
1Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

DeepRob
Lecture 5
Neural Networks
University of Michigan and University of Minnesota

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org

Project 1—Reminder
• Instructions and code available on the website
• Here: deeprob.org/projects/project1/

• Uses Python, PyTorch and Google Colab

• Implement KNN, linear SVM, and linear softmax classifiers

• Autograder is online and updated
• Due Thursday, January 26th 11:59 PM EST

2

http://deeprob.org/projects/project1/

Recap from Previous Lectures

3

• Use Linear Models for image
classification problems.

• Use Loss Functions to express
preferences over different choices
of weights.

• Use Regularization to prevent
overfitting to training data.

• Use Stochastic Gradient Descent
to minimize our loss functions and
train the model.

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Li = − log(
expsyi

∑i expsj
)

Li = ∑
j≠yi

max(0,sj = − syi
+ 1)

L =
1
N

N

∑
i=1

Li + R(W)

Softmax

SVM

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score
= 0

Car score
increases
this way

Car template
on this line

Cat
Score

Airplane
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a
high-dimensional space

Pixel
(15, 8, 0)

Pixel
(11, 11, 0)

Justin Johnson January 19, 2022

Summary

Lecture 4 - 103

1. Use Linear Models for image
classification problems

2. Use Loss Functions to express
preferences over different
choices of weights

3. Use Regularization to prevent
overfitting to training data

4. Use Stochastic Gradient
Descent to minimize our loss
functions and train the model

Softmax SVM

4

Neural Networks

Problem: Linear Classifiers aren’t that powerful

5

Geometric Viewpoint Visual Viewpoint

One template per class:

Can’t recognize different modes of a
class

X

Y

One solution: Feature Transforms

6

X

Y

Original space

r = (x2 + y2)1/2

θ = tan−1(y/x)

Feature

Transform

r

Feature space

θ

One solution: Feature Transforms

7

X

Y

Original space

r = (x2 + y2)1/2

θ = tan−1(y/x)

Feature

Transform

r

Feature space

θ

Linear classifier in
feature space

One solution: Feature Transforms

8

X

Y

Original space

r = (x2 + y2)1/2

θ = tan−1(y/x)

Feature

Transform

r

Feature space

θ

Linear classifier in
feature space

Nonlinear classifier
in original space!

Image Features: Color Histogram

9

Ignores texture,
spatial positions

Frog image is in the public domain

+1

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Image Features: Histogram of Oriented Gradients (HoG)

10

1. Compute edge direction/
strength at each pixel

2. Divide image into 8x8 regions

3. Within each region compute a

histogram of edge direction
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999

Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

Image Features: Histogram of Oriented Gradients (HoG)

11

1. Compute edge direction/
strength at each pixel

2. Divide image into 8x8 regions

3. Within each region compute a

histogram of edge direction
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999

Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

Justin Johnson January 24, 2022Lecture 5 - 12

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented Gradients (HoG)

Example: 320x240 image gets
divided into 40x30 bins;

9 directions per bin;

feature vector has 30*40*9 =
10,800 numbers

Image Features: Histogram of Oriented Gradients (HoG)

12

1. Compute edge direction/
strength at each pixel

2. Divide image into 8x8 regions

3. Within each region compute a

histogram of edge direction
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999

Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005

Justin Johnson January 24, 2022Lecture 5 - 12

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented Gradients (HoG)

Example: 320x240 image gets
divided into 40x30 bins;

9 directions per bin;

feature vector has 30*40*9 =
10,800 numbers

Weak edges

Strong diagonal edges

Edges in all directions

Capture
texture and
position,
robust to
small image
changes

Image Features: Bag of Words (Data-Driven!)

13

Justin Johnson January 24, 2022

Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 15

Extract random
patches

Cluster patches to
form “codebook”
of “visual words”

Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
Car image is CC0 1.0 public domain

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005

Image Features: Bag of Words (Data-Driven!)

