
1

Lecture 7
Convolutional Neural Networks
University of Michigan and University of Minnesota

DeepRob

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 1—Reminder
• Instructions and code available on the website
• Here: deeprob.org/projects/project1/

• Uses Python, PyTorch and Google Colab

• Implement KNN, linear SVM, and linear softmax classifiers

• Autograder is online and updated
• Due Thursday, January 26th 11:59 PM EST

2

http://deeprob.org/projects/project1/

3

Recap from Previous Lecture

1. Forward pass: Compute outputs

2. Backward pass: Compute gradients

Represent complex expressions
as computational graphs

During the backward pass, each node in
the graph receives upstream gradients
and multiplies them by local gradients to
compute downstream gradients

4

Recap from Previous Lecture

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score
= 0

Car score
increases
this way

Car template
on this line

Cat
Score

Airplane
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a
high-dimensional space

Pixel
(15, 8, 0)

Pixel
(11, 11, 0)

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

 f(x) = W2 max(0,W1x + b1) + b2

Problem: So far our classifiers don’t
respect the spatial structure of images!

5

Recap from Previous Lecture

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score
= 0

Car score
increases
this way

Car template
on this line

Cat
Score

Airplane
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a
high-dimensional space

Pixel
(15, 8, 0)

Pixel
(11, 11, 0)

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

 f(x) = W2 max(0,W1x + b1) + b2

Solution: Define new computational
nodes that operate on images!

Problem: So far our classifiers don’t
respect the spatial structure of images!

6

Components of Fully-Connected Networks

x W1 W2h s

Justin Johnson January 31, 2022

Components of a Fully-Connected Network

Lecture 7 - 10

x h s

Fully-Connected Layers Activation FunctionFully-Connected Layers Activation Functions

7

Components of Convolutional Neural Networks

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Convolution Layers Pooling Layers Normalization

x W1 W2h s

Justin Johnson January 31, 2022

Components of a Fully-Connected Network

Lecture 7 - 10

x h s

Fully-Connected Layers Activation FunctionFully-Connected Layers Activation Functions

7

Components of Convolutional Neural Networks

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Convolution Layers Pooling Layers Normalization

x W1 W2h s

Justin Johnson January 31, 2022

Components of a Fully-Connected Network

Lecture 7 - 10

x h s

Fully-Connected Layers Activation FunctionFully-Connected Layers Activation Functions

,

8

Fully-Connected Layer

Input Output

Justin Johnson January 31, 2022

Fully-Connected Layer

Lecture 7 - 13

3072
1

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

OutputInput

1
10

Justin Johnson January 31, 2022

Fully-Connected Layer

Lecture 7 - 13

3072
1

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

OutputInput

1
10

1
3072 10

1Wx
10 x 3072

Weights

stretch to 3072x13x32x32 image

9

Fully-Connected Layer

Input Output

Justin Johnson January 31, 2022

Fully-Connected Layer

Lecture 7 - 13

3072
1

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

OutputInput

1
10

Justin Johnson January 31, 2022

Fully-Connected Layer

Lecture 7 - 13

3072
1

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

OutputInput

1
10

1
3072 10

1Wx
10 x 3072

Weights

1 number:
The result of taking a dot product
between a row of W and the input

stretch to 3072x13x32x32 image

10

Convolution Layer
3x32x32 image:

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

preserve spatial structure

3x5x5 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 16

32

3

3x32x32 image

width
depth /
channels

3x5x5 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

height32

11

Convolution Layer
3x32x32 image

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

3x5x5 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 16

32

3

3x32x32 image

width
depth /
channels

3x5x5 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

height32

Filters always extend the full depth
of the input volume

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 18

32

3

3x32x32 image

3x5x5 filter

32
1 number:
the result of taking a dot product between the filter
and a small 3x5x5 chunk of the image
(i.e. 3*5*5 = 75-dimensional dot product + bias)

!!" + $

12

Convolution Layer

1 number:
The result of taking a dot product between the
filter and a small 3x5x5 portion of the image

