
DeepRob
Lecture 11
Deep Learning Software
University of Michigan and University of Minnesota

1Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 2—Updates
• Instructions available on the website

• Here: deeprob.org/projects/project2/

• Pushing Due Date

• Now: Saturday, February 11th 11:59 PM EST

2

http://deeprob.org/projects/project2/

Final Project Overview
• Research-oriented final project

• Instead of a final exam!

• Objectives
• Gain experience reading literature
• Reproduce published results
• Propose a new idea and test the results!

3

Final Project Overview
• Research-oriented final project

• Instead of a final exam!

• Objectives
• Gain experience reading literature
• Reproduce published results
• Propose a new idea and test the results!

3

Can be completed in teams of 1-3 people

Final Project Teams and Paper Assignment
• Sent via email last night

• If you didn’t receive an assignment, come see Anthony

• Paper reviews due one week before presentations

• Presentation slides due three days before lecture

• Instructions and templates: https://deeprob.org/projects/finalproject/

4

https://deeprob.org/projects/finalproject/

5

Recap: Training Neural Networks
1. One time setup:

• Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:
• Learning rate schedules; hyperparameter optimization

3. After training:
• Model ensembles, transfer learning

6

A zoo of frameworks!

Caffe

(UC Berkeley)

Torch

(NYU / Facebook)

Theano

(U Montreal)

PyTorch

(Facebook)

TensorFlow

(Google)

Caffe2

(Facebook)

Darknet

(Redmon)

CNTK

(Microsoft)

Chainer

JAX

(Google)PaddlePaddle

(Baidu)

MXNet

(Amazon)

Developed by U Washington, CMU,
MIT, Hong Kong U, etc. but main
framework of choice at AWS

7

A zoo of frameworks!

Caffe

(UC Berkeley)

Torch

(NYU / Facebook)

Theano

(U Montreal)

PyTorch

(Facebook)

TensorFlow

(Google)

Caffe2

(Facebook)

Darknet

(Redmon)

CNTK

(Microsoft)

Chainer

JAX

(Google)PaddlePaddle

(Baidu)

MXNet

(Amazon)

Developed by U Washington, CMU,
MIT, Hong Kong U, etc. but main
framework of choice at AWS

We’ll focus on these

Recall: Computational Graphs

8

x

W

* Hinge
loss +

R

L

s = Wx Li = ∑
j≠yi

max(0,sj − syi
+ 1)

R(W)

9

The motivation for deep learning frameworks

1. Allow rapid prototyping of new ideas

2. Automatically compute gradients for you

3. Run it all efficiently on GPU or TPU hardware

10

PyTorch

PyTorch: Versions

For this class we are using PyTorch version 1.13
(Released October 2022)

Be careful if you are looking at older PyTorch code—
the API changed a lot before 1.0

11

PyTorch: Version 2.0

Introduced to further optimize models (torch.compile)

Intended to be backwards compatible with 1.x
Expected stable release in March 2023

12

Video credit: PyTorch

https://pytorch.org/get-started/pytorch-2.0/

PyTorch: Version 2.0

Introduced to further optimize models (torch.compile)

Intended to be backwards compatible with 1.x
Expected stable release in March 2023

12

Video credit: PyTorch

https://pytorch.org/get-started/pytorch-2.0/

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of
 Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable
 weights

13

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of
 Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable
 weights

14

P0, P1, P2

P3
P4
Final}

PyTorch: Tensors

15

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Running example: Train a
two-layer ReLU network on
random data with L2 loss

12

Running example:
Train a two-layer ReLU network
on random data with L2 loss

PyTorch: Tensors

16

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Running example: Train a
two-layer ReLU network on
random data with L2 loss

12

Create random tensors
for data and weights

PyTorch: Tensors

17

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Running example: Train a
two-layer ReLU network on
random data with L2 loss

12

Forward pass: compute
predictions and loss

PyTorch: Tensors

18

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Running example: Train a
two-layer ReLU network on
random data with L2 loss

12

Backward pass: manually
compute gradients

PyTorch: Tensors

19

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Running example: Train a
two-layer ReLU network on
random data with L2 loss

12

Gradient descent
step on weights

PyTorch: Tensors

20

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Running example: Train a
two-layer ReLU network on
random data with L2 loss

12

To run on GPU, just
use a different device!

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

21

Creating Tensors with
requires_grad=True
enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch
to build a computational graph

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

22

We will not want gradients
(of loss) with respect to data

Do want gradients with
respect to weights

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

23

Compute gradients with
respect to all inputs that
have requires_grad=True!