14

Justin Johnson January 24, 2022

Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 15

Extract random
patches

Cluster patches to
form “codebook”
of “visual words”

Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
Car image is CC0 1.0 public domain

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005
Justin Johnson January 24, 2022

Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 16

Extract random
patches

Cluster patches to
form “codebook”
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

Image Features

15

Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17

Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17

Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17

Example: Winner of 2011 ImageNet Challenge
Low-level feature extraction 10k patches per image

• SIFT: 128-dims
• Color: 96-dim

FV extraction and compression:
• N=1024 Gaussians, R=4 regions 520K dim x 2
• Compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

≈

→

16F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.

} Reduced to 64-dim with PCA

Image Features vs Neural Networks

17

Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17

Feature Extraction

training

f
10 numbers giving
scores for classes

Image Features vs Neural Networks

18

Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17

Feature Extraction

training

f
10 numbers giving
scores for classes

Justin Johnson January 24, 2022

Image Features vs Neural Networks

Lecture 5 - 20

Feature Extraction
f

training

training

10 numbers giving
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
Reproduced with permission.

10 numbers giving
scores for classes

training

10 numbers giving
scores for classes

Neural Networks

19

Input: x ∈ ℝD Output: f(x) ∈ ℝC

Before: Linear Classifier:
Learnable parameters:

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Neural Networks

20

Input: x ∈ ℝD Output: f(x) ∈ ℝC

Before: Linear Classifier:
Learnable parameters:

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2

Neural Networks

21

Input: x ∈ ℝD Output: f(x) ∈ ℝC

Before: Linear Classifier:
Learnable parameters:

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2
Learnable parameters: W1 ∈ ℝH×D, b1 ∈ ℝH, W2 ∈ ℝC×H, b2 ∈ ℝC

Feature Extraction

Linear Classifier

Neural Networks

22

Input: x ∈ ℝD Output: f(x) ∈ ℝC

Before: Linear Classifier:
Learnable parameters:

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2
Learnable parameters: W1 ∈ ℝH×D, b1 ∈ ℝH, W2 ∈ ℝC×H, b2 ∈ ℝC

Feature Extraction

Linear Classifier

Neural Networks

23

Input: x ∈ ℝD Output: f(x) ∈ ℝC

Before: Linear Classifier:
Learnable parameters:

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2
Learnable parameters: W1 ∈ ℝH×D, b1 ∈ ℝH, W2 ∈ ℝC×H, b2 ∈ ℝC

Or Three-Layer Neural Network:
f(x) = W3 max(0,W2 max(0,W1x + b1) + b2) + b3

Neural Networks

24

Before: Linear Classifier: f(x) = Wx + b

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h s

Neural Networks

25

Before: Linear Classifier: f(x) = Wx + b

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

Element of
gives the effect on

 from

(i, j) W1

hi xj

Element of
gives the effect on

 from

(i, j) W2

si hj

Input:
3072

Hidden Layer:
100

Output:10

x W1 W2h s

Neural Networks

26

Before: Linear Classifier: f(x) = Wx + b

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2

Element of
gives the effect on

 from

(i, j) W1

hi xj

Element of
gives the effect on

 from

(i, j) W2

si hj

All elements of affect
all elements of

x
h

All elements of affect
all elements of

h
s

Fully-connected neural network also
“Multi-Layer Perceptron” (MLP)

Input:
3072

Hidden Layer:
100

Output:10

Neural Networks

27

Linear classifier: One template per class
Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

28

Neural net: first layer is bank of templates;
Second layer recombines templates Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

29

Can use different templates to cover
multiple modes of a class! Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

30

Can use different templates to cover
multiple modes of a class! Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Neural Networks

31

“Distributed representation”: Most
templates not interpretable! Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

Now: Two-Layer Neural Network:

Deep Neural Networks

32

x W1 h1 W2 h2 W3 h3 W4 h4 W5 h5 W6 s

Input:
3072

Output:10

s = W6 max(0,W5 max(0,W4 max(0,W3 max(0,W2 max(0,W1x)))))

Depth = number of layers

Width:
Size of
each
layer

Activation Functions

33

2-Layer Neural Network f(x) = W2 max(0,W1x + b1) + b2

The auction
is called “Rectified Linear Unit”

