
Lecture 9
Training Neural Networks I
University of Michigan and University of Minnesota

DeepRob

1Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 2—Updates
• Instructions available on the website
• Here: deeprob.org/projects/project2/

• Starter code sent via email

• Implement two-layer neural network and generalize to FCN

• Autograder will be available in next day or so
• Due Thursday, February 9th 11:59 PM EST

2

http://deeprob.org/projects/project2/

Final Project Paper Selection Survey
• Published on gradescope
• To gauge your areas of interest
• Used for forming teams

• Due Friday, February 3rd 11:59 PM EST

3

https://www.gradescope.com/courses/480760

Recap: CNN Architectures for ImageNet Classification

4
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

Residual Networks

5He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 79

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers.
What happens as we go deeper?

Deeper model does worse than
shallow model!

Initial guess: Deep model is
overfitting since it is much
bigger than the other model

Iterations

56-layer

20-layer

Test error

Deeper model does worse than shallow model!

Initial guess: Deep model is overfitting since
it is much bigger than the other model

Residual Networks

6He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers.

What happens as we go deeper?

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 79

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers.
What happens as we go deeper?

Deeper model does worse than
shallow model!

Initial guess: Deep model is
overfitting since it is much
bigger than the other model

Iterations

56-layer

20-layer

Test error

In fact the deep model seems to be underfitting since it also performs
worse than the shallow model on the training set! It is actually underfitting

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 80

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers.
What happens as we go deeper?

Training error

Iterations

56-layer

20-layer

Iterations

56-layer

20-layer

Test error

In fact the deep model seems to be underfitting since it also performs worse
than the shallow model on the training set! It is actually underfitting

Residual Networks

7He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

A deeper model can emulate a shallower model: copy layers from shallower model, set
extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in
particular don’t learn identity functions to emulate shallow models

Residual Networks

8He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

A deeper model can emulate a shallower model: copy layers from shallower model, set
extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in
particular don’t learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Networks

9He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Solution: Change the network so learning identity functions with extra layers is easy!

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 83

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

conv

conv

relu

“Plain” block
X

H(x)

relu

Residual Block

conv

conv

Additive
“shortcut”

F(x) + x

F(x)

relu

X

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Networks

10He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Solution: Change the network so learning identity functions with extra layers is easy!

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 83

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

conv

conv

relu

“Plain” block
X

H(x)

relu

Residual Block

conv

conv

Additive
“shortcut”

F(x) + x

F(x)

relu

X

Solution: Change the network so learning identity functions with extra layers is easy!

If you set these to
0, the whole block
will compute the
identity function!

11He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

A residual network is a stack of many
residual blocks

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 85

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

A residual network is a stack of
many residual blocks

Regular design, like VGG: each
residual block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

Residual Networks

Regular design, like VGG: each residual
block has two 3x3 conv

Network is divided into stages: the first
block of each stage halves the resolution
(with stride-2 conv) and doubles the
number of channels

12He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Uses the same aggressive stem as GoogleNet to downsample
the input 4x before applying residual blocks:

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 85

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

A residual network is a stack of
many residual blocks

Regular design, like VGG: each
residual block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

Residual Networks

Input size Layer Output size
Layer C H/W Filters Kernel Stride Pad C H/W Memory (KB) Params

(k)
Flop (M)

Conv

Poo

3 224 64 7 2 3 64 112 3136 9 118
Max-pool
 64 112 3 2 1 64 56 784 0 2

13He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Like GoogLeNet, no big fully-connected-layers: Instead use
global average pooling and a single linear layer at the end

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 85

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

A residual network is a stack of
many residual blocks

Regular design, like VGG: each
residual block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

Residual Networks

14
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18: 
Stem: 1 conv layer 
Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 85

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

A residual network is a stack of
many residual blocks

Regular design, like VGG: each
residual block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

Residual Networks

15
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18: 
Stem: 1 conv layer 
Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 85

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

A residual network is a stack of
many residual blocks

Regular design, like VGG: each
residual block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

Residual Networks
ResNet-34: 
Stem: 1 conv layer 
Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6

