

- Instructions and code available on the website • Here: <u>deeprob.org/projects/project1/</u>
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is online and updated
- Due Thursday, January 26th 11:59 PM EST

Project 1 – Reminder

Recap from Previous Lectures

- Use Linear Models for image classification problems.
- Use Loss Functions to express preferences over different choices of weights.
- Use **Regularization** to prevent overfitting to training data.
- for t in range(num_steps): scent dw = compute_gradient(w) and t w -= learning_rate * dw

s = f(x; W) = Wxgelatin meat large box can mug marker $L_i = -\log(\frac{\exp^{s_{y_i}}}{\sum_i \exp^{s_j}})$ **Softmax** $L_i = \sum \max(0, s_j = -s_{y_i} + 1)$ **SVM** $L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W)$ for t in range(num_steps): for dw = compute_gradient(w) :eps): v = rho * v + dww -= learning_rate * v :nt(w) d٧ v = rho * v + dww -= learning_rate * v

Neural Networks

4

Geometric Viewpoint

Problem: Linear Classifiers aren't that powerful

One solution: Feature Transforms

Original space

Feature space

One solution: Feature Transforms

Original space

Feature space

One solution: Feature Transforms

Original space

Feature space

Image Features: Color Histogram

Frog image is in the public domain

DR Image Features: Histogram of Oriented Gradients (HoG)

- 1. Compute edge direction/ strength at each pixel
- 2. Divide image into 8x8 regions
- 3. Within each region compute a histogram of edge direction weighted by edge strength

Lowe, "Object recognition from local scale-invariant features," ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

DR Image Features: Histogram of Oriented Gradients (HoG)

- 1. Compute edge direction/ strength at each pixel
- 2. Divide image into 8x8 regions
- 3. Within each region compute a histogram of edge direction weighted by edge strength

Lowe, "Object recognition from local scale-invariant features," ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Example: 320x240 image gets divided into 40x30 bins; 9 directions per bin; feature vector has 30*40*9 =10,800 numbers

DR Image Features: Histogram of Oriented Gradients (HoG)

Weak edges

Strong diagonal edges

Edges in all directions

Capture texture and position, robust to small image changes

- 1. Compute edge direction/ strength at each pixel
- 2. Divide image into 8x8 regions
- 3. Within each region compute a histogram of edge direction weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 9 directions per bin; feature vector has 30*40*9 =10,800 numbers

DR Image Features: Bag of Words (Data-Driven!)

Step 1: Build codebook

Extract random patches

Cluster patches to form "codebook" of "visual words"

DR Image Features: Bag of Words (Data-Driven!)

Step 1: Build codebook

Extract random patches

Step 2: Encode images

Fei-Fei and Perona, "A bayesian hierarchical model for learning natural scene categories," CVPR 2005

Cluster patches to form "codebook" of "visual words"

Image Features

DR Example: Winner of 2011 ImageNet Challenge

Low-level feature extraction \approx 10k patches per image

- SIFT: 128-dims
 Color: 96-dim
 Reduced to 64-dim with PCA

FV extraction and compression:

- N=1024 Gaussians, R=4 regions \rightarrow 520K dim x 2
- Compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

F. Perronnin, J. Sánchez, "Compressed Fisher vectors for LSVRC", PASCAL VOC / ImageNet workshop, ICCV, 2011.

Image Features vs Neural Networks

Image Features vs Neural Networks

Krizhevsky, Sutskever, and Hinton, "Imagenet classification with deep convolutional neural networks", NIPS 2012. Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. Reproduced with permission.

10 numbers giving scores for classes

training

Input: $x \in \mathbb{R}^D$ **Output:** $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Neural Networks

Output: $f(x) \in \mathbb{R}^C$ Input: $x \in \mathbb{R}^D$

Before: Linear Classifier: f(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

Neural Networks

Output: $f(x) \in \mathbb{R}^C$ Input: $x \in \mathbb{R}^D$

Before: Linear Classifier: f(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 \max(0, W_1x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}, b_1 \in \mathbb{R}^H, W_2 \in \mathbb{R}^{C \times H}, b_2 \in \mathbb{R}^C$

Neural Networks

Input: $x \in \mathbb{R}^D$ **Output:** $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = \frac{W_2}{M_2} \max(0, W_1x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}, b_1 \in \mathbb{R}^H, W_2 \in \mathbb{R}^{C \times H}, b_2 \in \mathbb{R}^C$