(i.e. 3*5*5=75-dimensional dot product + bias)

wTx + b

3x32x32 image

13

Convolution Layer

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 19

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

1x28x28
activation map

1

28

28

convolve (slide) over all spatial locations

1x28x28 activation map

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 18

32

3

3x32x32 image

3x5x5 filter

32
1 number:
the result of taking a dot product between the filter
and a small 3x5x5 chunk of the image
(i.e. 3*5*5 = 75-dimensional dot product + bias)

!!" + $

3x32x32 image

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 20

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating with
a second (green) filter:

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 20

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating with
a second (green) filter:

14

Convolution Layer
3x32x32 image

convolve (slide) over all spatial locations

1x28x28 activation maptwo

Consider repeating with a
second (green) filter

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

15

Convolution Layer
3x32x32 image 1x28x28 activation mapsix

Consider 6 filters,
each 3x5x5

Stack activations to get
a 6x28x28 output imageJustin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

6x3x5x5
filters

Convolution
Layer

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 20

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating with
a second (green) filter:

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

16

Convolution Layer
3x32x32 image 1x28x28 activation mapsix

Also 6-dim bias vector

Stack activations to get
a 6x28x28 output imageJustin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

6x3x5x5
filters

Convolution
Layer

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 20

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating with
a second (green) filter:

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 22

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

17

Convolution Layer
3x32x32 image 28x28 grid, at each

point a 6-dim vector
Also 6-dim bias vector

Stack activations to get
a 6x28x28 output imageJustin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

6x3x5x5
filters

Convolution
Layer

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 20

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating with
a second (green) filter:

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 22

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 24

32

3

2x3x32x32
Batch of images

32

2x6x28x28
Batch of outputs

Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

18

Convolution Layer
2x3x32x32

Also 6-dim bias vector

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

6x3x5x5
filters

Convolution
Layer

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 20

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating with
a second (green) filter:

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 22

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!
Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

2x6x28x28
batch of outputsbatch of images

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 24

32

3

2x3x32x32
Batch of images

32

2x6x28x28
Batch of outputs

Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

19

Convolution Layer
N x x H xWCin

Also -dim bias vectorCout

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

 x x x
filters

Cout Cin Kh Kw

Convolution
Layer

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 20

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating with
a second (green) filter:

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 22

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!
Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 21

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

batch of images batch of outputs
N x x H’ x W’Cout

Cout

20

Stacking Convolutions

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv …..

: 6x3x5x5W1
: 6b1

: 10x6x3x3W2
: 10b2

: 12x10x3x3W3
: 12b3

21

Stacking Convolutions

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv …..

: 6x3x5x5W1
: 6b1

: 10x6x3x3W2
: 10b2

: 12x10x3x3W3
: 12b3

Q: What happens if we stack
two convolution layers?

22

Stacking Convolutions

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv …..

: 6x3x5x5W1
: 6b1

: 10x6x3x3W2
: 10b2

: 12x10x3x3W3
: 12b3

Q: What happens if we stack
two convolution layers?

(Recall y= x is a
linear classifier)

W2W1

23

Stacking Convolutions

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

Conv Conv Conv …..

: 6x3x5x5W1
: 6b1

: 10x6x3x3W2
: 10b2

: 12x10x3x3W3
: 12b3

Q: What happens if we stack
two convolution layers?

A: We get another convolution!(Recall y= x is a
linear classifier)

W2W1

24

Stacking Convolutions

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

: 6x3x5x5W1
: 6b1

: 10x6x3x3W2
: 10b2

: 12x10x3x3W3
: 12b3

Q: What happens if we stack
two convolution layers?

A: We get another convolution!(Recall y= x is a
linear classifier)

W2W1

ReLUConv ReLUConv ReLUConv

25

What do convolutional filters learn?

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

N x 10 x 26 x 26
Second hidden layer

3

32

32 28 26

2628

6 10

: 6x3x5x5W1
: 6b1

: 10x6x3x3W2
: 10b2

: 12x10x3x3W3
: 12b3

ReLUConv ReLUConv ReLUConv

Linear classifier: One template per class

26

What do convolutional filters learn?

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

: 6x3x5x5W1
: 6b1

ReLUConv

27

What do convolutional filters learn?

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

: 6x3x5x5W1
: 6b1

ReLUConv

MLP: Bank of whole-image templates

28

What do convolutional filters learn?