ReLU(z) = max(0,z) This is called the activation function
of the neural network

Justin Johnson January 24, 2022

$! = ($max 0,(%! + *% + *$
Activation Functions

Lecture 5 - 34

2-layer Neural Network
The function !"#$ % = max(0, %)
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Activation Functions

34

2-Layer Neural Network f(x) = W2 max(0,W1x + b1) + b2

The auction
is called “Rectified Linear Unit”

ReLU(z) = max(0,z) This is called the activation function
of the neural network

Justin Johnson January 24, 2022

$! = ($max 0,(%! + *% + *$
Activation Functions

Lecture 5 - 34

2-layer Neural Network
The function !"#$ % = max(0, %)
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Q: What happens if we build a neural
network with no activation function?

f(x) = W2(W1x + b1) + b2

Activation Functions

35

2-Layer Neural Network f(x) = W2 max(0,W1x + b1) + b2

The auction
is called “Rectified Linear Unit”

ReLU(z) = max(0,z) This is called the activation function
of the neural network

Justin Johnson January 24, 2022

$! = ($max 0,(%! + *% + *$
Activation Functions

Lecture 5 - 34

2-layer Neural Network
The function !"#$ % = max(0, %)
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Q: What happens if we build a neural
network with no activation function?

f(x) = W2(W1x + b1) + b2

= (W1W2)x + (W2b1 + b2)

A: We end up with a linear classifier

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Activation Functions

36

Sigmoid

σ(x) =
1

1 + e − x

tanh

tanh(x) =
e2x − 1
e2x + 1

ReLU
max(0,x)

Leaky ReLU
max(0.2x, x)

Softplus
log(1 + exp(x))

ELU

f(x) = {x, x > 0
α(exp(x) −), x ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Activation Functions

37

Sigmoid

σ(x) =
1

1 + e − x

tanh

tanh(x) =
e2x − 1
e2x + 1

ReLU
max(0,x)

Leaky ReLU
max(0.2x, x)

Softplus
log(1 + exp(x))

ELU

f(x) = {x, x > 0
α(exp(x) −), x ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Justin Johnson January 24, 2022

Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0
ReLU is a good default choice for most
problems

Neural Net in <20 lines!

38

Input layer
Hidden layer

Output layer

Justin Johnson January 24, 2022

Neural Net in <20 lines!

Lecture 5 - 43

Initialize weights
and data

Compute loss
(sigmoid activation,
L2 loss)

Compute
gradients

SGD
step

Initialize weights
and data

Compute loss (Sigmoid
activation, L2 loss)

Compute gradients

SGD step

Space Warping

39

x1

x2

Consider a linear transform:
where are each 2-dimensional

h = Wx + b
x, b, h

Space Warping

40

x1

x2

Consider a linear transform:
where are each 2-dimensional

h = Wx + b
x, b, h

h1

h2

Feature transform:
h = Wx + b

Space Warping

41

x1

x2

h1

h2A B

C

D
AB

C D

Consider a linear transform:
where are each 2-dimensional

h = Wx + b
x, b, h

Feature transform:
h = Wx + b

Space Warping

42

x1

x2

Points not linearly separable
in original space

Consider a linear transform:
where are each 2-dimensional

h = Wx + b
x, b, h

Space Warping

43

x1

x2

h1

h2

Points not linearly separable
in original space

Consider a linear transform:
where are each 2-dimensional

h = Wx + b
x, b, h

Feature transform:
h = Wx + b

Points still not linearly
separable in feature space

Space Warping

44

x1

x2

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

h1

h2

Feature transform:
h = ReLU(Wx + b)

A
A

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Space Warping

45

x1

x2

h1

h2A
AB B

B is “collapsed”
onto +h2 axis

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Space Warping

46

x1

x2

h1

h2A
A

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

B B
B is “collapsed”
onto +h2 axisD

D
D is “collapsed”
onto +h1 axis

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Space Warping

47

x1

x2

h1

h2A
AB B

B is “collapsed”
onto +h2 axisD

D
D is “collapsed”
onto +h1 axis

C C
C is “collapsed”
onto origin

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Space Warping

48

x1

x2

h1

h2

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Space Warping

49

x1

x2

h1

h2

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Space Warping

50

x1

x2

h1

h2

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Points are linearly
separable in feature space!

