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Project 2—Updates
• Instructions available on the website
• Here: deeprob.org/projects/project2/

• Starter code sent via email

• Implement two-layer neural network and generalize to FCN

• Autograder will be available in next day or so
• Due Thursday, February 9th 11:59 PM EST
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http://deeprob.org/projects/project2/


Final Project Paper Selection Survey
• Published on gradescope
• To gauge your areas of interest
• Used for forming teams

• Due Friday, February 3rd 11:59 PM EST
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https://www.gradescope.com/courses/480760


Recap: CNN Architectures for ImageNet Classification
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ImageNet Classification Challenge

Lecture 8 - 77
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Once we have Batch Normalization, we can train networks with 10+ layers. 

What happens as we go deeper? 
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Residual Networks

Lecture 8 - 79

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers. 
What happens as we go deeper?

Deeper model does worse than 
shallow model!

Initial guess: Deep model is 
overfitting since it is much 
bigger than the other model

Iterations

56-layer

20-layer

Test error

Deeper model does worse than shallow model! 


Initial guess: Deep model is overfitting since 
it is much bigger than the other model 
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Once we have Batch Normalization, we can train networks with 10+ layers. 
What happens as we go deeper?

Deeper model does worse than 
shallow model!

Initial guess: Deep model is 
overfitting since it is much 
bigger than the other model

Iterations

56-layer

20-layer

Test error

In fact the deep model seems to be underfitting since it also performs 
worse than the shallow model on the training set! It is actually underfitting 


Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 80

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Once we have Batch Normalization, we can train networks with 10+ layers. 
What happens as we go deeper?

Training error

Iterations

56-layer

20-layer

Iterations

56-layer

20-layer

Test error

In fact the deep model seems to be underfitting since it also performs worse 
than the shallow model on the training set! It is actually underfitting



Residual Networks
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A deeper model can emulate a shallower model: copy layers from shallower model, set 
extra layers to identity 


Thus deeper models should do at least as good as shallow models 


Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in 
particular don’t learn identity functions to emulate shallow models 
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extra layers to identity 


Thus deeper models should do at least as good as shallow models 


Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in 
particular don’t learn identity functions to emulate shallow models 


Solution: Change the network so learning identity functions with extra layers is easy! 
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Residual Networks

Lecture 8 - 83

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
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Solution: Change the network so learning identity functions with extra layers is easy!
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Residual Networks

Lecture 8 - 83

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

conv

conv

relu

“Plain” block
X

H(x)

relu

Residual Block

conv

conv

Additive 
“shortcut”

F(x) + x

F(x)

relu

X

Solution: Change the network so learning identity functions with extra layers is easy!

If you set these to 
0, the whole block 
will compute the 
identity function!
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A residual network is a stack of many 
residual blocks 
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He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
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A residual network is a stack of 
many residual blocks

Regular design, like VGG: each 
residual block has two 3x3 conv

Network is divided into stages: the 
first block of each stage halves the 
resolution (with stride-2 conv) and 
doubles the number of channels

Residual Networks

Regular design, like VGG: each residual 
block has two 3x3 conv 


Network is divided into stages: the first 
block of each stage halves the resolution 
(with stride-2 conv) and doubles the 
number of channels 
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Uses the same aggressive stem as GoogleNet to downsample 
the input 4x before applying residual blocks: 
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Residual Networks

Input size Layer Output size
Layer C H/W Filters Kernel Stride Pad C H/W Memory (KB) Params 

(k)
Flop (M)

Conv

Poo


3 224 64 7 2 3 64 112 3136 9 118
Max-pool
 64 112 3 2 1 64 56 784 0 2
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Like GoogLeNet, no big fully-connected-layers: Instead use 
global average pooling and a single linear layer at the end
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Error rates are 224x224 single-crop testing, reported by torchvision 


ResNet-18: 
Stem: 1 conv layer 
Stage 1 (C=64): 2 res. block = 4 conv 

Stage 2 (C=128): 2 res. block = 4 conv 

Stage 3 (C=256): 2 res. block = 4 conv 

Stage 4 (C=512): 2 res. block = 4 conv 

Linear


ImageNet top-5 error: 10.92 

GFLOP: 1.8 
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A residual network is a stack of 
many residual blocks