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

: 6x3x5x5W1
: 6b1

ReLUConv

First-layer conv filters: local image templates
(often learns oriented edges, opposing colors)

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][↵1�1,↵2�2,↵3�3]
T

where pi and �i are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵i is the aforementioned random variable. Each ↵i is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi � 0.0005 · ✏ · wi � ✏ ·
⌧
@L

@w

��
wi

�

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L
@w

��
wi

E

Di

is
the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

AlexNet: 96 filters, each 3x11x11

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

29

A closer look at spatial dimensions

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

N x 3 x 32 x 32
input

N x 6 x 28 x 28
First hidden layer

3

32

32 28

28

6

: 6x3x5x5W1
: 6b1

ReLUConv

Justin Johnson January 31, 2022Lecture 7 - 35

A closer look at spatial dimensions

7

7

Input: 7x7
Filter: 3x3

30

A closer look at spatial dimensions

Justin Johnson January 31, 2022Lecture 7 - 36

A closer look at spatial dimensions

7

7

Input: 7x7
Filter: 3x3

31

A closer look at spatial dimensions

Justin Johnson January 31, 2022Lecture 7 - 37

A closer look at spatial dimensions

7

7

Input: 7x7
Filter: 3x3

32

A closer look at spatial dimensions

Justin Johnson January 31, 2022Lecture 7 - 38

A closer look at spatial dimensions

7

7

Input: 7x7
Filter: 3x3

33

A closer look at spatial dimensions

Justin Johnson January 31, 2022Lecture 7 - 39

A closer look at spatial dimensions

7

7

Input: 7x7
Filter: 3x3
Output: 5x5

34

A closer look at spatial dimensions

Justin Johnson January 31, 2022Lecture 7 - 40

A closer look at spatial dimensions

7

7

Input: 7x7
Filter: 3x3
Output: 5x5

In general:
Input: W
Filter: K
Output: W – K + 1

Problem: Feature
maps “shrink”
with each layer!

35

A closer look at spatial dimensions

Justin Johnson January 31, 2022

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Lecture 7 - 41

A closer look at spatial dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

In general:
Input: W
Filter: K
Output: W – K + 1

Problem: Feature
maps “shrink”
with each layer!

Solution: padding
Add zeros around the input

36

A closer look at spatial dimensions

Justin Johnson January 31, 2022

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Lecture 7 - 42

A closer look at spatial dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

In general:
Input: W
Filter: K
Padding: P
Output: W – K + 1 + 2P

Very common:
Set P = (K – 1) / 2 to
make output have
same size as input!

37

A closer look at spatial dimensions

Justin Johnson January 31, 2022Lecture 7 - 43

Receptive Fields

Input Output

For convolution with kernel size K, each element in the
output depends on a K x K receptive field in the input

38

Receptive Fields

Justin Johnson January 31, 2022Lecture 7 - 44

Receptive Fields

Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Be careful – ”receptive field in the input” vs “receptive field in the previous layer”
Hopefully clear from context!

39

Receptive Fields

Justin Johnson January 31, 2022Lecture 7 - 45

Receptive Fields

Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Problem: For large images we need many layers
for each output to “see” the whole image image

40

Receptive Fields

Justin Johnson January 31, 2022Lecture 7 - 46

Receptive Fields

Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Problem: For large images we need many layers
for each output to “see” the whole image image

Solution: Downsample inside the network

41

Receptive Fields

Justin Johnson January 31, 2022Lecture 7 - 47

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

42

Strided Convolution

Justin Johnson January 31, 2022Lecture 7 - 48

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

43

Strided Convolution

Justin Johnson January 31, 2022Lecture 7 - 49

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

Output: 3x3

44

Strided Convolution

Justin Johnson January 31, 2022Lecture 7 - 50

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

Output: 3x3

In general:
Input: W
Filter: K
Padding: P
Stride: S
Output: (W – K + 2P) / S + 1

45

Strided Convolution

46

Convolution Example

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Q: What is the output volume size?

47

Convolution Example

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Q: What is the output volume size?
(32-5+2*2) / 1 + 1 = 32 spatially
So, 10 x 32 x 32 output

48

Convolution Example

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Q: What is the number of learnable parameters?