VGG-16:
ImageNet top-5 error: 9.62

GFLOP: 13.6

Residual Networks: Basic Block

16Justin Johnson February 2, 2022

Residual Networks: Basic Block

Lecture 8 - 91

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:
18HWC2

17Justin Johnson February 2, 2022

Residual Networks: Basic Block

Lecture 8 - 91

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:
18HWC2

Justin Johnson February 2, 2022

Residual Networks: Bottleneck Block

Lecture 8 - 93

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)
FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:
18HWC2 “Bottleneck”

Residual block

Residual Networks: Bottleneck Block

18Justin Johnson February 2, 2022

Residual Networks: Basic Block

Lecture 8 - 91

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:
18HWC2

Justin Johnson February 2, 2022

Residual Networks: Bottleneck Block

Lecture 8 - 93

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)
FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:
18HWC2 “Bottleneck”

Residual block

FLOPs: 4HWC2

FLOPs: 9HWC2

Total FLOPs:
17HWC2

FLOPs: 4HWC2

More layers, less computational cost!

Residual Networks: Bottleneck Block

19Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 85

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

A residual network is a stack of
many residual blocks

Regular design, like VGG: each
residual block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

Residual Networks

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Error rates are 224x224 single-crop testing, reported by torchvision

Stage 1 Stage 2 Stage 3 Stage 4
Block
type

Stem
layers

Block
s Layers Block

s
Layer

s
Block

s
Layer

s
Block

s
Layer

s
FC

Layers GFLOP Image
Net

top-5 ResNet-18
Poo

Basic 1 2 4 2 4 2 4 2 4 1 1.8 10.92
ResNet-34 Basic 1 3 6 4 8 6 12 3 6 1 3.6 8.58

ResNet-50 Bottle 1 3 9 4 12 6 18 3 9 1 3.8 7.13

ResNet-101 Bottle 1 3 9 4 12 23 69 3 9 1 7.6 6.44

ResNet-152 Bottle 1 3 9 8 24 36 108 3 9 1 11.3 5.94

Deeper ResNet-101 and ResNet-152 models are more accurate,
but also more computationally heavy

20

Residual Networks

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 98

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

- Able to train very deep networks
- Deeper networks do better than

shallow networks (as expected)
- Swept 1st place in all ILSVRC and

COCO 2015 competitions
- Still widely used today!

• Able to train very deep networks

• Deeper networks do better than
shallow networks (as expected)

• Swept 1st place in all ILSVRC and
COCO 2015 competitions

• Still widely used today

Comparing Complexity

21

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017
Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

22

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Inception-v4: ResNet + Inception!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

23

VGG:
Highest memory,
most operations

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

24

GoogLeNet:
Very efficient!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

25

AlexNet: Low
compute, lots of

parameters

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

26

ResNet: Simple design,
moderate efficiency, high

accuracy

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

27
Justin Johnson February 6, 2022

Last Time: CNN Architectures

Lecture 10 - 4

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

VGGAlexNet GoogLeNet
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

ResNet

Recap

28

Overview
1. One time setup:

• Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:
• Learning rate schedules; large-batch training;

hyperparameter optimization
3. After training:

• Model ensembles, transfer learning

Today

Next time

29

Activation Functions

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 8

30

Activation Functions

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

tanh
tanh(x)

ReLU
max(0,x)

Leaky ReLU
max(0.1x, x)

ELU

{x x ≥ 0
α(expx − 1) x < 0

GELU
≈ xα(1.702x)

31

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

tanh
tanh(x)

ReLU
max(0,x)

Leaky ReLU
max(0.1x, x)

ELU

{x x ≥ 0
α(expx − 1) x < 0

GELU
≈ xα(1.702x)

32

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

33

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

34

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions: Sigmoid

Lecture 10 - 12

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

- What happens when x = -10?

- What happens when x = 0?

- What happens when x = 10?

