 29
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Object Detection: Modal vs Amodal Boxes

"Modal” detection: Bounding boxes
(usually) cover only the visible
portion of the object

Amodal detection: box covers the
entire extent of the object, even
occluded parts

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017

30
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

31
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

Area of Union

32
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

~ Our prediction

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

Area of Union

33
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

Area of Union
loU > 0.5 is “decent”,

34
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 Is “decent”,
loU > 0.7 is “pretty good?,

L\, .
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Comparing Boxes: Intersection over Union (loU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (loU) (Also called “Jaccard
similarity” or “Jaccard index”):

Area of Intersection

loU- = 0.915
IS

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good?,
loU > 0.9 is “almost perfect”

L\, .
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Detecting a single object

......... =3k '
o e 192 192 2048 2048
27 128 e 'A T ] ]
13- 13 13
EAY Tt EE
IR 2 3"'. %, 3 .'._?, ° ]
57 - 3 13 13 dense dense
E |
' 192 192 128 Max - [
Max 58 Max pooling 2048 2048
pooling pooling

°
Figure copyright Alex Krizhevsky, llya Sutskever, and Ve Cto r °

Geoffrey Hinton, 2012. Reproduced with permission. 409 6
Treat localization as a

regression problem!

Loss

37
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Detecting a single object

77
What"?" Correct Label:
Class scores: Chocolate Pretzels
Chocolate Pretzels:
0.9
Fully connected: 51013 Bar: 0.02
4096 to 10 Potato Chips: 0.02 ===J» Softmax Loss
Water Bottle: 0.02
Popcorn: 0.01
;3\{ ' K‘ ......... . \
' i 192 192 128 2048 2048
27 128 R wapen ] ]
N AN\ 13 13
AV 3\
.......... 3' A 3' i e R
= 3 . ‘.'""-“13}:'.. T hs dense | |dense| [
| — i
T 192 192 128 Max - -
Max 128 Max pooling 2048 2048
pooling pooling
°
Figure copyright Alex Krizhevsky, llya Sutskever, and Ve Cto r ®

Geoffrey Hinton, 2012. Reproduced with permission.

4096
Treat localization as a

regression problem!
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Detecting a single object

7
What?" Correct Label:
Class scores: Chocolate Pretzels
Chocolate Pretzels:
0.9
Fully connected:  G,510a Bar: 0.02
4096 to 10 Potato Chips: 0.02 ===J» Softmax Loss
Water Bottle: 0.02
| Popcorn: 0.01
,\ 192 192 128 2048 \ / 2048
27 128 R mapen — B
N AN\ 13 13
T, 3 || R 5
= - U 1T ks dense| |dense| [~
| — i
T 192 192 128 Max - -
Max 128 Max pooling 2048 2048
pooling pooling
°
Figure copyright Alex Krizhevsky, llya Sutskever, and Ve Cto r o

Geoffrey Hinton, 2012. Reproduced with permission.

4096

Fully connected:
4096 to 10

Treat localization as a
regression problem!

L\,

Box coordinates: —’ L2 Loss

(x, ¥, w, h) T

Where?? Correct coordinates:
B = (x,, yl, W,, h!)

39
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Detecting a single object

What?? Correct Label:
Class scores: Chocolate Pretzels
Chocolate Pretzels: *
0.9
Fully connected:  ,,,01a Bar: 0.02
4096 to 10 Potato Chips: 0.02 === Softmax Loss

Water Bottle: 0.02
Popcorn: 0.01

Multitask Loss

= ;3\1 ;'f | ] K‘ _><_\

N
~
—
N
(o]
w
o
w |
-
w ..l
P
N
1

s 192 192 128 2048 48
-‘i}'.:-'.::‘f}':-:.," 13 \ 13
— - e U T dense| |dense
] — Weighted Sum —’ Loss
192 192 128 Max | |
Max 128 Max pooling 2048 2048
pooling pooling
. I
Figure copyright Alex Krizhevsky, llya Sutskever, and Ve Cto r ° L LCZS | AIL},oeg
Geoffrey Hinton, 2012. Reproduced with permission.