49

Convolution Example

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Q: What is the number of learnable parameters?
Parmeters per filter: (3*5*5) + 1 = 76
10 filters, so total is 10*76 = 760

50

Convolution Example

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Q: What is the number of multiply-add operations?

51

Convolution Example

Justin Johnson January 31, 2022

Convolution Layer

Lecture 7 - 17

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Justin Johnson January 31, 2022Lecture 7 - 28

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!

(Recall y=W2W1x is
a linear classifier)

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Q: What is the number of multiply-add operations?
10*32*32=10,240 outputs, each from inner product
of two 3x5x5 tensors, so total = 75 * 10,240 = 768,000

52

Example: 1x1 Convolution

Justin Johnson January 31, 2022

Example: 1x1 Convolution

Lecture 7 - 57

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

Justin Johnson January 31, 2022

Example: 1x1 Convolution

Lecture 7 - 57

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

1x1 Conv

with 32 filters

Each filter has size 1x1x64 and
performs a 64-dimensional dot product

Lin et al., “Network in Network”, ICLR 2014

53

Example: 1x1 Convolution

Justin Johnson January 31, 2022

Example: 1x1 Convolution

Lecture 7 - 57

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

Justin Johnson January 31, 2022

Example: 1x1 Convolution

Lecture 7 - 57

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

1x1 Conv

with 32 filters

Each filter has size 1x1x64 and
performs a 64-dimensional dot product

Stacking 1x1 conv layers gives MLP
operating on each input position

Lin et al., “Network in Network”, ICLR 2014

54

Convolution Summary

Justin Johnson January 31, 2022

Convolution Summary

Lecture 7 - 59

Input: Cin x H x W
Hyperparameters:
- Kernel size: KH x KW
- Number filters: Cout
- Padding: P
- Stride: S
Weight matrix: Cout x Cin x KH x KW
giving Cout filters of size Cin x KH x KW
Bias vector: Cout
Output size: Cout x H’ x W’ where:
- H’ = (H – K + 2P) / S + 1
- W’ = (W – K + 2P) / S + 1

55

Convolution Summary

Justin Johnson January 31, 2022

Convolution Summary

Lecture 7 - 59

Input: Cin x H x W
Hyperparameters:
- Kernel size: KH x KW
- Number filters: Cout
- Padding: P
- Stride: S
Weight matrix: Cout x Cin x KH x KW
giving Cout filters of size Cin x KH x KW
Bias vector: Cout
Output size: Cout x H’ x W’ where:
- H’ = (H – K + 2P) / S + 1
- W’ = (W – K + 2P) / S + 1

Justin Johnson January 31, 2022

Convolution Summary

Lecture 7 - 60

Input: Cin x H x W
Hyperparameters:
- Kernel size: KH x KW
- Number filters: Cout
- Padding: P
- Stride: S
Weight matrix: Cout x Cin x KH x KW
giving Cout filters of size Cin x KH x KW
Bias vector: Cout
Output size: Cout x H’ x W’ where:
- H’ = (H – K + 2P) / S + 1
- W’ = (W – K + 2P) / S + 1

Common settings:
KH = KW (Small square filters)
P = (K – 1) / 2 (”Same” padding)
Cin, Cout = 32, 64, 128, 256 (powers of 2)
K = 3, P = 1, S = 1 (3x3 conv)
K = 5, P = 2, S = 1 (5x5 conv)
K = 1, P = 0, S = 1 (1x1 conv)
K = 3, P = 1, S = 2 (Downsample by 2)

Justin Johnson January 31, 2022

Other types of convolution

Lecture 7 - 61

So far: 2D Convolution

Cin

W

H

Input: Cin x H x W
Weights: Cout x Cin x K x K

56

Other types of convolution

57

Other types of convolution

Justin Johnson January 31, 2022

Other types of convolution

Lecture 7 - 62

So far: 2D Convolution 1D Convolution

Cin

W

H

Input: Cin x H x W
Weights: Cout x Cin x K x K

Cin

W

Input: Cin x W
Weights: Cout x Cin x K

Justin Johnson January 31, 2022

Other types of convolution

Lecture 7 - 63

So far: 2D Convolution 3D Convolution

Cin

W

H

Input: Cin x H x W
Weights: Cout x Cin x K x K

Cin-dim vector
at each point
in the volume

W

D

H

Input: Cin x H x W x D
Weights: Cout x Cin x K x K x K

58

Other types of convolution

Justin Johnson January 31, 2022Lecture 7 - 64

PyTorch Convolution Layer

59

PyTorch Convolution Layer

Justin Johnson January 31, 2022Lecture 7 - 65

PyTorch Convolution Layers

60

PyTorch Convolution Layer

61

Components of Convolutional Neural Networks

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Convolution Layers Pooling Layers Normalization

