

Project 1—Reminder

- Instructions and code available on the website - Here: deeprob.org/projects/project1/
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is online and updated
- Due Thursday, January 26th 11:59 PM EST

Recap from Previous Lectures

－Use Linear Models for image classification problems．
－Use Loss Functions to express preferences over different choices of weights．
－Use Regularization to prevent overfitting to training data．
－Use Stochastic Gradient Descent to minimize our loss functions and train the model．

$$
\begin{aligned}
& s=f(x ; W)=W x
\end{aligned}
$$

$$
\begin{aligned}
& \text { 馗酋高首面 } \\
& L_{i}=-\log \left(\frac{\exp ^{5^{5}}}{\sum_{i} \mathrm{exp}^{5}}\right) \text { Softmax } \\
& L_{i}=\sum_{j \neq 1} \max \left(0, s_{j}=-s_{y}+1\right) \text { SVM } \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \\
& v=0 \\
& \text { for } \mathrm{t} \text { in range(num_steps): } \\
& d w=\text { compute_gradient(w) } \\
& \text { v = rho * v + dw } \\
& \text { w -= learning_rate } * \text { v }
\end{aligned}
$$

Neural Networks

DR

Problem: Linear Classifiers aren't that powerful

Geometric Viewpoint

Visual Viewpoint

One template per class:
Can't recognize different modes of a class

One solution: Feature Transforms

Original space

One solution: Feature Transforms

Original space

One solution: Feature Transforms

Original space

Image Features: Color Histogram

DR

Image Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction/ strength at each pixel
2. Divide image into 8×8 regions
3. Within each region compute a histogram of edge direction weighted by edge strength

DR

Image Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction/ strength at each pixel
2. Divide image into 8×8 regions
3. Within each region compute a histogram of edge direction weighted by edge strength

Example: 320x240 image gets divided into 40×30 bins;
9 directions per bin;
feature vector has $30 * 40 * 9=$ 10,800 numbers

DR

Image Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction/ strength at each pixel
2. Divide image into 8×8 regions
3. Within each region compute a histogram of edge direction weighted by edge strength

Weak edges

Strong diagonal edges

Edges in all directions
Capture texture and position, robust to small image changes

Example: 320x240 image gets divided into 40×30 bins; 9 directions per bin; feature vector has $30 * 40 * 9=$ 10,800 numbers

DR

Image Features: Bag of Words (Data-Driven!)
Step 1: Build codebook

Extract random patches

DR

Image Features: Bag of Words (Data-Driven!)
Step 1: Build codebook

Extract random patches

Cluster patches to form "codebook" of "visual words"

Step 2: Encode images

Image Features

DR

Example: Winner of 2011 ImageNet Challenge

Low-level feature extraction $\approx 10 \mathrm{k}$ patches per image

- SIFT: 128-dims
- Color: 96-dim $\}$ Reduced to 64 -dim with PCA

FV extraction and compression:

- $\mathrm{N}=1024$ Gaussians, $\mathrm{R}=4$ regions $\rightarrow 520 \mathrm{~K} \mathrm{dim} \mathrm{x} 2$
- Compression: $\mathrm{G}=8, \mathrm{~b}=1$ bit per dimension

One-vs-all SVM learning with SGD
Late fusion of SIFT and color systems

Image Features vs Neural Networks

Image Features vs Neural Networks

10 numbers giving scores for classes

Neural Networks

Input: $x \in \mathbb{R}^{D} \quad$ Output: $f(x) \in \mathbb{R}^{C}$
Before: Linear Classifier: $f(x)=W x+b$
Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Neural Networks

Input: $x \in \mathbb{R}^{D} \quad$ Output: $f(x) \in \mathbb{R}^{C}$
Before: Linear Classifier: $f(x)=W x+b$
Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$

Neural Networks

Input: $x \in \mathbb{R}^{D} \quad$ Output: $f(x) \in \mathbb{R}^{C}$
Before: Linear Classifier: $f(x)=W x+b$
Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$ Learnable parameters: $W_{1} \in \mathbb{R}^{H \times D}, b_{1} \in \mathbb{R}^{H}, W_{2} \in \mathbb{R}^{C \times H}, b_{2} \in \mathbb{R}^{C}$

Neural Networks

Input: $x \in \mathbb{R}^{D} \quad$ Output: $f(x) \in \mathbb{R}^{C}$
Before: Linear Classifier: $f(x)=W x+b$
Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Feature Extraction