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

Every operation on a tensor with
requires_grad=True will add to
the computational graph, and the
resulting tensors will also have
requires_grad=True

22

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

24

Every operation on a tensor with
requires_grad=True will add to the
computational graph, and the resulting
tensors will also have requires_grad=True

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

Every operation on a tensor with
requires_grad=True will add to
the computational graph, and the
resulting tensors will also have
requires_grad=True

23

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

25

Every operation on a tensor with
requires_grad=True will add to the
computational graph, and the resulting
tensors will also have requires_grad=True

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

w2

24

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

26

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

w2

25

y

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

27

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

pow

yw2

26

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

28

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss

27

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

29

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

30
Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Backprop to
all inputs that
require grad

28

Backprop to all inputs
that require grad

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

29

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

31

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

29

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

32

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Make gradient step on weights

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

29

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

33

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Set gradients to zero—forgetting this is
a common bug!

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

29

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

18

PyTorch: Autograd

34

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Tell PyTorch not to build a graph for
these operations

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations
using Python functions

33

PyTorch: New Functions

35

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

34

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations
using Python functions

33
36

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

34

PyTorch: New Functions

37

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

34

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Recall:

35

PyTorch: New Functions

38

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

34

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Recall:

35Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators
by subclassing Function, define
forward and backward

x Sigmoid

Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Now when our function runs,
it adds one node to the graph!

36

PyTorch: New Functions

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

In practice this is pretty rare – in most
cases Python functions are good enough

37 39

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

34

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Recall:

35

PyTorch: New Functions

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Higher-level wrapper for
working with neural nets

Use this! It will make your
life easier

38

40

PyTorch: nn

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Higher-level wrapper for
working with neural nets

Use this! It will make your
life easier

38

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Object-oriented API: Define
model object as sequence
of layers objects, each of
which holds weight tensors

39

41

PyTorch: nn

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Object-oriented API: Define
model object as sequence
of layers objects, each of
which holds weight tensors

39

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Forward pass: Feed data to
model and compute loss

40

42

PyTorch: nn

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Forward pass: Feed data to
model and compute loss

torch.nn.functional has useful
helpers like loss functions

41

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Forward pass: Feed data to
model and compute loss

40

43

PyTorch: nn

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Forward pass: Feed data to
model and compute loss

torch.nn.functional has useful
helpers like loss functions

41
Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Forward pass: Feed data to
model and compute loss

torch.nn.functional has useful
helpers like loss functions

41

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Backward pass: compute
gradient with respect to all
model weights (they have
requires_grad=True)

42

44

PyTorch: nn

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Backward pass: compute
gradient with respect to all
model weights (they have
requires_grad=True)

42

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Make gradient step on
each model parameter
(with gradients disabled)

43

45

PyTorch: nn

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Make gradient step on
each model parameter
(with gradients disabled)

43

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: optim

Use an optimizer for
different update rules

44

46

PyTorch: optim

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: optim

Use an optimizer for
different update rules

44

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: optim

After computing
gradients, use optimizer to
update and zero gradients

45

47

PyTorch: optim

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: optim

After computing
gradients, use optimizer to
update and zero gradients

45

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or
other modules

Very common to define your own
models or layers as custom Modules

46
48

PyTorch: nn
Defining Modules

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or
other modules

Very common to define your own
models or layers as custom Modules

46

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or
other modules

Very common to define your own
models or layers as custom Modules

46
49

PyTorch: nn
Defining Modules

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Define our whole model as
a single Module

47

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Initializer sets up two
children (Modules can
contain modules)

48

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or
other modules

Very common to define your own
models or layers as custom Modules

46
50

PyTorch: nn
Defining Modules

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Define forward pass using child
modules and tensor operations

No need to define backward -
autograd will handle it

49

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or
other modules

Very common to define your own
models or layers as custom Modules

46
51

PyTorch: nn
Defining Modules

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Very common to mix and match
custom Module subclasses and
Sequential containers

50
52

PyTorch: nn
Defining Modules

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Very common to mix and match
custom Module subclasses and
Sequential containers

50

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Define network component
as a Module subclass

x

Linear Linear

*

relu

51

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Very common to mix and match
custom Module subclasses and
Sequential containers

50
53

PyTorch: nn
Defining Modules

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules
Stack multiple instances of the
component in a sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very easy to quickly
build complex network
architectures!

52Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Very common to mix and match
custom Module subclasses and
Sequential containers

50
54

PyTorch: nn
Defining Modules

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: DataLoaders

A DataLoader wraps a
Dataset and provides
minibatching, shuffling,
multithreading, for you

When you need to load
custom data, just write your
own Dataset class

53
55

PyTorch: DataLoaders

56

PyTorch: DataLoaders

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: DataLoaders

Iterate over loader to
form minibatches

54

57

PyTorch: Pretrained Models

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision
https://github.com/pytorch/vision

56

Super easy to use pertained models with torch vision

https://pytorch.org/vision/stable/

https://pytorch.org/vision/stable/

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

57

58

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects

58

59

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

w2

Build graph data structure
AND perform computation

y

59

60

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure
AND perform computation

60

61

PyTorch: Dynamic Computation Graphs

62

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop,
throw away graph

61

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1 yw2

Perform backprop,
throw away graph

62

63

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

w2

Build graph data structure
AND perform computation

y

63

64

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure
AND perform computation

64

65

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop,
throw away graph

65

66

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use
regular Python control flow
during the forward pass!

66

67

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use
regular Python control flow
during the forward pass!

Initialize two different
weight matrices for
second layer

67

68

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use
regular Python control flow
during the forward pass!

Decide which one to use
at each layer based on
loss at previous iteration

(this model doesn’t
makes sense! Just a
simple dynamic example)

68

69

PyTorch: Dynamic Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

Alternative: Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph
describing our computation
(including finding paths for backprop)

Step 2: Reuse the same graph on
every iteration

69
70

Alternative: Static Computation Graphs

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Define model as a
Python function

70
71

Alternative: Static Graphs with JIT

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Just-In-Time compilation:
Introspect the source code
of the function, compile it
into a graph object.

Lots of magic here!

71
72

Alternative: Static Graphs with JIT

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT
x w1

mm

clamp

mm

y_pred

-

pow

yw2a

sum loss

w2b prev
loss

if < 5.0

Graph includes a conditional
node to handle both cases!

72
73

Alternative: Static Graphs with JIT

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Use our compiled graph
object at each forward pass

73
74

Alternative: Static Graphs with JIT

Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Even easier: add annotation
to function, Python function
compiled to a graph when it
is defined

Calling function uses graph

74
75

Alternative: Static Graphs with JIT

Justin Johnson February 16, 2022Lecture 12 -

Static vs Dynamic Graphs: Optimization

With static graphs,
framework can
optimize the graph
for you before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with
fused operations

Conv+ReLU
Conv+ReLU

75
76

Static vs Dynamic Graphs: Optimization

Justin Johnson February 16, 2022Lecture 12 -

Static vs Dynamic Graphs: Serialization

Once graph is built, can
serialize it and run it
without the code that
built the graph!

e.g. train model in
Python, deploy in C++

Graph building and execution are
intertwined, so always need to
keep code around

Static Dynamic

76

77

Static vs Dynamic Graphs: Optimization

Justin Johnson February 16, 2022Lecture 12 -

Static vs Dynamic Graphs: Debugging

Lots of indirection
between the code you
write and the code that
runs – can be hard to
debug, benchmark, etc

The code you write is the code
that runs! Easy to reason about,
debug, profile, etc

Static Dynamic

77

78

Static vs Dynamic Graphs: Optimization

79

Dynamic Graph Applications

[2] Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee. “Particle Filter Recurrent Neural Networks” AAAI, 2020.
[1] Rico Jonschkowski, Divyam Rastogi, Oliver Brock. “Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors” RSS, 2018

[2] Ma et al., AAAI 2020

Differentiable Particle Filters:
End-to-End Learning with Algorithmic Priors

Rico Jonschkowski, Divyam Rastogi, and Oliver Brock
Robotics and Biology Laboratory, Technische Universität Berlin, Germany

Abstract—We present differentiable particle filters (DPFs):

a differentiable implementation of the particle filter algorithm

with learnable motion and measurement models. Since DPFs are

end-to-end differentiable, we can efficiently train their models

by optimizing end-to-end state estimation performance, rather

than proxy objectives such as model accuracy. DPFs encode the

structure of recursive state estimation with prediction and mea-

surement update that operate on a probability distribution over

states. This structure represents an algorithmic prior that im-

proves learning performance in state estimation problems while

enabling explainability of the learned model. Our experiments on

simulated and real data show substantial benefits from end-to-

end learning with algorithmic priors, e.g. reducing error rates by

⇠80%. Our experiments also show that, unlike long short-term

memory networks, DPFs learn localization in a policy-agnostic

way and thus greatly improve generalization. Source code is avail-

able at https://github.com/tu-rbo/differentiable-particle-filters.