4096
Treat localization as a Fully connected:

regreSSion prOblem! 109610 10 Box coordinates: —’ L2 Loss

(x, ¥, w, h)

Where?? Correct coordinates:
IMI - (', y', W', b)
40
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Detecting a single object

What? ? Correct Label:

Class scores: Chocolate Pretzels

Chocolate Pretzels:
0.9

: . Fully connected: G562 Bar: 0.02
Often pretrained on ImageNet: Transfer 4096 to 10 Potato Chips: 0.02 === Softmax Loss

learning Water Bottle: 0.02
Popcorn: 0.01

Multitask Loss

—

Weighted Sum —’ Loss

L= Lcls T /1Lreg

Max
pooling pooling

Figure copyright Alex Krizhevsky, llya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

—_—

Treat localization as a Fully connected:
regreSSion prOblem! 109610 10 Box coordinates: —’ L2 Loss

(x, ¥, w, h)

Where?? Correct coordinates:
IMI - (', y', W, h’)
41
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Detecting a single object

What? ? Correct Label:

Class scores: Chocolate Pretzels

Chocolate Pretzels:
0.9

: . Fully connected: G562 Bar: 0.02
Often pretrained on ImageNet: Transfer 4096 to 10 Potato Chips: 0.02 === Softmax Loss

learning Water Bottle: 0.02
Popcorn: 0.01

Multitask Loss

—

Weighted Sum —’ Loss

L — LCZS + /1Lreg

pooling

Figure copyright Alex Krizhevsky, llya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

—_—

Treat localization as a Fully connected:
regreSSion prOblem! 109610 10 Box coordinates: —’ L2 Loss
(x! y! W! h)
Problem: Images can have T |
i Where?? Correct coordinates:
M more than one object! s y', W, )
42




Detecting Multiple Objects

N,
&
o'
N,
o
&
@

o AT 192 192 128
I )

S\ A\ Hershey’s: (x, y, w, h)

- o i | R TR T hs dense | |dense

' 192 192 128 Max - -
Max _ Mo pooling 2098 2048 nu

pooling pooling

)
&
w
N,
(=
&
@

TSy 192 192

. Hershey’s: (x, y, w, h)

= | | dense| |dense

i — Reese!s (X, v, W, h)

192 128 Max ]
2048 2048

20

w
.-d"
. :.
[
w

Max 128 Max pooling
pooling pooling

= 12 numbers

POm 8 ST TR
-5 POPL

¥t . Chips: (X, y, w, h)

2048

)

o

192 192 128 4

i S |\ e — __ Chi PS. (X, y: W, h)

dense dense|

20
W

-

w

R7 3|\

192 192 128 Max - - H EEENE '
Max — Max pooling 2048 2048 a ny n l I m e rs !

Need different numbers of
output per image
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

A= - 1) Hershey’s: No
(IR SR SN ><>< Flipz: No
N I\ Reese’s: No

2048

: 04
°°°°°°°°°°°°°

A |z Background: Yes

44
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

A= - 1) Hershey’s: No
(IR SR SN ><>< Flipz: Yes
N I\ Reese’s: No

2048

: 04
°°°°°°°°°°°°°

2 y 48 :::Qing pooling Ba c kg ro u n d : N O

45
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

A= - 1) Hershey’s: No
N\ Reese’s: Yes

2048

-----
°°°°°°°°°°°°°°

2 y ] roa:“ng pooling Ba c kg ro u n d : N O

46
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

Question: How many possible boxes

are there in an image of size H x W? .
J Total possible boxes:

H W
Consider box of size h x w:
W—-—w+1D)H-h+1
Possible x positions: W -w + 1 }; 21 ( ) )
— W:

Possible y positions: H-h + 1

Possible positions: HH+1) WW+1)
(W-w+1) x (H-h+1) — 5 5
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R
Detecting Multiple Objects: Sliding Window

800 x 600 image has

~58M boxes. No way

we can evaluate them
all

Apply a CNN to many different crops
of the image, CNN classifies each
crop as object or background

Question: How many possible boxes

are there in an image of size H x W? .
J Total possible boxes:

H W
Consider box of size h x w:
W—-—w+1D)H-h+1
Possible x positions: W -w + 1 }; 21 ( ) )
— W:

Possible y positions: H-h + 1

Possible positions: HH+1) WW+1)
(W-w+1) x (H-h+1) — 5 5
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Region Proposals

* Find a small set of boxes that are likely to cover all objects
Often based on heuristics: e.g. look for “blob-like” image regions
* Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

I/le‘ r NU Nife
Ei P( (P 1;

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, [JCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014
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R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

DR

R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Regions of

y & Interest (Rol)

image / ‘ AT from a proposal
o LR O 4 method (~2k)

—

- 4 5
-:;_1 ’ /
|' e '_,
=<~

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

DR

R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

/__/ Warped image
s regions (224x224)