35

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

36

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

37

Activation Functions: Sigmoid

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j) + b(ℓ)
i

 is the th element of the hidden layer at layer
(before activation)

 are the weights and bias of layer

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

Consider what happens when
nonlinearity is always positive

38

Activation Functions: Sigmoid

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j) + b(ℓ)
i

 is the th element of the hidden layer at layer
(before activation)

 are the weights and bias of layer

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

Local

gradient

Upstream
gradient

Consider what happens when
nonlinearity is always positive

∂L
∂w(ℓ)

i,j
=

∂h(ℓ)
i

∂w(ℓ)
i,j

⋅
∂L

∂h(ℓ)
i

39

Activation Functions: Sigmoid

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j) + b(ℓ)
i

Consider what happens when
nonlinearity is always positive

 is the th element of the hidden layer at layer
(before activation)

 are the weights and bias of layer

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

Gradients on all have the same sign as upstream

gradient

w(ℓ)
i,j

∂L/∂h(ℓ)
i

Local

gradient

Upstream
gradient

∂L
∂w(ℓ)

i,j
=

∂h(ℓ)
i

∂w(ℓ)
i,j

⋅
∂L

∂h(ℓ)
i

= σ(h(ℓ−1)
j) ⋅

∂L
∂h(ℓ)

i

40

Activation Functions: Sigmoid

Justin Johnson February 6, 2022Lecture 10 - 18

What can we say about the gradients on) ℓ ?
Gradients on all !!,#(%&&) have the same
sign as upstream gradient "#/"ℎ!(ℓ)

ℎ!
(ℓ) =#

%
$!,%
(ℓ)% ℎ%

(ℓ'() + '! ℓ

ℎ!
(ℓ) is the "th element of the hidden layer at

layer ℓ (before activation)
$ ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when
nonlinearity is always positive

hypothetical
optimal w
vector

allowed
gradient
update
directions

allowed
gradient
update
directions

Gradients on rows of w can
only point in some directions;
needs to “zigzag” to move in
other directions

Gradients on rows of can only point
in some directions; needs to “zigzag”
to move in other directions

w

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j) + b(ℓ)
i

Consider what happens when
nonlinearity is always positive

Gradients on all have the same sign as upstream

gradient

w(ℓ)
i,j

∂L/∂h(ℓ)
i

 is the th element of the hidden layer at layer
(before activation)

 are the weights and bias of layer

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

41

Activation Functions: Sigmoid
Consider what happens when nonlinearity is
always positive

Gradients on all have the same sign as upstream

gradient

w(ℓ)
i,j

∂L/∂h(ℓ)
i

Justin Johnson February 6, 2022Lecture 10 - 18

What can we say about the gradients on) ℓ ?
Gradients on all !!,#(%&&) have the same
sign as upstream gradient "#/"ℎ!(ℓ)

ℎ!
(ℓ) =#

%
$!,%
(ℓ)% ℎ%

(ℓ'() + '! ℓ

ℎ!
(ℓ) is the "th element of the hidden layer at

layer ℓ (before activation)
$ ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when
nonlinearity is always positive

hypothetical
optimal w
vector

allowed
gradient
update
directions

allowed
gradient
update
directions

Gradients on rows of w can
only point in some directions;
needs to “zigzag” to move in
other directions

Not that bad in practice:

- Only true for a single example, mini

batches help

- BatchNorm can also avoid this

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j) + b(ℓ)
i

 is the th element of the hidden layer at layer
(before activation)

 are the weights and bias of layer

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

42

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

43

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

44

Activation Functions: Sigmoid

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

Worst problem in practice

45

Activation Functions: tanh

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

tanh(x)

- Squashes numbers to range [-1, 1]

- Zero centered (nice)

- Still kills gradients when saturated :(

46

Activation Functions: ReLU

ReLU
(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid

and tanh in practice (e.g. 6x)

Justin Johnson February 6, 2022

Activation Functions: ReLU

Lecture 10 - 24

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

f(x) = max(0,x)

47

Activation Functions: ReLU

ReLU
(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid

and tanh in practice (e.g. 6x)

Justin Johnson February 6, 2022

Activation Functions: ReLU

Lecture 10 - 24

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

f(x) = max(0,x)

- Not zero-centered output

- An annoyance:

Hint: what is the gradient when x<0?

48

Activation Functions: ReLU

Justin Johnson February 6, 2022

Activation Functions: ReLU

Lecture 10 - 27

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

- What happens when x = -10?

- What happens when x = 0?

- What happens when x = 10?