I. INTRODUCTION

End-to-end learning tunes all parts of a learnable system for
end-to-end performance—which is what we ultimately care
about—instead of optimizing each part individually. End-to-
end learning excels when the right objectives for individual
parts are not known; it therefore has significant potential in
the context of complex robotic systems.

Compared to learning each part of a system individually,
end-to-end learning puts fewer constraints on the individual
parts, which can improve performance but can also lead to
overfitting. We must therefore balance end-to-end learning
with regularization by incorporating appropriate priors. Pri-
ors can be encoded in the form of differentiable network
architectures. By defining the network architecture and its
learnable parameters, we restrict the hypothesis space and thus
regularize learning. At the same time, the differentiability of
the network allows all of its parts to adapt to each other and
to optimize their parameters for end-to-end performance.

This approach has been very successful in computer vision.
Highly engineered vision pipelines are outperformed by con-
volutional networks trained end-to-end [8]. But it only works
because convolutional networks [15] encode priors in the
network architecture that are suitable for computer vision—a
hierarchy of local filters shared across the image. Problems in
robotics possess additional structure, for example in physical
interactions with the environment. Only by exploiting all
available structure will we be able to realize the full potential
of end-to-end learning in robotics.

But how can we find more architectures like the con-

volutional network for robotics? Roboticists have captured
problem structure in the form of algorithms, often combined

Prediction

Measurement
update

Observation

Action

Belief over states

Measurement
model

Motion
model

Error

Gradient

Fig. 1: Differentiable particle filters. Models can be learned
end-to-end by backpropagation through the algorithm.

with models of the specific task. By making these algorithms
differentiable and their models learnable, we can turn robotic
algorithms into network architectures. This approach enables
end-to-end learning while also encoding prior knowledge from
algorithms, which we call algorithmic priors.

Here, we apply end-to-end learning with algorithmic priors

to state estimation in robotics. In this problem, a robot needs
to infer the latent state from its observations and actions. Since
a single observation can be insufficient to estimate the state,
the robot needs to integrate uncertain information over time.

Given the standard assumptions for this problem, Bayes

filters provide the provably optimal algorithmic structure for
solving it [21], recursively updating a probability distribution
over states with prediction and measurement update using task-
specific motion and measurement models. The differentiable

particle filter (DPF) is an end-to-end differentiable imple-
mentation of the particle filter—a Bayes filter that represents
probability distributions with samples—with learnable motion
and measurement models (see Fig. 1).

Since DPFs are differentiable, we can learn their models
end-to-end to optimize state estimation performance. Our
experiments show that end-to-end learning improves perfor-
mance compared to using models optimized for accuracy.
Interestingly, end-to-end learning in DPFs re-discovers what
roboticists found out via trial and error: that overestimating
uncertainty is beneficial for filtering performance [21, p. 118].

Since DPFs use the Bayes filter algorithm as a prior,
they have a number of advantages. First, even with end-to-

ar
X

iv
:1

80
5.

11
12

2v
2

 [c
s.L

G
]

30
 M

ay
 2

01
8

[1] Ma et al., RSS 2018

Justin Johnson February 16, 2022Lecture 12 -

Dynamic Graph Applications

Model structure
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

81

Justin Johnson February 16, 2022Lecture 12 -

Dynamic Graph Applications

Model structure
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

81 80

Dynamic Graph Applications

[1] Karkus et al., RSS 2019

[1] Peter Karkus, Xiao Ma, David Hsu, Leslie Pack Kaelbling, Wee Sun Lee, Tomas Lozano-Perez.
“Differentiable Algorithm Networks for Composable Robot Learning” RSS, 2019

Justin Johnson February 16, 2022Lecture 12 -

Dynamic Graph Applications

Model structure
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

81 81

Dynamic Graph Applications

Final Project!

82

TensorFlow

83

TensorFlow: Versions

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow Versions

TensorFlow 1.0
- Final release: 1.15.3
- Default: static graphs
- Optional: dynamic graphs

(eager mode)

TensorFlow 2.0
- Current release: 2.8.0

- Released 2/2/2022
- Default: dynamic graphs
- Optional: static graphs

83

84

TensorFlow 1.0: Static Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 1.0:
Static Graphs

(Assume imports at the
top of each snippet)

84Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 1.0:
Static Graphs

(Assume imports at the
top of each snippet)

84

85

TensorFlow 1.0: Static Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 1.0:
Static Graphs

(Assume imports at the
top of each snippet)

84Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 1.0:
Static Graphs

First define computational
graph

Then run the graph many
times

85

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 1.0:
Static Graphs

First define computational
graph

Then run the graph many
times

85

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Create TensorFlow
Tensors for data and
weights