Linear Classifier

Now: Two-Layer Neural Network: $f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$ Learnable parameters: $W_{1} \in \mathbb{R}^{H \times D}, b_{1} \in \mathbb{R}^{H}, W_{2} \in \mathbb{R}^{C \times H}, b_{2} \in \mathbb{R}^{C}$

Neural Networks

Input: $x \in \mathbb{R}^{D} \quad$ Output: $f(x) \in \mathbb{R}^{C}$
Before: Linear Classifier: $f(x)=W x+b$
Learnable parameters: $W \in \mathbb{R}^{D \times C}, b \in \mathbb{R}^{C}$

Feature Extraction

Linear Classifier

Now: Two-Layer Neural Network: $f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$ Learnable parameters: $W_{1} \in \mathbb{R}^{H \times D}, b_{1} \in \mathbb{R}^{H}, W_{2} \in \mathbb{R}^{C \times H}, b_{2} \in \mathbb{R}^{C}$

Or Three-Layer Neural Network:
$f(x)=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}\right)+b_{3}$

Neural Networks

Before: Linear Classifier:

$$
f(x)=W x+b
$$

Now: Two-Layer Neural Network:

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Neural Networks

Before: Linear Classifier: $\quad f(x)=W x+b$
Now: Two-Layer Neural Network: $\quad f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$

Element (i, j) of W_{1} gives the effect on h_{i} from x_{j}

100

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Before: Linear Classifier:

$$
f(x)=W x+b
$$

Now: Two-Layer Neural Network: $\quad f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}$
Element (i, j) of
gives the effect
h_{i} from x_{j}
All elements of x
all elements of h

DR

Neural Networks

Linear classifier: One template per class

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Neural net: first layer is bank of templates; Second layer recombines templates

Before: Linear score function
Now: Two-Layer Neural Network:

Hidden Layer:

100
$x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Neural Networks

Can use different templates to cover multiple modes of a class!

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Can use different templates to cover multiple modes of a class!

Before: Linear score function
Now: Two-Layer Neural Network:

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

"Distributed representation": Most templates not interpretable!

Before: Linear score function
Now: Two-Layer Neural Network:

100
$x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Deep Neural Networks

Depth $=$ number of layers

Activation Functions

2-Layer Neural Network
The auction $\operatorname{ReLU}(z)=\max (0, z)$ is called "Rectified Linear Unit"

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

This is called the activation function of the neural network

Activation Functions

2-Layer Neural Network

The auction $\operatorname{ReLU}(z)=\max (0, z)$ is called "Rectified Linear Unit"

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

This is called the activation function of the neural network

Q: What happens if we build a neural network with no activation function?
$f(x)=W_{2}\left(W_{1} x+b_{1}\right)+b_{2}$

Activation Functions

2-Layer Neural Network

The auction $\operatorname{ReLU}(z)=\max (0, z)$ is called "Rectified Linear Unit"

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

This is called the activation function of the neural network

Q: What happens if we build a neural network with no activation function?

$$
\begin{aligned}
f(x) & =W_{2}\left(W_{1} x+b_{1}\right)+b_{2} \\
& =\left(W_{1} W_{2}\right) x+\left(W_{2} b_{1}+b_{2}\right)
\end{aligned}
$$

A: We end up with a linear classifier

Activation Functions

Sigmoid
$\sigma(x)=\frac{1}{1+e-x}$

tanh
$\tanh (x)=\frac{e^{2 x}-1}{e^{2 x}+1}$

ReLU
$\max (0, x)$

Leaky ReLU
 $\max (0.2 x, x)$

Softplus

$\log (1+\exp (x))$

ELU

$f(x)= \begin{cases}x, & x>0 \\ \alpha(\exp (x)-), & x \leq 0\end{cases}$

Activation Functions

Sigmoid
$\sigma(x)=\frac{1}{1+e-x}$

Leaky ReLU
 $\max (0.2 x, x)$

tanh

$\tanh (x)=\frac{e^{2 x}-1}{e^{2 x}+1}$

ReLU
$\max (0, x)$

Softplus

$$
\log (1+\exp (x))
$$

ELU

$f(x)= \begin{cases}x, & x>0 \\ \alpha(\exp (x)-), & x \leq 0\end{cases}$

ReLU is a good default choice for most problems

DR

Neural Net in <20 lines!