49

Data cloud
Active ReLU

Dead ReLU will never
activate

=> never update

50

Data cloud
Active ReLU

Dead ReLU will never
activate

=> never update

=> Sometimes initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

51

Activation Functions: Leaky ReLU

Leaky ReLU

 is a hyperparameter, often
f(x) = max(αx, x)
α α = 0.1

Justin Johnson February 6, 2022

Activation Functions: Leaky ReLU

Lecture 10 - 30

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Leaky ReLU
/ " = max 3", "
3 is a hyperparameter,
often 3 = 0.1

- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid

and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic
Models”, ICML 2013

52

Activation Functions: Leaky ReLU

Leaky ReLU

 is a hyperparameter, often
f(x) = max(αx, x)
α α = 0.1

Justin Johnson February 6, 2022

Activation Functions: Leaky ReLU

Lecture 10 - 30

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Leaky ReLU
/ " = max 3", "
3 is a hyperparameter,
often 3 = 0.1

- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid

and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic
Models”, ICML 2013

Parametric ReLU (PReLU)

 is learned via backprop
f(x) = max(αx, x)
α

He et al, “Delving Deep into Rectifiers: Surpassing Human- Level
Performance on ImageNet Classification”, ICCV 2015  

53

Activation Functions: Exponential Linear Unit (ELU)

- All benefits of ReLU

- Closer to zero means outputs

- Negative saturation regime compared

with Leaky ReLU adds some
robustness to noise

Justin Johnson February 6, 2022

Activation Functions: Exponential Linear Unit (ELU)

Lecture 10 - 32

(Default alpha=1)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime

compared with Leaky ReLU
adds some robustness to noise

- Computation requires exp()/ " = 5 " 6/ " > 0
3 8) − 1 6/ " ≤ 0f(x) = {x if x > 0
α(ex − 1) if x ≤ 0
(Default)
α = 1

54

Activation Functions: Exponential Linear Unit (ELU)

- All benefits of ReLU

- Closer to zero means outputs

- Negative saturation regime compared

with Leaky ReLU adds some
robustness to noise

Justin Johnson February 6, 2022

Activation Functions: Exponential Linear Unit (ELU)

Lecture 10 - 32

(Default alpha=1)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime

compared with Leaky ReLU
adds some robustness to noise

- Computation requires exp()/ " = 5 " 6/ " > 0
3 8) − 1 6/ " ≤ 0f(x) = {x if x > 0
α(ex − 1) if x ≤ 0
(Default)
α = 1

- Computation requires exp()

55

Activation Functions: Scale Exponential Linear Unit
(SELU)

- Scaled version of ELU that works
better for deep networks “Self-
Normalizing” property; can train deep
SELU networks without BatchNorm

selu(x) = {λx if x > 0
λα(ex − 1) if x ≤ 0

α = 1.6732632423543772848170429916717
λ = 1.0507009873554804934193349852946

Justin Johnson February 6, 2022

Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 33

& = 1.6732632423543772848170429916717
3 = 1.0507009873554804934193349852946

- Scaled version of ELU that
works better for deep networks

- “Self-Normalizing” property;
can train deep SELU networks
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

;8<= " = 5 >" 6/ " > 0
>3 8) − 1 6/ " ≤ 0

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

56

Activation Functions: Scale Exponential Linear Unit
(SELU)

- Scaled version of ELU that works
better for deep networks “Self-
Normalizing” property; can train deep
SELU networks without BatchNorm

selu(x) = {λx if x > 0
λα(ex − 1) if x ≤ 0

α = 1.6732632423543772848170429916717
λ = 1.0507009873554804934193349852946

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

Justin Johnson February 6, 2022

Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 34

- Scaled version of ELU that
works better for deep networks

- “Self-Normalizing” property;
can train deep SELU networks
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

Derivation takes
91 pages of math
in appendix…

& = 1.6732632423543772848170429916717
3 = 1.0507009873554804934193349852946 - Derivation takes 91 pages of math in

appendix…

57

Activation Functions: Gaussian Error Linear Unit (GELU)

- Idea: Multiply input by 0 or 1 at
random; large values more likely to be
multiplied by 1, small values more
likely to be multiplied by 0 (data-
dependent dropout)