Regular design, like VGG: each 
residual block has two 3x3 conv

Network is divided into stages: the 
first block of each stage halves the 
resolution (with stride-2 conv) and 
doubles the number of channels

Residual Networks
ResNet-34: 
Stem: 1 conv layer 
Stage 1: 3 res. block = 6 conv 

Stage 2: 4 res. block = 8 conv 

Stage 3: 6 res. block = 12 conv 

Stage 4: 3 res. block = 6 conv 

Linear


ImageNet top-5 error: 8.58 

GFLOP: 3.6


VGG-16: 
ImageNet top-5 error: 9.62 

GFLOP: 13.6
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Residual Networks: Basic Block
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He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016 


FLOPs: 9HWC2
 

FLOPs: 9HWC2
 

Total FLOPs:  
18HWC2
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“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016 


FLOPs: 9HWC2
 

FLOPs: 9HWC2
 

Total FLOPs:  
18HWC2
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Residual Networks: Bottleneck Block

Lecture 8 - 93

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)
FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:
18HWC2 “Bottleneck”

Residual block

Residual Networks: Bottleneck Block
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“Basic”
Residual block

Conv(3x3, C->C)

Conv(3x3, C->C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)
FLOPs: 9HWC2

FLOPs: 9HWC2

Total FLOPs:
18HWC2 “Bottleneck”

Residual block

FLOPs: 4HWC2
 

FLOPs: 9HWC2
 

Total FLOPs:  
17HWC2

 

FLOPs: 4HWC2
 

More layers, less computational cost!  

Residual Networks: Bottleneck Block
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A residual network is a stack of 
many residual blocks

Regular design, like VGG: each 
residual block has two 3x3 conv

Network is divided into stages: the 
first block of each stage halves the 
resolution (with stride-2 conv) and 
doubles the number of channels

Residual Networks

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Error rates are 224x224 single-crop testing, reported by torchvision 


Stage 1 Stage 2 Stage 3 Stage 4
Block 
type

Stem 
layers

Block
s Layers Block

s
Layer

s
Block

s
Layer

s
Block

s
Layer

s
FC 

Layers GFLOP Image
Net 

top-5 ResNet-18 
Poo 

Basic 1 2 4 2 4 2 4 2 4 1 1.8 10.92
ResNet-34 Basic 1 3 6 4 8 6 12 3 6 1 3.6 8.58

ResNet-50 Bottle 1 3 9 4 12 6 18 3 9 1 3.8 7.13

ResNet-101 Bottle 1 3 9 4 12 23 69 3 9 1 7.6 6.44

ResNet-152 Bottle 1 3 9 8 24 36 108 3 9 1 11.3 5.94

Deeper ResNet-101 and ResNet-152 models are more accurate, 
but also more computationally heavy 
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Residual Networks

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
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Residual Networks

Lecture 8 - 98

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

- Able to train very deep networks
- Deeper networks do better than 

shallow networks (as expected)
- Swept 1st place in all ILSVRC and 

COCO 2015 competitions 
- Still widely used today!

• Able to train very deep networks


• Deeper networks do better than 
shallow networks (as expected)


• Swept 1st place in all ILSVRC and 
COCO 2015 competitions


• Still widely used today 
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Canziani et al, “An analysis of deep neural network models for practical applications”, 2017
Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 
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Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Inception-v4: ResNet + Inception!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 
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Comparing Complexity
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VGG:  
Highest memory,  
most operations

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 
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Comparing Complexity
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GoogLeNet: 
Very efficient!