DR

Space Warping

Consider a linear transform: $h=W x+b$ where x, b, h are each 2-dimensional

DR

Space Warping

Consider a linear transform: $h=W x+b$ where x, b, h are each 2-dimensional

DR

Space Warping

Consider a linear transform: $h=W x+b$ where x, b, h are each 2-dimensional

Feature transform:

Space Warping

Points not linearly separable in original space

Consider a linear transform: $h=W x+b$ where x, b, h are each 2-dimensional

Space Warping

Points not linearly separable in original space

Consider a linear transform: $h=W x+b$ where x, b, h are each 2-dimensional

Feature transform:
$h=W x+b$

DR

Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$

$$
=\max (0, W x+b) \text { where } x, b, h \text { are each 2-dimensional }
$$

Feature transform: $h=\operatorname{ReL}(W x+b)$

DR

Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$

$$
=\max (0, W x+b) \text { where } x, b, h \text { are each 2-dimensional }
$$

DR

Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$

$$
=\max (0, W x+b) \text { where } x, b, h \text { are each 2-dimensional }
$$

DR

Space Warping

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$

$$
=\max (0, W x+b) \text { where } x, b, h \text { are each 2-dimensional }
$$

Feature transform:

Space Warping

Points not linearly separable in original space

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $=\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature transform:

Space Warping

Points not linearly separable in original space

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $=\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature transform:

Space Warping

Points not linearly separable in original space

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $=\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature transform:

Points are linearly

Space Warping

Points not linearly separable in original space

Consider a neural net hidden layer: $h=\operatorname{ReLU}(W x+b)$ $=\max (0, W x+b)$ where x, b, h are each 2-dimensional

Feature transform:

Points are linearly separable in feature space!

DR

Setting the number of layers and their sizes

20 hidden units

More hidden units = more capacity

DR

Don't regularize with size; instead use stronger L2
$\lambda=0.001$
$\lambda=0.01$
$\lambda=0.1$

Web demo with ConvNetJS: https://cs.stanford.edu/people/karpathy/convnetis/demo/classify2d.html

Universal Approximation

A neural network with one hidden layer can approximate any function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ with arbitrary precision*
*Many technical conditions: Only holds on compact subsets of \mathbb{R}^{N}; function must be continuous; need to define "arbitrary precision"; etc.

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of w_{i}

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{array}{cc}
\text { First layer weights: } w(3,1) & \begin{array}{c}
\text { Second layer weights: } u(3,1) \\
\text { First layer bias: } p(1,)
\end{array} \\
\text { First layer bias: } b(3,) & y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
h_{1}=\max \left(0, w_{1} x+b_{1}\right) & +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
h_{2}=\max \left(0, w_{2} x+b_{2}\right) & +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
h_{1}=\max \left(0, w_{3} x+b_{3}\right) & +p
\end{array}
$$

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{array}{ll}
h_{1}=\max \left(0, w_{1} x+b_{1}\right) & y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
h_{2}=\max \left(0, w_{2} x+b_{2}\right) & +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
h_{1}=\max \left(0, w_{3} x+b_{3}\right) & +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p & +p
\end{array}
$$

First layer bias: $p(1$,

We can build a "bump function" using

$$
m_{1}=t /\left(s_{2}-s_{1}\right)
$$

$$
m_{2}=t /\left(s_{4}-s_{3}\right)
$$

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{array}{ll}
h_{1}=\max \left(0, w_{1} x+b_{1}\right) & y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
h_{2}=\max \left(0, w_{2} x+b_{2}\right) & +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
h_{1}=\max \left(0, w_{3} x+b_{3}\right) & +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p & +p
\end{array}
$$

First layer bias: $p(1$,

We can build a "bump function" using

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{array}{cc}
\begin{array}{c}
\text { First layer weights: } w(3,1) \\
\text { First layer bias: } b(3,)
\end{array} & \begin{array}{c}
\text { Second layer weights: } u(3,1) \\
\text { First layer bias: } p(1,)
\end{array} \\
h_{1}=\max \left(0, w_{1} x+b_{1}\right) & y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
h_{2}=\max \left(0, w_{2} x+b_{2}\right) & +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
h_{1}=\max \left(0, w_{3} x+b_{3}\right) & +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p & +p
\end{array}
$$

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{array}{ll}
h_{1}=\max \left(0, w_{1} x+b_{1}\right) & y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
h_{2}=\max \left(0, w_{2} x+b_{2}\right) & +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
h_{1}=\max \left(0, w_{3} x+b_{3}\right) & +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p & +p
\end{array}
$$

First layer bias: $p(1$,

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{aligned}
& h_{1}=\max \left(0, w_{1} x+b_{1}\right) \\
& h_{2}=\max \left(0, w_{2} x+b_{2}\right) \\
& h_{1}=\max \left(0, w_{3} x+b_{3}\right) \\
& y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p
\end{aligned}
$$