Neural Networks

Feature Extraction

Linear Classifier

Input: $x \in \mathbb{R}^D$ **Output:** $f(x) \in \mathbb{R}^C$

Before: Linear Classifier: f(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: f(x)Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}, b_1$

Or Three-Layer Neural Network: $f(x) = W_3 \max(0, W_2 \max(0, W_1 x + b_1) + b_2) + b_3$

Neural Networks

Feature Extraction

Linear Classifier

$$= \frac{W_2 \max(0, W_1 x + b_1)}{1} + b_2$$

$$_1 \in \mathbb{R}^H, W_2 \in \mathbb{R}^{C \times H}, b_2 \in \mathbb{R}^C$$

Before: Linear Classifier:

Now: Two-Layer Neural Network:

Neural Networks

f(x) = Wx + b

 $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Before: Linear Classifier:

Now: Two-Layer Neural Network:

Element (i, j) of W_1 gives the effect on h_i from x_i

Neural Networks

f(x) = Wx + b

 $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

Element (i, j) of W_2 gives the effect on s_i from h_j

Hidden Layer: 100

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Before: Linear Classifier:

Now: Two-Layer Neural Network:

Element (i, j) of W_1 gives the effect on h_i from x_i

Input: 3072

All elements of *x* affect all elements of h

Neural Networks

f(x) = Wx + b

 $f(x) = W_2 \max(0, W_1 x + b_1) + b_2$

Hidden Layer: 100

Output:10

All elements of h affect all elements of s

 s_i from h_j

Fully-connected neural network also "Multi-Layer Perceptron" (MLP)

Neural Networks

Before: Linear score function

Neural net: first layer is bank of templates; Second layer recombines templates

Neural Networks

Before: Linear score function

Can use different templates to cover multiple modes of a class!

Neural Networks

Before: Linear score function **Now:** Two-Layer Neural Network:

Can use different templates to cover multiple modes of a class!

Neural Networks

Before: Linear score function **Now:** Two-Layer Neural Network:

"Distributed representation": Most templates not interpretable!

Neural Networks

Before: Linear score function **Now:** Two-Layer Neural Network:

DR

Deep Neural Networks

Depth = number of layers

Activation Functions

2-Layer Neural Network

The auction ReLU(z) = max(0,z)is called "Rectified Linear Unit"

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Activation Functions

2-Layer Neural Network

The auction ReLU(z) = max(0,z) is called "Rectified Linear Unit"

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$f(x) = W_2(W_1x + b_1) + b_2$$

Activation Functions

2-Layer Neural Network

The auction ReLU(z) = max(0,z)is called "Rectified Linear Unit"

$$f(x) = W_2 \max(0, W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$f(x) = W_2(W_1x + b_1) + b_2$$

= $(W_1W_2)x + (W_2b_1 + b_2)$

A: We end up with a linear classifier

Activation Functions

10

10

10

10-

Sigmoid $\sigma(x) = \frac{1}{1 + e - x}$ -10tanh $\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$ -10 ReLU max(0,x)-10

Leaky ReLU max(0.2x, x)

Softplus

 $\log(1 + \exp(x))$

Activation Functions

ReLU is a good default choice for most problems

Leaky ReLU max(0.2x, x)

Softplus

 $\log(1 + \exp(x))$

-2

Neural Net in <20 lines!

compute lo activation, l

Compute gr

SGD step

	1	<pre>import numpy as np</pre>
	2	<pre>from numpy.random import randn</pre>
	3	
eights	4	N, Din, H, Dout = 64, 1000, 100, 10
	5	x, y = randn(N, Din), randn(N, Dout)
	6	w1, w2 = randn(Din, H), randn(H, Dou ⁻
	7	<pre>for t in range(10000):</pre>
oss (Sigmo L2 loss)	8	h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
	9	y_pred = h.dot(w2)
	10	loss = np.square(y_pred - y).sum()
radients	11	dy_pred = 2.0 * (y_pred - y)
	12	dw2 = h.T.dot(dy_pred)
	13	dh = dy_pred.dot(w2.T)
	14	dw1 = x.T.dot(dh * h * (1 - h))
	15	w1 -= 1e-4 * dw1
	16	w2 -= 1e - 4 * dw2

Consider a linear transform: h = Wx + bwhere *x*, *b*, *h* are each 2-dimensional

Consider a linear transform: h = Wx + bwhere *x*, *b*, *h* are each 2-dimensional Feature transform:

Points not linearly separable in original space

Consider a linear transform: h = Wx + bwhere x, b, h are each 2-dimensional

Points not linearly separable in original space

Consider a linear transform: h = Wx + bwhere x, b, h are each 2-dimensional Feature transform: h = Wx + b h_1 Points still not linearly separable in feature space 43

Points not linearly separable in original space

10

-10

Consider a neural net hidden layer: h = ReLU(Wx + b) $= \max(0, Wx + b)$ where x, b, h are each 2-dimensional Feature transform: h = ReLU(Wx + b) h_1 10

Points not linearly separable in original space

Points not linearly separable in original space

0

Setting the number of layers and their sizes

6 hidden units

20 hidden units

More hidden units = more capacity

DR Don't regularize with size; instead use stronger L2

Web demo with ConvNetJS: https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

*Many technical conditions: Only holds on compact subsets of \mathbb{R}^N ; function must be continuous; need to define "arbitrary precision"; etc.

A neural network with one hidden layer can approximate any function $f : \mathbb{R}^N \to \mathbb{R}^M$ with arbitrary precision*

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network

 \mathcal{W}_1 Input: \mathcal{X} x(1,)

First layer weights: w(3,1)

First layer bias: b(3,)

Second layer weights: u(3,1)

 u_2

 U_{3}

 h_2

 h_{3} ,

First layer bias: p(1,)

Output:

y(1,)

$$h_{1} = \max(0, w_{1}x + b_{1})$$

$$h_{2} = \max(0, w_{2}x + b_{2})$$

$$h_{1} = \max(0, w_{3}x + b_{3})$$

$$y = u_{1}h_{1} + u_{2}h_{2} + u_{3}h_{3} + p$$

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network

 ${\mathcal W}_1$ Input: Output: u_2 n_2 y(1,)x(1,) $\mathcal{U}_{\mathcal{Z}}$ h_3 First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

 ${\mathcal W}_1$ Input: Output: u_2 h_2 x(1,)y(1,) h_{3} , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$ +*p*

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network

Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of W_i

 \mathcal{W}^{\cdot} Input: Output: u_2 h_2 x(1,)y(1,) $\mathcal{U}_{\mathcal{Z}}$ h_{3} , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1 x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network

 \mathcal{W}^{\cdot} Input: Output: u_2 h_2 x(1,)y(1,) $\mathcal{U}_{\mathcal{Z}}$ h_{3} , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1 x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

 \mathcal{W}^{2} Input: Output: u_2 h_2 x(1,)y(1,) $\mathcal{U}_{\mathcal{I}}$ h_3 , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1 x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

 \mathcal{W}^{2} Input: Output: u_2 h_2 x(1,)y(1,) $\mathcal{U}_{\mathcal{I}}$ h_3 , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1 x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

 \mathcal{W}^{\cdot} Input: Output: u_2 h_2 x(1,)y(1,) $\mathcal{U}_{\mathcal{I}}$ $\cdot h_3$, First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1 x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1 h_1 + u_2 h_2 + u_3 h_3 + p$ +*p*

 \mathcal{W}^{\cdot} Input: Output: u_2 h_2 y(1,)x(1,) h_3 , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

 \mathcal{W}^{\cdot} Input: Output: u_2 h_2 x(1,)y(1,) h_3 , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

 \mathcal{W}^{\cdot} Input: Output: u_2 n_2 x(1,)y(1,)' h_{3} , First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +p

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network

What about ...

- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

See <u>Nielsen, Chapter 4</u>

With 4K hidden units we can build a sum of K bumps

Approximate functions with bumps!

 \mathcal{W}^{\cdot} Input: Output: u_2 n_2 x(1,)y(1,) $\cdot h_3$, First layer weights: w(3,1)Second layer weights: u(3,1)First layer bias: b(3,)First layer bias: p(1,) $h_1 = \max(0, w_1x + b_1)$ $y = u_1 \max(0, w_1 x + b_1)$ $h_2 = \max(0, w_2 x + b_2)$ $+u_2 \max(0, w_2 x + b_2)$ $h_1 = \max(0, w_3 x + b_3)$ $+u_3 \max(0, w_3 x + b_3)$ $y = u_1h_1 + u_2h_2 + u_3h_3 + p$ +*p*

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network

Reality check: Networks don't really learn bumps!

With 4K hidden units we can build a

Approximate functions with bumps!

Universal approximation tells us:

- Neural nets can represent any function

Universal approximation **DOES NOT** tell us:

- Whether we can actually learn any function with SGD
- How much data we need to learn a function

Remember: kNN is also a universal approximator!