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 
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Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity
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AlexNet: Low 
compute, lots of 

parameters

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 




Justin Johnson February 2, 2022

Comparing Complexity
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Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity
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ResNet: Simple design, 
moderate efficiency, high 

accuracy

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017 
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Last Time: CNN Architectures
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Overview
1. One time setup:

• Activation functions, data preprocessing, weight 
initialization, regularization

2. Training dynamics:
• Learning rate schedules; large-batch training; 

hyperparameter optimization
3. After training:

• Model ensembles, transfer learning

Today

Next time
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Activation Functions

Lecture 10 - 8



30

Activation Functions

Justin Johnson February 6, 2022

Activation Functions
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Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"
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Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid 

σ(x) =
1

1 + e−x

tanh 
tanh(x)

ReLU 
max(0,x)

Leaky ReLU 
max(0.1x, x)

ELU 

{x x ≥ 0
α(expx − 1) x < 0

GELU 
≈ xα(1.702x)
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Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid 

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron
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Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid 

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive
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Activation Functions: Sigmoid
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Activation Functions: Sigmoid

Lecture 10 - 12

sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

- What happens when x = -10?

- What happens when x = 0?

- What happens when x = 10?
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nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive
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- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive
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Activation Functions: Sigmoid

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j ) + b(ℓ)
i

 is the th element of the hidden layer at layer  
(before activation)


 are the weights and bias of layer 

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

Consider what happens when 
nonlinearity is always positive
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Activation Functions: Sigmoid

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j ) + b(ℓ)
i

 is the th element of the hidden layer at layer  
(before activation)


 are the weights and bias of layer 

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

Local 

gradient

Upstream 
gradient

Consider what happens when 
nonlinearity is always positive

∂L
∂w(ℓ)

i,j
=

∂h(ℓ)
i

∂w(ℓ)
i,j

⋅
∂L

∂h(ℓ)
i
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Activation Functions: Sigmoid

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j ) + b(ℓ)
i

Consider what happens when 
nonlinearity is always positive

 is the th element of the hidden layer at layer  
(before activation)


 are the weights and bias of layer 

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)

Gradients on all  have the same sign as upstream 

gradient 

w(ℓ)
i,j

∂L/∂h(ℓ)
i

Local 

gradient

Upstream 
gradient

∂L
∂w(ℓ)

i,j
=

∂h(ℓ)
i

∂w(ℓ)
i,j

⋅
∂L

∂h(ℓ)
i

= σ(h(ℓ−1)
j ) ⋅

∂L
∂h(ℓ)

i
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Activation Functions: Sigmoid

Justin Johnson February 6, 2022Lecture 10 - 18

What can we say about the gradients on ) ℓ ?
Gradients on all !!,#(%&&) have the same 
sign as upstream gradient "#/"ℎ!(ℓ)

ℎ!
(ℓ) =#

%
$!,%
(ℓ)% ℎ%

(ℓ'() + '! ℓ

ℎ!
(ℓ) is the "th element of the hidden layer at 

layer ℓ (before activation)
$ ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when 
nonlinearity is always positive

hypothetical 
optimal w 
vector

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

Gradients on rows of w can 
only point in some directions; 
needs to “zigzag” to move in 
other directions

Gradients on rows of  can only point 
in some directions; needs to “zigzag” 
to move in other directions

w

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j ) + b(ℓ)
i

Consider what happens when 
nonlinearity is always positive

Gradients on all  have the same sign as upstream 

gradient 

w(ℓ)
i,j

∂L/∂h(ℓ)
i

 is the th element of the hidden layer at layer  
(before activation)


 are the weights and bias of layer 

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)
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Activation Functions: Sigmoid
Consider what happens when nonlinearity is 
always positive

Gradients on all  have the same sign as upstream 

gradient 

w(ℓ)
i,j

∂L/∂h(ℓ)
i

Justin Johnson February 6, 2022Lecture 10 - 18

What can we say about the gradients on ) ℓ ?
Gradients on all !!,#(%&&) have the same 
sign as upstream gradient "#/"ℎ!(ℓ)

ℎ!
(ℓ) =#

%
$!,%
(ℓ)% ℎ%

(ℓ'() + '! ℓ

ℎ!
(ℓ) is the "th element of the hidden layer at 

layer ℓ (before activation)
$ ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when 
nonlinearity is always positive

hypothetical 
optimal w 
vector

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

Gradients on rows of w can 
only point in some directions; 
needs to “zigzag” to move in 
other directions