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Conv
Net

Conv Forward each
Conv Net region through
Net ConvNet

ﬁWarped image

ﬁ regions (224x224)

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Class
Class
Class t .
t Conv orward each
Conv Net region through
oy Net ConvNet
ﬁWarped image

regions (224x224)

e

o

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission

Classify each region
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Region-Based CNN
R-CNN: Region-Based CNN

Bbox || Class Classify each region
Bbox | | Class

Bbox | | Class ) t Forward each
1 Conv ST Bounding box regression:
Conv Net reslon throus Predict “transform” to correct the Rol: 4
Net ConvNet . bt b 4
Conv numbers (tx, ty, th, tw)
Net ﬁWarped image
é regions (224x224)

: —  Regions of
Input _ o Interest (Rol)
image /Al £ emds #=X from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission o9



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN: Box Regression

Consider a region proposal with
center (px, py), width »,,, height p;,

Model predicts a transform (tx, ty, tw, th)
to correct the region proposal
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R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,,, height p;,

Model predicts a transform (tx, ty, tw, th)
to correct the region proposal

The output box is defined by:

bx = Px T Dy Shift center by amount
by = Dy 4+ phty relative to proposal size

bw = Pw eXp(tw) Scale proposal; exp ensures
by, = py, exp(th) that scaling factor is > 0
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R-CNN: Box Regression

Consider a region proposal with

center (px, py), width p,,,, height p;,

to correct the region proposal

The output box is defined by:
by = Dx + Puwix

by — py + Phty

by = Pw eXp(tw)

by, = ppn exp(ty)

Model predicts a transform (tx, ty, tw, th)

When transform is O,
output = proposal

L2 regularization

encourages leaving
proposal unchanged
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R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,,, height p;,

to correct the region proposal

The output box is defined by:
by = Dx + Puwix

by — py + Phty

by = Pw eXp(tw)

by, = ppn exp(ty)

Model predicts a transform (tx, ty, tw, th)

Scale / Translation invariance:
Transform encodes relative
difference between proposal
and output; important since

CNN doesn’t see absolute size
or position after cropping
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R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,,, height p;,

to correct the region proposal

The output box is defined by
by = Dx + Puwix

by = py + pnty

by = Pw eXp(tw)

by, = ppn exp(ty)

Model predicts a transform (tx, ty, tw, th)

Given proposal and target output,
we can solve for the transform the
network should output:

ty = (by — Dx)/Pw
Ly = (by — py)/ph
tyw = log(b,,/pw)
t, = log(hn/pn)
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R-CNN: Training

Input Image

Ground Truth
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R-CNN: Training

Input Image

Ground Truth

Region Proposals

L\,
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R-CNN: Training

Input Image

Ground Truth Positive
Neutral Negative

L\,
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Input Image

TP patocn. SLRES - g -
50 o A YR T 9
i - Y
- NETWT 15 : 2 By - >
- . e,
- - - - i * o 3 -
- ¥

R-CNN: Training

Categorize each region proposal as positive,
negative or neutral based on overlap with the
Ground truth boxes:

Positive: > 0.5 loU with a GT box
Negative: < 0.3 loU with all GT boxes
Neutral: between 0.3 and 0.5 loU with GT boxes

L\,
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R-CNN: Training

Input Image

Crop pixels from

each positive and
negative proposal,
resize to 224 x 224

Ground Truth Posmve
Neutral Negatlve

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class
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R-CNN: Training

Input Image

| ><>< Class target: Flipz L
"1 Box target: =

128 Max LJ
pooling 2048

5 ><T>< Class target: Hershey’s
- = BoX target: =——

‘ X% Class target: Reese’s
=  Box target: =———

Ground Truth

mm

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class - 66

Posmve

“ ><r>< Class target: Background
== Box target: None
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Input Image

Region Proposals

L\,

R-CNN: Test time

Run proposal method:

1. Run CNN on each proposal to get class
scores, transforms

2. Threshold class scores to get a set of
detections

2 Problems:
1. CNN often outputs overlapping boxes
2. How to set thresholds?
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DR |
Overlapping Boxes

Problem: Object detectors often output
many overlapping detections




DR
Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

L\,
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Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output m—— P (Prc1215)=0.7
many overlapping detections L

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

loU(" ,/7)=0.8
loU(" ,)=0.03
loU(. ,. ) =0.05

L\,
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Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

loU(M, )=0.85

L\,

/1



Overlapping Boxes: Non-Max Suppression (NMS

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7

3. If any boxes remain, GOTO 1
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Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output
many overlapping detections

Solution: Post-process raw detections
using Non-Max Suppression (NMS)

1. Select next highest-scoring box

2. Eliminate lower-scoring boxes with
loU> threshold (e.g. 0.7)

3. If any boxes remain, GOTO 1

Problem: NMS may eliminate “good”
boxes when objects are highly
overlapping... no good solution

L\ .