- Take expectation over randomness

- Very common in Transformers (BERT,

GPT, ViT)

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

Justin Johnson February 6, 2022

Activation Functions: Gaussian Error Linear Unit (GELU)

Lecture 10 - 35

'~) 0, 1
,-./ 0 = 02 ' ≤ 0 = 0

2 1 + erf 0/√2
≈ 0< 1.7020 Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

- Idea: Multiply input by 0 or 1
at random; large values more
likely to be multiplied by 1,
small values more likely to be
multiplied by 0
(data-dependent dropout)

- Take expectation over
randomness

- Very common in Transformers
(BERT, GPT, ViT)

X ∼ N(0,1)

gelu(x) = xP(X ≤ x) =
x
2

(1 + erf(x/ 2))

≈ xσ(1.702x)

58

Accuracy on CIFAR10

Ramachandran et al, “Searching for activation functions”, ICLR Workshop 2018

Justin Johnson February 6, 2022Lecture 10 - 36

93.8

95.3

94.8

94.2

95.6

94.7

94.1

95.1

94.594.6
94.9

94.7

94.1 94.1
94.4

93
93.2

93.9
94.3

95.5

94.894.7

95.5

94.8

90

91

92

93

94

95

96

ResNet Wide ResNet DenseNet

Accuracy on CIFAR10
ReLU Leaky ReLU Parametric ReLU Softplus ELU SELU GELU Swish

Ramachandran et al, “Searching for
activation functions”, ICLR Workshop 2018

- Don’t think too hard. Just use ReLU

- Try out Leaky ReLU / ELU / SELU / GELU if you
need to squeeze that last 0.1%

- Don’t use sigmoid or tanh

59

Activation Functions: Summary

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Liu et al, “A ConvNet for the 2020s”, arXiv 2022  

Some (very) recent architectures use GeLU instead of ReLU,
but the gains are minimal

60

Data preprocessing

61

Data preprocessing

Justin Johnson February 6, 2022

Data Preprocessing

Lecture 10 - 39

(Assume X [NxD] is data matrix,
each example in a row)

(Assume X[NxD] is data matrix, each example in a row)

62

Data preprocessing

(Data has diagonal
covariance matrix)

Justin Johnson February 6, 2022

Data Preprocessing

Lecture 10 - 42

In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is
the identity matrix)
(Covariance matrix
is the identity matrix)

In practice, you may also see PCA and Whitening of the data

63

Data preprocessing
Before normalization: Classification
loss very sensitive to changes in
weight matrix; hard to optimize

Justin Johnson February 6, 2022

Data Preprocessing

Lecture 10 - 43

Before normalization: classification
loss very sensitive to changes in
weight matrix; hard to optimize

After normalization: less sensitive to
small changes in weights; easier to
optimize

After normalization: less sensitive to
small changes in weights; easier to
optimize

64

Data preprocessing for Images
e.g. consider CIFAR-10 example with [32, 32, 3] images

- Subtract the mean image (e.g. AlexNet)

(mean image = [32, 32, 3] array)

- Subtract per-channel mean (e.g. VGGNet)

(mean along each channel = 3 numbers)

- Subtract per-channel mean and Divide by per-
channel std (e.g. ResNet)

(mean along each channel = 3 numbers) Not common to do

PCA or whitening

65

Weight initialization

66

Weight initialization

Input layer
Hidden layer

Output layer

Q: What happens if we
initialize all W=0, b=0?

A: All outputs are 0, all
gradients are the same!

No “symmetry breaking”

67

Weight initialization
Next idea: small random numbers (Gaussian with zero
mean, std=0.01)

Justin Johnson February 6, 2022

Weight Initialization

Lecture 10 - 48

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

68

Weight initialization
Next idea: small random numbers (Gaussian with zero
mean, std=0.01)

Justin Johnson February 6, 2022

Weight Initialization

Lecture 10 - 48

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

Works ~okay for small networks, but
problems with deeper networks.

69

Weight initialization: Activation statistics

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer
net with hidden size 4096

70

Weight initialization: Activation statistics

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero for
deeper network layers

Q: What do the gradients
 look like?dL/dW

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 51

Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero for
deeper network layers

Q: What do the gradients
dL/dW look like?