Not that bad in practice:

- Only true for a single example, mini 

batches help

- BatchNorm can also avoid this

h(ℓ)
i = ∑

j

w(ℓ)
i,j σ(hℓ−1

j ) + b(ℓ)
i

 is the th element of the hidden layer at layer  
(before activation)


 are the weights and bias of layer 

h(ℓ)
i i ℓ

w(ℓ), b(ℓ) ℓ

What can we say about the gradients on ?w(ℓ)
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Activation Functions: Sigmoid
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Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid 

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive
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Activation Functions: Sigmoid
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Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid 

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive
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Activation Functions: Sigmoid
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Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

Sigmoid 

σ(x) =
1

1 + e−x

- Squashes numbers to range [0, 1]

- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:
1. Saturated neurons “kill” the gradients 
2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

Worst problem in practice
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Activation Functions: tanh

Justin Johnson February 6, 2022

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

GELU
≈ "# 1.702"

tanh(x) 

- Squashes numbers to range [-1, 1]

- Zero centered (nice)

- Still kills gradients when saturated :(
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Activation Functions: ReLU

ReLU 
(Rectified Linear Unit)


- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid 

and tanh in practice (e.g. 6x)

Justin Johnson February 6, 2022

Activation Functions: ReLU

Lecture 10 - 24

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

f(x) = max(0,x)
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Activation Functions: ReLU

ReLU 
(Rectified Linear Unit)


- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than sigmoid 

and tanh in practice (e.g. 6x)
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Activation Functions: ReLU

Lecture 10 - 24

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

f(x) = max(0,x)

- Not zero-centered output

- An annoyance:

Hint: what is the gradient when x<0?
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Activation Functions: ReLU

Justin Johnson February 6, 2022

Activation Functions: ReLU

Lecture 10 - 27

ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

- What happens when x = -10?

- What happens when x = 0?

- What happens when x = 10?
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Data cloud
Active ReLU

Dead ReLU will never 
activate

=> never update
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Data cloud
Active ReLU

Dead ReLU will never 
activate

=> never update

=> Sometimes initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)
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Activation Functions: Leaky ReLU

Leaky ReLU 



 is a hyperparameter, often 
f(x) = max(αx, x)
α α = 0.1

Justin Johnson February 6, 2022

Activation Functions: Leaky ReLU

Lecture 10 - 30

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Leaky ReLU
/ " = max 3", "
3 is a hyperparameter, 
often 3 = 0.1

- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid 

and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic 
Models”, ICML 2013 
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Activation Functions: Leaky ReLU

Leaky ReLU 



 is a hyperparameter, often 
f(x) = max(αx, x)
α α = 0.1
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Activation Functions: Leaky ReLU

Lecture 10 - 30

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Leaky ReLU
/ " = max 3", "
3 is a hyperparameter, 
often 3 = 0.1

- Does not saturate

- Computationally efficient

- Converges much faster than sigmoid 

and tanh in practice (e.g. 6x)

- Will not “die”

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic 
Models”, ICML 2013 

Parametric ReLU (PReLU) 



 is learned via backprop
f(x) = max(αx, x)
α

He et al, “Delving Deep into Rectifiers: Surpassing Human- Level 
Performance on ImageNet Classification”, ICCV 2015  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Activation Functions: Exponential Linear Unit  (ELU)

- All benefits of ReLU

- Closer to zero means outputs

- Negative saturation regime compared 

with Leaky ReLU adds some 
robustness to noise

Justin Johnson February 6, 2022

Activation Functions: Exponential Linear Unit (ELU)

Lecture 10 - 32

(Default alpha=1)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime 

compared with Leaky ReLU
adds some robustness to noise 

- Computation requires exp()/ " = 5 " 6/ " > 0
3 8) − 1 6/ " ≤ 0f(x) = {x if x > 0
α(ex − 1) if x ≤ 0
(Default )
α = 1
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Activation Functions: Exponential Linear Unit  (ELU)