Crowd image is free for commercial use under the Pixabay license



https://pixabay.com/photos/audience-crowd-people-persons-828584/
https://pixabay.com/service/license/

DR

Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest
score)

All pretzel detections sorted by score

mm

All ground-truth pretzel boxes
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1.
2. For each category, compute Average Precision

Evaluating Object Detectors:
Mean Average Precision (mAP)

All pretzel detections sorted by score

Run object detector on all test images (with NMS)

(AP) = area under Precision vs Recall Curve Match: loU > 0.5

1. For each detection (highest score to lowest - -
SCore) All ground-truth pretzel boxes
1. If it matches some GT box with loU > 0.5,

mark it as positive and eliminate the GT
2. Otherwise mark it as negative

L\,

m

/76
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1. Run object detector on all test images (with NMS)

Evaluating Object Detectors:
Mean Average Precision (mAP)

2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

score)

1.

2.
3.

L\

If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
Otherwise mark it as negative

Plot a point on PR curve

All pretzel detections sorted by score

m

Match: loU > 0.5

All ground-truth pretzel boxes

Precision =1/1 =1.0
Recall = 1/3 =0.33

1.0 ®

Precision

Recall 1.0
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DR Evaluating Object Detectors:
Mean Average Precision (mAP)

All pretzel detections sorted by score

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

SCOre) All ground-truth pretzel boxes
1. If it matches some GT box with loU > 0.5,
: Ly O Precision =2/2 =1.0
mark it as positive and eliminate the GT e 0 &7

2. Otherwise mark it as negative 1 0 e o
3. Plot a point on PR curve

Precision

1.0

/8
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Evaluating Object Detectors:
Mean Average Precision (mAP)

All pretzel detections sorted by score

mm

No match > 0.5 loU with GT

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

SCOre) All ground-truth pretzel boxes
1. If it matches some GT box with loU > 0.5,
: Ly Jo. Precision = 2/3 = 0.67
mark it as positive and eliminate the GT e 0 67

2. Otherwise mark it as negative 1.0 ® o

3. Plot a point on PR curve .

Precision

1.0
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1. Run object detector on all test images (with NMS)

Evaluating Object Detectors:
Mean Average Precision (mAP)

2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

score)

1.

2.
3.

L\

If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
Otherwise mark it as negative

Plot a point on PR curve

All pretzel detections sorted by score

mm

No match > 0.5 loU with GT

All ground-truth pretzel boxes

Precision = 2/4 = 0.5
Recall = 2/3 = 0.67

1.0 O O
O
Precision O

1.0

Recall
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Evaluating Object Detectors:
Mean Average Precision (mAP)

All pretzel detections sorted by score

Match: > 0.5 loU

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest

SCOre) All ground-truth pretzel boxes
1. If it matches some GT box with loU > 0.5, -
mark it as positive and eliminate the GT precision = /5 =06
2. Otherwise mark it as negative 1 0 e o
3. Plot a point on PR curve
O
O
Precision »

1.0
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest
score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR curve
2. Average Precision (AP) = area under PR curve

L\,

All pretzel detections sorted by score

mm

All ground-truth pretzel boxes

1.0

Precision

Recall 1.0
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision
(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest
score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR curve
2. Average Precision (AP) = area under PR curve

How to get AP = 1.0: Hit all GT boxes with loU >
0.5, and have no “false positive” detections
ranked above any ‘“true positives”

L\,

All pretzel detections sorted by score

mm

All ground-truth pretzel boxes

1.0

Precision

Recall 1.0
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3.

Evaluating Object Detectors:
Mean Average Precision (mAP)

. Run object detector on all test images (with NMS)
. For each category, compute Average Precision

(AP) = area under Precision vs Recall Curve
1. For each detection (highest score to lowest
score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR curve
2. Average Precision (AP) = area under PR curve
Mean Average Precision (mAP) = average of AP
for each category

L\

Flipz AP = 0.60
Hershey’'s AP = 0.85
Reese’s AP = 0.81
MAP@0.5 = 0.75
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Next Time: Object Detectors and Segmentation
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