x W1 W2h s

Justin Johnson January 31, 2022

Components of a Fully-Connected Network

Lecture 7 - 10

x h s

Fully-Connected Layers Activation FunctionFully-Connected Layers Activation Functions

,
,

62

Pooling Layers: Another way to downsample

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

62

Pooling Layers: Another way to downsample

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Hyperparameters:
Kernel size

Stride

Pooling function

63

Max Pooling

Justin Johnson January 31, 2022

Max Pooling

Lecture 7 - 68

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Max pooling with 2x2
kernel size and stride 2 6 8

3 4

Introduces invariance to
small spatial shifts
No learnable parameters!

64 x 224 x 224

Justin Johnson January 31, 2022

Max Pooling

Lecture 7 - 68

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Max pooling with 2x2
kernel size and stride 2 6 8

3 4

Introduces invariance to
small spatial shifts
No learnable parameters!

64 x 224 x 224

Max pooling with

2x2 kernel size

stride of 2

64

Max Pooling

Justin Johnson January 31, 2022

Max Pooling

Lecture 7 - 68

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Max pooling with 2x2
kernel size and stride 2 6 8

3 4

Introduces invariance to
small spatial shifts
No learnable parameters!

64 x 224 x 224

Justin Johnson January 31, 2022

Max Pooling

Lecture 7 - 68

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Max pooling with 2x2
kernel size and stride 2 6 8

3 4

Introduces invariance to
small spatial shifts
No learnable parameters!

64 x 224 x 224

Max pooling with

2x2 kernel size

stride of 2

Introduces invariance to
small spatial shifts
No learnable parameters!

65

Pooling Summary

Justin Johnson January 31, 2022

Pooling Summary

Lecture 7 - 69

Input: C x H x W
Hyperparameters:
- Kernel size: K
- Stride: S
- Pooling function (max, avg)
Output: C x H’ x W’ where
- H’ = (H – K) / S + 1
- W’ = (W – K) / S + 1
Learnable parameters: None!

Common settings:
max, K = 2, S = 2
max, K = 3, S = 2 (AlexNet)

Justin Johnson January 31, 2022

Pooling Summary

Lecture 7 - 69

Input: C x H x W
Hyperparameters:
- Kernel size: K
- Stride: S
- Pooling function (max, avg)
Output: C x H’ x W’ where
- H’ = (H – K) / S + 1
- W’ = (W – K) / S + 1
Learnable parameters: None!

Common settings:
max, K = 2, S = 2
max, K = 3, S = 2 (AlexNet)

66

Components of Convolutional Neural Networks

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Convolution Layers Pooling Layers Normalization

x W1 W2h s

Justin Johnson January 31, 2022

Components of a Fully-Connected Network

Lecture 7 - 10

x h s

Fully-Connected Layers Activation FunctionFully-Connected Layers Activation Functions

,

67

Convolutional Neural Networks

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 72

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

68

Example: LeNet-5

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 73

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

69

Example: LeNet-5

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 74

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

70

Example: LeNet-5

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 75

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

71

Example: LeNet-5

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 76

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

72

Example: LeNet-5

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 77

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

73

Example: LeNet-5

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 78

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

74

Example: LeNet-5

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

75

Example: LeNet-5

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 81

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

As we go through the network:

Spatial size decreases
(using pooling or strided conv)

Number of channels increases
(total “volume” is preserved!)

Some modern architectures
break this trend -- stay tuned!

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

76

Example: LeNet-5

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 81

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

As we go through the network:

Spatial size decreases
(using pooling or strided conv)

Number of channels increases
(total “volume” is preserved!)

Some modern architectures
break this trend -- stay tuned!