- All benefits of ReLU

- Closer to zero means outputs

- Negative saturation regime compared 

with Leaky ReLU adds some 
robustness to noise
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Activation Functions: Exponential Linear Unit (ELU)

Lecture 10 - 32

(Default alpha=1)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime 

compared with Leaky ReLU
adds some robustness to noise 

- Computation requires exp()/ " = 5 " 6/ " > 0
3 8) − 1 6/ " ≤ 0f(x) = {x if x > 0
α(ex − 1) if x ≤ 0
(Default )
α = 1

- Computation requires exp()
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Activation Functions: Scale Exponential Linear Unit  
(SELU)

- Scaled version of ELU that works 
better for deep networks “Self-
Normalizing” property; can train deep 
SELU networks without BatchNorm

selu(x) = {λx if x > 0
λα(ex − 1) if x ≤ 0


α = 1.6732632423543772848170429916717
λ = 1.0507009873554804934193349852946

Justin Johnson February 6, 2022

Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 33

& = 1.6732632423543772848170429916717
3 = 1.0507009873554804934193349852946

- Scaled version of ELU that 
works better for deep networks

- “Self-Normalizing” property; 
can train deep SELU networks 
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

;8<= " = 5 >" 6/ " > 0
>3 8) − 1 6/ " ≤ 0

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017 
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Activation Functions: Scale Exponential Linear Unit  
(SELU)

- Scaled version of ELU that works 
better for deep networks “Self-
Normalizing” property; can train deep 
SELU networks without BatchNorm

selu(x) = {λx if x > 0
λα(ex − 1) if x ≤ 0


α = 1.6732632423543772848170429916717
λ = 1.0507009873554804934193349852946

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017 
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Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 34

- Scaled version of ELU that 
works better for deep networks

- “Self-Normalizing” property; 
can train deep SELU networks 
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

Derivation takes 
91 pages of math 
in appendix…

& = 1.6732632423543772848170429916717
3 = 1.0507009873554804934193349852946 - Derivation takes 91 pages of math in 

appendix…
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Activation Functions: Gaussian Error Linear Unit  (GELU)

- Idea: Multiply input by 0 or 1 at 
random; large values more likely to be 
multiplied by 1, small values more 
likely to be multiplied by 0 (data-
dependent dropout)


- Take expectation over randomness

- Very common in Transformers (BERT, 

GPT, ViT)

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016 

Justin Johnson February 6, 2022

Activation Functions: Gaussian Error Linear Unit (GELU)

Lecture 10 - 35

'~) 0, 1
,-./ 0 = 02 ' ≤ 0 = 0

2 1 + erf 0/√2
≈ 0< 1.7020 Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

- Idea: Multiply input by 0 or 1 
at random; large values more 
likely to be multiplied by 1, 
small values more likely to be 
multiplied by 0
(data-dependent dropout)

- Take expectation over 
randomness

- Very common in Transformers 
(BERT, GPT, ViT)

X ∼ N(0,1)

gelu(x) = xP(X ≤ x) =
x
2

(1 + erf(x/ 2))

≈ xσ(1.702x)
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Accuracy on CIFAR10

Ramachandran et al, “Searching for activation functions”, ICLR Workshop 2018 

Justin Johnson February 6, 2022Lecture 10 - 36

93.8

95.3

94.8

94.2

95.6

94.7

94.1

95.1

94.594.6
94.9

94.7

94.1 94.1
94.4

93
93.2

93.9
94.3

95.5

94.894.7

95.5

94.8

90

91

92

93

94

95

96

ResNet Wide ResNet DenseNet

Accuracy on CIFAR10
ReLU Leaky ReLU Parametric ReLU Softplus ELU SELU GELU Swish

Ramachandran et al, “Searching for 
activation functions”, ICLR Workshop 2018



- Don’t think too hard. Just use ReLU


- Try out Leaky ReLU / ELU / SELU / GELU if you 
need to squeeze that last 0.1%


- Don’t use sigmoid or tanh

59

Activation Functions: Summary

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 
Liu et al, “A ConvNet for the 2020s”, arXiv 2022  