Space Warping

51

x1

x2

h1

h2

Consider a neural net hidden layer:
 where are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Points are linearly
separable in feature space!

Linear classifier in
feature space gives
nonlinear classifier
in original space

Setting the number of layers and their sizes

52

Justin Johnson January 24, 2022

Setting the number of layers and their sizes

Lecture 5 - 67

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units3 hidden units 6 hidden units 20 hidden units

More hidden units = more capacity

Don’t regularize with size; instead use stronger L2

53

Justin Johnson January 24, 2022

Don’t regularize with size; instead use stronger L2

Lecture 5 - 68

(Web demo with ConvNetJS:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

λ = 0.001 λ = 0.01 λ = 0.1

Web demo with ConvNetJS: https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Universal Approximation

54

A neural network with one hidden layer can approximate
any function with arbitrary precision*f : ℝN → ℝM

*Many technical conditions: Only holds on compact subsets of ; function must be continuous;
need to define "arbitrary precision”; etc.

ℝN

Universal Approximation

55

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

Universal Approximation

56

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

Universal Approximation

57

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

Universal Approximation

58

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

Output is a sum of shifted,
scaled ReLUs:

Justin Johnson January 24, 2022

Universal Approximation

Lecture 5 - 73

Example: Approximating a function f: R -> R with a two-layer ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3

Input:
x (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

Second layer weights: u (1,3)
First layer bias: p (1,)

Output:
y (1,)

h1 = max(0, w1 * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y = u1 * h1 + u2 * h2 + u3 * h3 + p

y = u1 * max(0, w1 * x + b1)
+ u2 * max(0, w2 * x + b2)
+ u3 * max(0, w3 * x + b3)
+ p

Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of wi

Slope is
given by uiwi

Position of
“bend” give by bi

Universal Approximation

59

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

60

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1)

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

61

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1) −m1 max(0,x − s2)

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

62

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1) −m1 max(0,x − s2)

−m2 max(0,x − s3)

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

63

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1) −m1 max(0,x − s2)

−m2 max(0,x − s3) m2 max(0,x − s4)

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

64

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

x

With 4K hidden units we can build a
sum of K bumps

Approximate functions with bumps!

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

65

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

x

With 4K hidden units we can build a
sum of K bumps

Approximate functions with bumps!

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

66

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

x

With 4K hidden units we can build a
sum of K bumps

Approximate functions with bumps!

What about …
- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

See Nielsen, Chapter 4

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

http://neuralnetworksanddeeplearning.com/chap4.html

Universal Approximation

67

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

First layer weights:
First layer bias:

w(3,1)
b(3,)

Second layer weights:
First layer bias:

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

x

With 4K hidden units we can build a
sum of K bumps

Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Justin Johnson January 24, 2022

Universal Approximation

Lecture 5 - 84

Example: Approximating a function f: R -> R with a two-layer ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3

Input:
x (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

Second layer weights: u (1,3)
First layer bias: p (1,)

Output:
y (1,)

h1 = max(0, w1 * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y = u1 * h1 + u2 * h2 + u3 * h3 + p

y = u1 * max(0, w1 * x + b1)
+ u2 * max(0, w2 * x + b2)
+ u3 * max(0, w3 * x + b3)
+ p

x
Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Universal Approximation

68

h1

h2

h3

yx Output:
y(1,)

Input:
x(1,)

u1
u2

u3w3

w1
w2

x

With 4K hidden units we can build a
sum of K bumps

Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Justin Johnson January 24, 2022

Universal Approximation

Lecture 5 - 84

Example: Approximating a function f: R -> R with a two-layer ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3

Input:
x (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

Second layer weights: u (1,3)
First layer bias: p (1,)

Output:
y (1,)

h1 = max(0, w1 * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y = u1 * h1 + u2 * h2 + u3 * h3 + p

y = u1 * max(0, w1 * x + b1)
+ u2 * max(0, w2 * x + b2)
+ u3 * max(0, w3 * x + b3)
+ p

x
Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Universal approximation tells us:
- Neural nets can represent any function
Universal approximation DOES NOT tell us:
- Whether we can actually learn any function with SGD
- How much data we need to learn a function

Remember: kNN is also a universal approximator!