Weights need to be
wrapped in tf.Variable
so we can mutate them

86Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Create TensorFlow
Tensors for data and
weights

Weights need to be
wrapped in tf.Variable
so we can mutate them

86 86

TensorFlow 2.0: Dynamic Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Scope forward pass
under a GradientTape to
tell TensorFlow to start
building a graph

87 87

TensorFlow 2.0: Dynamic Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Scope forward pass
under a GradientTape to
tell TensorFlow to start
building a graph

87

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Scope forward pass
under a GradientTape to
tell TensorFlow to start
building a graph

87 88

TensorFlow 2.0: Dynamic Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Scope forward pass
under a GradientTape to
tell TensorFlow to start
building a graph

87

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Scope forward pass
under a GradientTape to
tell TensorFlow to start
building a graph

88

In PyTorch, all ops build graph by default; opt out via torch.no_grad
In Tensorflow, ops do not build graph by default; opt in via GradientTape

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Ask the tape to
compute gradients

89 89

TensorFlow 2.0: Dynamic Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Ask the tape to
compute gradients

89

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Gradient descent
step, update weights

90 90

TensorFlow 2.0: Dynamic Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Dynamic Graphs

Gradient descent
step, update weights

90

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Static Graphs

Define a function that
implements forward,
backward, and update

Annotating with
tf.function will compile
the function into a graph!
(similar to torch.jit.script)

91
91

TensorFlow 2.0: Static Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Static Graphs

Define a function that
implements forward,
backward, and update

Annotating with
tf.function will compile
the function into a graph!
(similar to torch.jit.script)

91

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Static Graphs

Define a function that
implements forward,
backward, and update

Annotating with
tf.function will compile
the function into a graph!
(similar to torch.jit.script)

(note TF graph can
include gradient
computation and update,
unlike PyTorch)

92
92

TensorFlow 2.0: Static Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Static Graphs

Define a function that
implements forward,
backward, and update

Annotating with
tf.function will compile
the function into a graph!
(similar to torch.jit.script)

91Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Static Graphs

Define a function that
implements forward,
backward, and update

Annotating with
tf.function will compile
the function into a graph!
(similar to torch.jit.script)

(note TF graph can
include gradient
computation and update,
unlike PyTorch)

92

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Static Graphs

Call the compiled step
function in the training
loop

93
93

TensorFlow 2.0: Static Graphs

Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0:
Static Graphs

Call the compiled step
function in the training
loop

93

94

Keras: High-level API

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

94

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Object-oriented API:
build the model as a
stack of layers

95
95

Keras: High-level API

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Object-oriented API:
build the model as a
stack of layers

95

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Keras gives you
common loss
functions and
optimization
algorithms

96
96

Keras: High-level API

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Keras gives you
common loss
functions and
optimization
algorithms

96

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Forward pass:
Compute loss,
build graph

Backward pass:
compute gradients

97
97

Keras: High-level API

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Forward pass:
Compute loss,
build graph

Backward pass:
compute gradients

97

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Optimizer object
updates parameters

98
98

Keras: High-level API

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Optimizer object
updates parameters

98

99

Keras: High-level API

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Define a function
that returns the loss

99

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Define a function
that returns the loss

99

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Optimizer computes
gradients and
updates parameters

100

Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Optimizer computes
gradients and
updates parameters

100
100

Keras: High-level API

101

TensorBoard

Justin Johnson February 16, 2022Lecture 12 -

TensorBoard

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

101

Justin Johnson February 16, 2022Lecture 12 -

TensorBoard

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

101

Justin Johnson February 16, 2022Lecture 12 -

TensorBoard

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

101

102

TensorBoard

Justin Johnson February 16, 2022Lecture 12 -

TensorBoard

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

101

Justin Johnson February 16, 2022Lecture 12 -

TensorBoard

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

101

Also works with PyTorch!

https://pytorch.org/docs/stable/tensorboard.html

103

PyTorch vs TensorFlow

Justin Johnson February 16, 2022Lecture 12 -

PyTorch vs TensorFlow

PyTorch
- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Hard / inefficient to use on TPUs
- Not easy to deploy on mobile

TensorFlow 1.0
- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0
- Dynamic by default
- Standardized on Keras API
- API still confusing

103

104

Summary: Deep Learning Software

Justin Johnson February 16, 2022Lecture 12 -

Summary: Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow

104

105

Next Time: Object Detectors

DeepRob
Lecture 11
Deep Learning Software
University of Michigan and University of Minnesota

106Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