Some (very) recent architectures use GeLU instead of ReLU, 
but the gains are minimal
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Data preprocessing
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Data preprocessing

Justin Johnson February 6, 2022

Data Preprocessing

Lecture 10 - 39

(Assume X [NxD] is data matrix, 
each example in a row)

(Assume X[NxD] is data matrix, each example in a row)
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Data preprocessing

(Data has diagonal 
covariance matrix)

Justin Johnson February 6, 2022

Data Preprocessing

Lecture 10 - 42

In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is 
the identity matrix)
(Covariance matrix 
is the identity matrix)

In practice, you may also see PCA and Whitening of the data
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Data preprocessing
Before normalization: Classification 
loss very sensitive to changes in 
weight matrix; hard to optimize

Justin Johnson February 6, 2022

Data Preprocessing

Lecture 10 - 43

Before normalization: classification 
loss very sensitive to changes in 
weight matrix; hard to optimize

After normalization: less sensitive to 
small changes in weights; easier to 
optimize

After normalization: less sensitive to 
small changes in weights; easier to 
optimize
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Data preprocessing for Images
e.g. consider CIFAR-10 example with [32, 32, 3] images

- Subtract the mean image (e.g. AlexNet)

(mean image = [32, 32, 3] array)


- Subtract per-channel mean (e.g. VGGNet)

(mean along each channel = 3 numbers)


- Subtract per-channel mean and Divide by per-
channel std (e.g. ResNet)

(mean along each channel = 3 numbers) Not common to do 

PCA or whitening
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Weight initialization
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Weight initialization

Input layer
Hidden layer

Output layer

Q: What happens if we 
initialize all W=0, b=0?

A: All outputs are 0, all 
gradients are the same! 

No “symmetry breaking”
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Weight initialization
Next idea: small random numbers (Gaussian with zero 
mean, std=0.01)

Justin Johnson February 6, 2022

Weight Initialization

Lecture 10 - 48

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)
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Weight initialization
Next idea: small random numbers (Gaussian with zero 
mean, std=0.01)
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Weight Initialization

Lecture 10 - 48

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

Works ~okay for small networks, but 
problems with deeper networks.
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Weight initialization: Activation statistics

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer 
net with hidden size 4096
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Weight initialization: Activation statistics
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Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero for 
deeper network layers

Q: What do the gradients 
 look like?dL/dW

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 51

Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero for 
deeper network layers

Q: What do the gradients 
dL/dW look like?
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Weight initialization: Activation statistics
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Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero for 
deeper network layers

Q: What do the gradients 
 look like?dL/dW

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 51

Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero for 
deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning :(
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Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look 
like?

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 54

Increase std of initial weights 
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look 
like?

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 53

Increase std of initial weights 
from 0.01 to 0.05
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Weight initialization: Activation statistics
All activations saturate

Q: What do the gradients look 
like?
A: Local gradients all zero, no 
learning :(

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 54

Increase std of initial weights 
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look 
like?

Justin Johnson February 6, 2022

Weight Initialization: Activation Statistics

Lecture 10 - 53

Increase std of initial weights 
from 0.01 to 0.05
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Weight initialization: Xavier Initialization
“Just right”: Activations are 
nicely scaled for all layers!

Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010 
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Weight initialization: Xavier Initialization
“Just right”: Activations are 
nicely scaled for all layers!
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Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010 
Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 57

“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010



76

Weight initialization: Xavier Initialization
“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
kernel_size2 x input_channels

Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010 
Justin Johnson February 6, 2022

Weight Initialization: Xavier Initialization

Lecture 10 - 57

“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight initialization: Xavier Initialization
“Xavier” initialization: 
std = 1/ DinDerivation: Variance of output = Variance of input

y = Wx yi =
Din

∑
j=1

xjwj

                                     [Assume  are iid]Var(yi) = Din × Var(xi, wi) x, w
                   [Assume  are independent]= Din × (𝔼[x2

i ]𝔼[w2
i ] − 𝔼[xi]2𝔼[wi]2) x, w

                                     [Assume  are zero-mean]= Din × Var(xi) × Var(wi) x, w

If   then Var(wi) = 1/Din Var(yi) = Var(xi)
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Weight initialization: What about ReLU?
Xavier assumes zero centered 
activation function

Justin Johnson February 6, 2022

Weight Initialization: What about ReLU?