Example: Approximating a function $f: \mathbb{R} \to \mathbb{R}$ with a two-layer ReLU network

Reality check: Networks don't really learn bumps!

With 4K hidden units we can build a

Approximate functions with bumps!

 $\boldsymbol{\chi}$

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1 - t)x_2 \le tf(x_1) + (1 - t)f(x_2)$

Example: $f(x) = x^2$ is convex:

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$

Example: $f(x) = x^2$ is convex:

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1 - t)x_2 \le tf(x_1) + (1 - t)f(x_2)$

Example: $f(x) = x^2$ is convex:

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1 - t)x_2 \le tf(x_1) + (1 - t)f(x_2)$

Example: $f(x) = \cos(x)$ is not convex:

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is convex if for all $x_1, x_2 \in X, x_2 \in [0, 1]$ $f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$ $f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1 - t)x_2 \le tf(x_1) + (1 - t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Linear classifiers optimize a **convex function!** s = f(x; W) = Wx $L_i = -\log(\frac{e^{s_{y_i}}}{\sum + je^{s_j}})$ Softmax $L_i = \sum \max(0, s_i - s_{v_i} + 1)$ SVM $J \neq y_{i}$ $L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W) \quad \text{where } R(W) \text{ is L2 or } L_i = 1$

A function $f_X X \oplus \mathbb{R}^N \to \mathbb{R}^R$ is **convex** if for $a_{x_1, y_2} X \oplus X, \notin [0, 1]$, $f(tx_1 + f(tx_1 + t)x_2) \stackrel{f(x_1 - t)}{\leq} x_2 \stackrel{f(x_1 - t)}{\leq} x_2 \stackrel{f(x_1 - t)}{\leq} x_2 \stackrel{f(x_1 - t)}{\leq} f(x_2) \stackrel{f(x_2 - t)$ Neural net losses sometimes look Intuition: A convex function is a convex-ish:

(multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

units per hidden layer, 10 categories, with softmax loss

A further for all $x_2 \times \mathcal{X}_2 \times \mathcal{X}$ $f(tx_1 + (1^{(tx_1t+x_1)} - \underline{x_2}) = \underbrace{x_1}^{(tx_1t+x_2)} + \underbrace{x_1}^{(tx_1t+x_2)} + \underbrace{x_1}^{(tx_1t+x_2)} + \underbrace{x_1}^{(tx_1t+x_2)} + \underbrace{x_2}^{(tx_1t+x_2)} + \underbrace{x_1}^{(tx_1t+x_2)} + \underbrace{x_2}^{(tx_1t+x_2)} + \underbrace{x_2$ But often clearly nonconvex:

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units per hidden layer, 10 categories, with softmax loss

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Convex Functions A function $f: X \subseteq \mathbb{R}^N \xrightarrow{\mathbb{R}} \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0, 1]$, $f(tx_1 + (1_{f(tx_1t)}, x_2) - \underline{\leq}) x_2 f \underline{<} x_{f_1}(x_1) + ((1 - t)) (f_2(x_2))$ With local minima: OSS w1[0, 0] 1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units per hidden layer, 10 categories, with softmax loss 77

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0,1]$, $f(tx_1 + (1 - t)x_2 \le tf(x_1) + (1 - t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Most neural networks need nonconvex optimization

- Few or no guarantees about convergence
- Empirically it seems to work anyway
- Active area of research

Feature transform + Linear classifier allows nonlinear decision boundaries

Summary

Neural Networks as learnable feature transforms

From linear classifiers to fully-connected networks

Summary

Linear classifier: One template per class

Neural networks: Many reusable templates

From linear classifiers to fully-connected networks $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ $f(x) = f(x_1 + (y_1 + y_1) + y_2) \le t$ Input: X h W_2 W_1 S 3072 Output:10 **Hidden Layer:** 100

Summary

Problem: How to compute gradients?

 $s = W_2 \max(0, W_1 x + b_1) + b_2$ $L_i = \sum \max(0, s_i - s_{v_i} + 1)$ $j \neq y_i$ $R(W) = \sum W_k^2$ k $L(W_1, W_2, b_1, b_2) = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$ Total loss If we can compute $\frac{\delta L}{\delta W_1}^{i-1}, \frac{\delta L}{\delta W_2}, \frac{\delta L}{\delta b_1}, \frac{\delta L}{\delta b_2}$ then we can optimize with SGD

Nonlinear score function Per-element data loss

L2 regularization

Next time: Backpropagation