Example: Approximating a function with a two-layer ReLU networkf : ℝ → ℝ

Convex Functions

69

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Example: is convex:f(x) = x2

Convex Functions

70

Example: is convex:f(x) = x2

x1 x2

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Convex Functions

71

Example: is convex:f(x) = x2

x1 x2

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Convex Functions

72

Example: is not
convex:

f(x) = cos(x) x2

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

x1

Convex Functions

73

Intuition: A convex function is a
(multidimensional) bowl

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 92

A function is convex if for all ,

Intuition: A convex function
is a (multidimensional) bowl

*Many technical details! See e.g. IOE 661 / MATH 663

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Convex Functions

74

Intuition: A convex function is a
(multidimensional) bowl

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Linear classifiers optimize a
convex function!
s = f(x; W) = Wx

Li = − log(
esyi

∑ + jesj
)

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

L =
1
N

N

∑
i=1

Li + R(W)

Softmax

SVM

where is L2 or
L1 regularization

R(W)

Convex Functions

75

Intuition: A convex function is a
(multidimensional) bowl

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Neural net losses sometimes look
convex-ish:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 95

A function is convex if for all ,

Intuition: A convex function
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Neural net losses sometimes look
convex-ish:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units
per hidden layer, 10 categories, with softmax loss

Convex Functions

76

Intuition: A convex function is a
(multidimensional) bowl

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

But often clearly nonconvex:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 96

A function is convex if for all ,

Intuition: A convex function
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

But often clearly nonconvex:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units
per hidden layer, 10 categories, with softmax loss

Convex Functions

77

Intuition: A convex function is a
(multidimensional) bowl

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

With local minima:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 97

A function is convex if for all ,

Intuition: A convex function
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

With local minima:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units
per hidden layer, 10 categories, with softmax loss

Convex Functions

78

Intuition: A convex function is a
(multidimensional) bowl

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32
units per hidden layer, 10 categories, with softmax loss

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 98

A function is convex if for all ,

Intuition: A convex function
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units
per hidden layer, 10 categories, with softmax loss

Convex Functions

79

Intuition: A convex function is a
(multidimensional) bowl

A function is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are
easy to optimize: can derive theoretical
guarantees about converging to global
minimum*

Most neural networks need
nonconvex optimization
- Few or no guarantees

about convergence
- Empirically it seems to work

anyway
- Active area of research

Summary

80

Feature transform + Linear classifier
allows nonlinear decision boundaries

Neural Networks as learnable feature
transforms

Summary

81

From linear classifiers to
fully-connected networks

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

 f(x) = W2 max(0,W1x + b1) + b2

Linear classifier: One template per class

Neural networks: Many reusable templates

Summary

82

From linear classifiers to
fully-connected networks

 f(x) = W2 max(0,W1x + b1) + b2

Universal approximation

Nonconvex

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 98

A function is convex if for all ,

Intuition: A convex function
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units
per hidden layer, 10 categories, with softmax loss

x

Space Warping

Justin Johnson January 24, 2022

Setting the number of layers and their sizes

Lecture 5 - 67

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units

x W1 W2h sInput:
3072

Hidden Layer:
100

Output:10

Problem: How to compute gradients?
 Nonlinear score function

 Per-element data loss

 L2 regularization

 Total loss

If we can compute then we can optimize with SGD

s = W2 max(0,W1x + b!) + b2
Li = ∑

j≠yi

max(0,sj − syi
+ 1)

R(W) = ∑
k

W2
k

L(W1, W2, b1, b2) =
1
N

N

∑
i=1

Li + λR(W1) + λR(W2)

δL
δW1

,
δL

δW2
,

δL
δb1

,
δL
δb2

83

84

Next time: Backpropagation

85Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

DeepRob
Lecture 5
Neural Networks
University of Michigan and University of Minnesota

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org
https://deeprob.org