Lecture 10 - 65

Xavier assumes zero centered 
activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU
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Weight initialization: What about ReLU?
Xavier assumes zero centered 
activation function

Activations collapse to zero 
again, no learning :(
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Weight Initialization: What about ReLU?

Lecture 10 - 65

Xavier assumes zero centered 
activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU

Justin Johnson February 6, 2022

Weight Initialization: What about ReLU?

Lecture 10 - 65

Xavier assumes zero centered 
activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU
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Weight Initialization: Kaiming / MSRA Initialization

Lecture 10 - 66

”Just right” – activations nicely 
scaled for all layers

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015
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Weight initialization: Kaiming / MSRA initialization
“Just right” - activations nicely 
scaled for all layers
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Weight Initialization: Kaiming / MSRA Initialization

Lecture 10 - 66

”Just right” – activations nicely 
scaled for all layers

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015 
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Weight initialization: Residual Networks

If we initialize with MSRA: then



But then 
variance grows with each block!

Var(F(x)) = Var(x)

Var(F(x) + x) > Var(x)

Justin Johnson February 6, 2022

Weight Initialization: Residual Networks

Lecture 10 - 67

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA: 
then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x)  
variance grows with each block! 

Solution: Initialize first conv with 
MSRA, initialize second conv to 
zero. Then Var(x + F(x)) = Var(x)

F(x) + x

F(x)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019 
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Weight initialization: Residual Networks

If we initialize with MSRA: then



But then 
variance grows with each block!

Var(F(x)) = Var(x)

Var(F(x) + x) > Var(x)

Justin Johnson February 6, 2022

Weight Initialization: Residual Networks

Lecture 10 - 67

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA: 
then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x)  
variance grows with each block! 

Solution: Initialize first conv with 
MSRA, initialize second conv to 
zero. Then Var(x + F(x)) = Var(x)

F(x) + x

F(x)

Solution: Initialize first conv with MSRA, 
initialize second conv to zero. Then
Var(F(x) + x) = Var(x)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019 
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Proper initialization is an active area of research

• Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010


• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013 


• Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014


• Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015 


• Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015 


• All you need is a good init, Mishkin and Matas, 2015


• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019


• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019 



84

Now your model is training … but it overfits!

Justin Johnson February 6, 2022

Now your model is training … but it overfits!

Lecture 10 - 70

RegularizationRegularization
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Regularization: Add term to the loss

L =
1
N

N

∑
i=1

∑
j≠yi

max(0, f(xi; W)j − f(xi; W)yi
+ 1) + λR(W)

In common use:
L2 regularization                           (Weight decay)R(W) = ∑

k
∑

l

W2
k,l

L1 regularization                         R(W) = ∑
k

∑
l

|Wk,l |

Elastic net (L1 + L2)                    R(W) = ∑
k

∑
l

βW2
k,l + |Wk,l |
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero 

Probability of dropping is a hyperparameter; 0.5 is common 


Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014 
Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common
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Regularization: Dropout
Example forward pass 
with a 3-layer network 
using dropout
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Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 73

Example forward 
pass with a 3-layer 
network using 
dropout
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Regularization: Dropout

Forces the network to have a redundant 
representation; prevents co-adaptation of features
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Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 74

Forces the network to have a redundant 
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous 
look

X

X

X

cat 
score
cat 
score

Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 74

Forces the network to have a redundant 
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous 
look

X

X

X

cat 
score
cat 
score

has legs


is teal color


is furry


has motors


has a velodyne

Digit 

robot

score
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Regularization: Dropout

Another interpretation:


Justin Johnson February 6, 2022

Regularization: Dropout

Lecture 10 - 72
Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Dropout is training a large ensemble of 
models (that share parameters).


Each binary mask is one model


An FC layer with 4096 units has

24096 ~ 101233 possible masks!