71

Weight initialization: Activation statistics

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero for
deeper network layers

Q: What do the gradients
 look like?dL/dW

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 51

Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero for
deeper network layers

Q: What do the gradients
dL/dW look like?

A: All zero, no learning :(

72

Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look
like?

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 54

Increase std of initial weights
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look
like?

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 53

Increase std of initial weights
from 0.01 to 0.05

73

Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look
like?
A: Local gradients all zero, no
learning :(

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 54

Increase std of initial weights
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look
like?

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 53

Increase std of initial weights
from 0.01 to 0.05

74

Weight initialization: Xavier Initialization
“Just right”: Activations are
nicely scaled for all layers!

Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

75

Weight initialization: Xavier Initialization
“Just right”: Activations are
nicely scaled for all layers!

Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 57

“Just right”: Activations are
nicely scaled for all layers!

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

76

Weight initialization: Xavier Initialization
“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
kernel_size2 x input_channels

Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 57

“Just right”: Activations are
nicely scaled for all layers!

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

77

Weight initialization: Xavier Initialization
“Xavier” initialization:
std = 1/ DinDerivation: Variance of output = Variance of input

y = Wx yi =
Din

∑
j=1

xjwj

 [Assume are iid]Var(yi) = Din × Var(xi, wi) x, w
 [Assume are independent]= Din × (𝔼[x2

i]𝔼[w2
i] − 𝔼[xi]2𝔼[wi]2) x, w

 [Assume are zero-mean]= Din × Var(xi) × Var(wi) x, w

If then Var(wi) = 1/Din Var(yi) = Var(xi)

78

Weight initialization: What about ReLU?
Xavier assumes zero centered
activation function

Justin Johnson February 6, 2022

Weight Initialization: What about ReLU?

Lecture 10 - 65

Xavier assumes zero centered
activation function

Activations collapse to zero
again, no learning =(

Change from tanh to ReLU

79

Weight initialization: What about ReLU?
Xavier assumes zero centered
activation function

Activations collapse to zero
again, no learning :(

Justin Johnson February 6, 2022

Weight Initialization: What about ReLU?

Lecture 10 - 65

Xavier assumes zero centered
activation function

Activations collapse to zero
again, no learning =(

Change from tanh to ReLU

Justin Johnson February 6, 2022

Weight Initialization: What about ReLU?

Lecture 10 - 65

Xavier assumes zero centered
activation function

Activations collapse to zero
again, no learning =(

Change from tanh to ReLU

Justin Johnson February 6, 2022

Weight Initialization: Kaiming / MSRA Initialization

Lecture 10 - 66

”Just right” – activations nicely
scaled for all layers

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

80

Weight initialization: Kaiming / MSRA initialization
“Just right” - activations nicely
scaled for all layers

Justin Johnson February 6, 2022

Weight Initialization: Kaiming / MSRA Initialization

Lecture 10 - 66

”Just right” – activations nicely
scaled for all layers

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

81

Weight initialization: Residual Networks

If we initialize with MSRA: then

But then
variance grows with each block!

Var(F(x)) = Var(x)

Var(F(x) + x) > Var(x)

Justin Johnson February 6, 2022

Weight Initialization: Residual Networks

Lecture 10 - 67

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA:
then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x)
variance grows with each block!

Solution: Initialize first conv with
MSRA, initialize second conv to
zero. Then Var(x + F(x)) = Var(x)

F(x) + x

F(x)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

82

Weight initialization: Residual Networks

If we initialize with MSRA: then

But then
variance grows with each block!

Var(F(x)) = Var(x)

Var(F(x) + x) > Var(x)

Justin Johnson February 6, 2022

Weight Initialization: Residual Networks

Lecture 10 - 67

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA:
then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x)
variance grows with each block!

Solution: Initialize first conv with
MSRA, initialize second conv to
zero. Then Var(x + F(x)) = Var(x)

F(x) + x

F(x)

Solution: Initialize first conv with MSRA,
initialize second conv to zero. Then
Var(F(x) + x) = Var(x)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

83

Proper initialization is an active area of research

• Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

• Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

• Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

• All you need is a good init, Mishkin and Matas, 2015

• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

84

Now your model is training … but it overfits!