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

As we progress through the network:

Spatial size decreases

(using pooling or striped convolution)

Number of channels increases

(total “volume” is preserved!)

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

77

Example: LeNet-5

Justin Johnson January 31, 2022

Example: LeNet-5

Lecture 7 - 81

Layer Output Size Weight Size
Input 1 x 28 x 28
Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5
ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14
Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5
ReLU 50 x 14 x 14
MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450
Linear (2450 -> 500) 500 2450 x 500
ReLU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

As we go through the network:

Spatial size decreases
(using pooling or strided conv)

Number of channels increases
(total “volume” is preserved!)

Some modern architectures
break this trend -- stay tuned!

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

As we progress through the network:

Spatial size decreases

(using pooling or striped convolution)

Number of channels increases

(total “volume” is preserved!)

Some modern architectures
break this trend—stay tuned!

Lecun et al., “Gradient-based learning applied to document recognition”, 1998

78

Problem: Deep Networks very hard to train

79

Components of Convolutional Neural Networks

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Convolution Layers Pooling Layers Normalization

x W1 W2h s

Justin Johnson January 31, 2022

Components of a Fully-Connected Network

Lecture 7 - 10

x h s

Fully-Connected Layers Activation FunctionFully-Connected Layers Activation Functions

,

,

80

Batch Normalization

We can normalize a batch of activations using:

̂x =
x − E[x]

Var[x]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

81

Batch Normalization

We can normalize a batch of activations using:

̂x =
x − E[x]

Var[x]

Idea: “Normalize” the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization results

This is a differentiable function, so
we can use it as an operator in our
networks and backdrop through it!

Ioffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

82

Summary: Components of Convolutional Network

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Justin Johnson January 31, 2022

Components of a Convolutional Network

Lecture 7 - 11

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

!"!,# =
"!,# − %#
&#$ + (

Convolution Layers Pooling Layers Normalization

x W1 W2h s

Justin Johnson January 31, 2022

Components of a Fully-Connected Network

Lecture 7 - 10

x h s

Fully-Connected Layers Activation FunctionFully-Connected Layers Activation Functions

83

Summary: Components of Convolutional Network

Problem: What is the right way to combine all these components?

Justin Johnson January 31, 2022

Convolutional Networks

Lecture 7 - 71

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

84

Next time: CNN Architectures

Final Project Overview
• Research-oriented final project
• Instead of a final exam!

• Objectives
• Gain experience reading literature
• Reproduce published results
• Propose a new idea and test the results!

85

Final Project Overview
• Research-oriented final project
• Instead of a final exam!

• Objectives
• Gain experience reading literature
• Reproduce published results
• Propose a new idea and test the results!

85

Can be completed in teams of 1-3 people

Final Project Deliverables
1. A written paper review
2. In-class paper presentation
3. Reproduce published results
4. Extend results with new idea, technique or dataset
5. Document results in written report

86

Final project teams will be based on overlapping interest

87

(1) Paper Review and (2) Presentation

Students will choose from the ‘core’ list
of papers on course website

The 1-page paper review will be due 1-
week before the scheduled presentation

Each team will be assigned one of the
‘core’ papers to review and present in-class

Presentation schedule will be based on
paper topic as shown in course calendar

More details on review and presentation
criteria in following lectures

https://deeprob.org/papers/
https://deeprob.org/papers/
https://deeprob.org/calendar/

(3) Paper Reproduction and (4) Extension

88

Each team will choose a paper relating
to deep learning and robot perception

Then reimplement and reproduce at least one of the
paper’s published results (not necessarily all the results)

Then, each team will test one of their own ideas!

Doesn’t have to be same paper you presented in class

By extending the paper’s model using new architecture or technique or dataset
Your chance to experiment with deep learning and contribute to the field!

More details on reproduction and extension
in following lectures

(5) Project Report

• The final deliverable for your final project

• A 1-2 page paper
• What problem within robot perception or manipulation?

• What work has been done in this area?

• What approach did you investigate?

• What questions and directions exist for future work?

89

More details on report in following lectures

Final Project Grading Overview

90

More details on report in following lectures

91

Lecture 7
Convolutional Neural Networks
University of Michigan and University of Minnesota

DeepRob

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