Only ~1082 atoms in the universe…
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Dropout: Test time

Dropout makes our output random!


y = fw(x, z)
Output label
 Input image


Random mask


Want to “average out” the randomness at test-time


y = f(x, z) = 𝔼z[ f(x, z)] = ∫ p(z)f(x, z)dz
But this integral seems hard…
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Dropout: Test time
Want to approximate 
the integral
 y = f(x, z) = 𝔼z[ f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate 
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have: 
𝔼[a] = w1x + w2y



92

Dropout: Test time
Want to approximate 
the integral
 y = f(x, z) = 𝔼z[ f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:

Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 77

Want to approximate 
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have: 
𝔼[a] = w1x + w2y




𝔼[a] =
1
4

(w1x + w2y) +
1
4

(w1x + 0y)

+
1
4

(0x + 0y) +
1
4

(0x + w2y)

=
1
2

(w1x + w2y)

During training time 

we have:
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Dropout: Test time
Want to approximate 
the integral
 y = f(x, z) = 𝔼z[ f(x, z)] = ∫ p(z)f(x, z)dz

Consider a single neuron:
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Dropout: Test Time

Lecture 10 - 77

Want to approximate 
the integral

Consider a single neuron:

At test time we have: ? @ = $%0 + $&A
a

x y

w1 w2

? = / " = A- / ", B = CD B / ", B EB

At test time we have: 
𝔼[a] = w1x + w2y




𝔼[a] =
1
4

(w1x + w2y) +
1
4

(w1x + 0y)

+
1
4

(0x + 0y) +
1
4

(0x + w2y)

=
1
2

(w1x + w2y)

During training time 

we have:

At test time, drop nothing 
and multiply by dropout 
probability
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Dropout: Test time

At test time all neurons are active always 


=> We must scale the activations so that for each neuron:

Output at test time = Expected output at training time


Justin Johnson February 6, 2022

Dropout: Test Time

Lecture 10 - 80

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

Justin Johnson February 6, 2022

Dropout Summary

Lecture 10 - 81

drop in forward pass

scale at test time

Drop in forward pass


Scale at test time
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More common: “Inverted dropout”

Justin Johnson February 6, 2022

More common: “Inverted dropout”

Lecture 10 - 82

test time is unchanged!

Drop and scale 
during training
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Dropout architectures

Justin Johnson February 6, 2022

Dropout architectures

Lecture 10 - 83

0

20000

40000

60000

80000

100000

120000

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

AlexNet vs VGG-16 
(Params, M)

AlexNet VGG-16

Recall AlexNet, VGG have most of their 
parameters in fully-connected layers; 
usually Dropout is applied there

Dropout here!

Recall AlexNet, VGG have most of their 
parameters in fully-connected layers; 
usually Dropout is applied there


Later architectures (GoogLeNet, ResNet, etc) use 
global average pooling instead of fully-connected 
layers: they don’t use dropout at all!
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Regularization: A common pattern

Training: Add some kind of 
randomness


Testing: Average out randomness 
(sometimes approximate) 


y = fw(x, z)

y = f(x, z) = 𝔼z[ f(x, z)] = ∫ p(z)f(x, z)dz
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Regularization: A common pattern

Training: Add some kind of 
randomness


Testing: Average out randomness 
(sometimes approximate) 


Example: Batch Normalization


Training: Normalize using stats 
from random mini batches


Testing: Use fixed stats to 
normalize


For ResNet and later, 
often L2 and Batch 
Normalization are the 
only regularizers!
y = fw(x, z)

y = f(x, z) = 𝔼z[ f(x, z)] = ∫ p(z)f(x, z)dz
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Summary
1. One time setup:

• Activation functions, data preprocessing, weight 
initialization, regularization

2. Training dynamics:
• Learning rate schedules; large-batch training; 

hyperparameter optimization
3. After training:

• Model ensembles, transfer learning

Today

Next time
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Next Time: Training Neural Networks II



Lecture 9
Training Neural Networks I
University of Michigan and University of Minnesota

DeepRob

102Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course
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