Justin Johnson February 6, 2022

Now your model is training … but it overfits!

Lecture 10 - 70

RegularizationRegularization

85

Regularization: Add term to the loss

L =
1
N

N

∑
i=1

∑
j≠yi

max(0, f(xi; W)j − f(xi; W)yi
+ 1) + λR(W)

In common use:
L2 regularization (Weight decay)R(W) = ∑

k
∑

l

W2
k,l

L1 regularization R(W) = ∑
k

∑
l

|Wk,l |

Elastic net (L1 + L2) R(W) = ∑
k

∑
l

βW2
k,l + |Wk,l |

86

Regularization: Dropout
In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

87

Regularization: Dropout
Example forward pass
with a 3-layer network
using dropout

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 73

Example forward
pass with a 3-layer
network using
dropout

88

Regularization: Dropout

Forces the network to have a redundant
representation; prevents co-adaptation of features

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 74

Forces the network to have a redundant
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous
look

X

X

X

cat
score
cat
score

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 74

Forces the network to have a redundant
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous
look

X

X

X

cat
score
cat
score

has legs

is teal color

is furry

has motors

has a velodyne

Digit

robot

score

89

Regularization: Dropout

Another interpretation:

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has

24096 ~ 101233 possible masks!

Only ~1082 atoms in the universe…

90

Dropout: Test time

Dropout makes our output random!

y = fw(x, z)
Output label
 Input image

Random mask

Want to “average out” the randomness at test-time

y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz
But this integral seems hard…

91

Dropout: Test time
Want to approximate
the integral
 y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have:
𝔼[a] = w1x + w2y

92

Dropout: Test time
Want to approximate
the integral
 y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have:
𝔼[a] = w1x + w2y

𝔼[a] =
1
4

(w1x + w2y) +
1
4

(w1x + 0y)

+
1
4

(0x + 0y) +
1
4

(0x + w2y)

=
1
2

(w1x + w2y)

During training time

we have:

93

Dropout: Test time
Want to approximate
the integral
 y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have:
𝔼[a] = w1x + w2y

𝔼[a] =
1
4

(w1x + w2y) +
1
4

(w1x + 0y)

+
1
4

(0x + 0y) +
1
4

(0x + w2y)

=
1
2

(w1x + w2y)

During training time

we have:

At test time, drop nothing
and multiply by dropout
probability

94

Dropout: Test time

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

Output at test time = Expected output at training time

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 80

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

95

Dropout Summary

Justin Johnson February 6, 2022

Dropout Summary

Lecture 10 - 81

drop in forward pass

scale at test time

Drop in forward pass

Scale at test time

96

More common: “Inverted dropout”

Justin Johnson February 6, 2022

More common: “Inverted dropout”

Lecture 10 - 82

test time is unchanged!

Drop and scale
during training

97

Dropout architectures

Justin Johnson February 6, 2022

Dropout architectures

Lecture 10 - 83

0

20000

40000

60000

80000

100000

120000

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

AlexNet vs VGG-16
(Params, M)

AlexNet VGG-16

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

Dropout here!

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

Later architectures (GoogLeNet, ResNet, etc) use
global average pooling instead of fully-connected
layers: they don’t use dropout at all!

98

Regularization: A common pattern

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

y = fw(x, z)

y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

99

Regularization: A common pattern

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch Normalization

Training: Normalize using stats
from random mini batches

Testing: Use fixed stats to
normalize

For ResNet and later,
often L2 and Batch
Normalization are the
only regularizers!
y = fw(x, z)

y = f(x, z) = 𝔼z[f(x, z)] = ∫ p(z)f(x, z)dz

100

Summary
1. One time setup:

• Activation functions, data preprocessing, weight
initialization, regularization

2. Training dynamics:
• Learning rate schedules; large-batch training;

hyperparameter optimization
3. After training:

• Model ensembles, transfer learning

Today

Next time

101

Next Time: Training Neural Networks II

Lecture 9
Training Neural Networks I
University of Michigan and University of Minnesota

DeepRob

102Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