First layer bias: $p(1$,

$$
\begin{aligned}
& y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
& +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
& +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
& +p
\end{aligned}
$$

We can build a "bump function" using

With 4 K hidden units we can build a sum of K bumps

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{aligned}
& h_{1}=\max \left(0, w_{1} x+b_{1}\right) \\
& h_{2}=\max \left(0, w_{2} x+b_{2}\right) \\
& h_{1}=\max \left(0, w_{3} x+b_{3}\right) \\
& y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p
\end{aligned}
$$

First layer bias: $p(1$,

$$
\begin{aligned}
& y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
& +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
& +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
& +p
\end{aligned}
$$

We can build a "bump function" using

With 4 K hidden units we can build a sum of K bumps

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{array}{ll}
h_{1}=\max \left(0, w_{1} x+b_{1}\right) & y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
h_{2}=\max \left(0, w_{2} x+b_{2}\right) & +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
h_{1}=\max \left(0, w_{3} x+b_{3}\right) & +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p & +p
\end{array}
$$

First layer bias: $p(1$,

What about ...

- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

See Nielsen, Chapter 4

With 4 K hidden units we can build a sum of K bumps

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

First layer weights: $w(3,1)$
First layer bias: $b(3$,

$$
\begin{array}{ll}
h_{1}=\max \left(0, w_{1} x+b_{1}\right) & y=u_{1} \max \left(0, w_{1} x+b_{1}\right) \\
h_{2}=\max \left(0, w_{2} x+b_{2}\right) & +u_{2} \max \left(0, w_{2} x+b_{2}\right) \\
h_{1}=\max \left(0, w_{3} x+b_{3}\right) & +u_{3} \max \left(0, w_{3} x+b_{3}\right) \\
y=u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}+p & +p
\end{array}
$$

Reality check: Networks don't really learn bumps!

Approximate functions with bumps!

Universal Approximation

Example: Approximating a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a two-layer ReLU network

Universal approximation tells us:

- Neural nets can represent any function

Universal approximation DOES NOT tell us:

- Whether we can actually learn any function with SGD
- How much data we need to learn a function

Remember: kNN is also a universal approximator!
Reality check: Networks don't really learn bumps!

With 4K hidden units we can build a sum of K bumps

Approximate functions with bumps!

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Example: $f(x)=x^{2}$ is convex:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Example: $f(x)=x^{2}$ is convex:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$, $f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.$

Example: $f(x)=x^{2}$ is convex:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Example: $f(x)=\cos (x)$ is not convex:

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Linear classifiers optimize a convex function!

$$
\begin{aligned}
s & =f(x ; W)=W x \\
L_{i} & =-\log \left(\frac{e^{s_{y_{i}}}}{\sum+j e^{s_{j}}}\right) \quad \text { Softmax } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \mathrm{SVM} \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \quad \begin{array}{l}
\text { where } R(W) \text { is L2 or } \\
\text { L1 regularization }
\end{array}
\end{aligned}
$$

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Neural net losses sometimes look convex-ish:

DR

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

But often clearly nonconvex:

DR

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

With local minima:

DR

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Can get very wild!

Convex Functions

A function $f: X \subseteq \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in X, t \in[0,1]$,

$$
f\left(t x_{1}+(1-t) x_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right.
$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are easy to optimize: can derive theoretical guarantees about converging to global minimum*

Most neural networks need nonconvex optimization

- Few or no guarantees about convergence
- Empirically it seems to work anyway
- Active area of research

Summary

Feature transform + Linear classifier allows nonlinear decision boundaries

Neural Networks as learnable feature transforms

Summary

From linear classifiers to fully-connected networks

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Linear classifier: One template per class

Neural networks: Many reusable templates

Summary

From linear classifiers to fully-connected networks

$$
f(x)=W_{2} \max \left(0, W_{1} x+b_{1}\right)+b_{2}
$$

Space Warping

Universal approximation

Problem: How to compute gradients?

$$
\begin{aligned}
& s=W_{2} \max \left(0, W_{1} x+b_{!}\right)+b_{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& R(W)=\sum_{k} W_{k}^{2}
\end{aligned}
$$

Nonlinear score function
Per-element data loss

L2 regularization
$L\left(W_{1}, W_{2}, b_{1}, b_{2}\right)=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right)$ Total loss
If we can compute $\frac{\delta L}{\delta W_{1}}, \frac{\delta L}{\delta W_{2}}, \frac{\delta L}{\delta b_{1}}, \frac{\delta L}{\delta b_{2}}$ then we can optimize with SGD

Next time: Backpropagation

