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Project 1—Reminder
• Instructions and code available on the website
• Here: deeprob.org/projects/project1/

• Uses Python, PyTorch and Google Colab

• Implement KNN, linear SVM, and linear softmax classifiers

• Autograder is online and updated
• Due Thursday, January 26th 11:59 PM EST
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http://deeprob.org/projects/project1/


Recap from Previous Lectures
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• Use Linear Models for image 
classification problems.

• Use Loss Functions to express 
preferences over different choices 
of weights.

• Use Regularization to prevent 
overfitting to training data.

• Use Stochastic Gradient Descent 
to minimize our loss functions and 
train the model.

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,
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SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Li = − log(
expsyi

∑i expsj
)

Li = ∑
j≠yi

max(0,sj = − syi
+ 1)

L =
1
N

N

∑
i=1

Li + R(W )

Softmax

SVM
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)
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Summary

Lecture 4 - 103

1. Use Linear Models for image 
classification problems

2. Use Loss Functions to express 
preferences over different 
choices of weights

3. Use Regularization to prevent 
overfitting to training data

4. Use Stochastic Gradient 
Descent to minimize our loss 
functions and train the model

Softmax SVM
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Neural Networks



Problem: Linear Classifiers aren’t that powerful
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Geometric Viewpoint Visual Viewpoint

One template per class:

Can’t recognize different modes of a 
class

X

Y



One solution: Feature Transforms
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X

Y

Original space

r = (x2 + y2)1/2

θ = tan−1(y/x)

Feature

Transform

r

Feature space

θ



One solution: Feature Transforms
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X

Y

Original space

r = (x2 + y2)1/2

θ = tan−1(y/x)

Feature

Transform

r

Feature space

θ

Linear classifier in 
feature space



One solution: Feature Transforms
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X

Y

Original space

r = (x2 + y2)1/2

θ = tan−1(y/x)

Feature

Transform

r

Feature space

θ

Linear classifier in 
feature space

Nonlinear classifier 
in original space!



Image Features: Color Histogram
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Ignores texture, 
spatial positions

Frog image is in the public domain

+1

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg


Image Features: Histogram of Oriented Gradients (HoG)
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1. Compute edge direction/
strength at each pixel


2. Divide image into 8x8 regions

3. Within each region compute a 

histogram of edge direction 
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999

Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005



Image Features: Histogram of Oriented Gradients (HoG)
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1. Compute edge direction/
strength at each pixel


2. Divide image into 8x8 regions

3. Within each region compute a 

histogram of edge direction 
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999

Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented Gradients (HoG)

Example: 320x240 image gets 
divided into 40x30 bins; 

9 directions per bin; 

feature vector has 30*40*9 = 
10,800 numbers



Image Features: Histogram of Oriented Gradients (HoG)
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1. Compute edge direction/
strength at each pixel


2. Divide image into 8x8 regions

3. Within each region compute a 

histogram of edge direction 
weighted by edge strength

Lowe, “Object recognition from local scale-invariant features,” ICCV 1999

Dalal and Triggs, “Histograms of oriented gradients for human detection,” CVPR 2005
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented Gradients (HoG)

Example: 320x240 image gets 
divided into 40x30 bins; 

9 directions per bin; 

feature vector has 30*40*9 = 
10,800 numbers

Weak edges

Strong diagonal edges

Edges in all directions

Capture 
texture and 
position, 
robust to 
small image 
changes



Image Features: Bag of Words (Data-Driven!)
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Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 15

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
Car image is CC0 1.0 public domain

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005



Image Features: Bag of Words (Data-Driven!)
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Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 15

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
Car image is CC0 1.0 public domain

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories,” CVPR 2005
Justin Johnson January 24, 2022

Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 16

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005



Image Features
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Image Features

Lecture 5 - 17

Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17

Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17Justin Johnson January 24, 2022

Image Features

Lecture 5 - 17



Example: Winner of 2011 ImageNet Challenge
Low-level feature extraction  10k patches per image

• SIFT: 128-dims
• Color: 96-dim

FV extraction and compression:
• N=1024 Gaussians, R=4 regions  520K dim x 2
• Compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

≈

→

16F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011. 


} Reduced to 64-dim with PCA



Image Features vs Neural Networks
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Image Features

Lecture 5 - 17

Feature Extraction

training

f
10 numbers giving 
scores for classes



Image Features vs Neural Networks
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Image Features

Lecture 5 - 17

Feature Extraction

training

f
10 numbers giving 
scores for classes

Justin Johnson January 24, 2022

Image Features vs Neural Networks

Lecture 5 - 20

Feature Extraction
f

training

training

10 numbers giving 
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification 
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. 
Reproduced with permission.

10 numbers giving 
scores for classes

training

10 numbers giving 
scores for classes



Neural Networks
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Input:  x ∈ ℝD Output:  f(x) ∈ ℝC

Before: Linear Classifier:  
Learnable parameters:  

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC



Neural Networks
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Input:  x ∈ ℝD Output:  f(x) ∈ ℝC

Before: Linear Classifier:  
Learnable parameters:  

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2



Neural Networks
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Input:  x ∈ ℝD Output:  f(x) ∈ ℝC

Before: Linear Classifier:  
Learnable parameters:  

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2
Learnable parameters: W1 ∈ ℝH×D, b1 ∈ ℝH, W2 ∈ ℝC×H, b2 ∈ ℝC



Feature Extraction

Linear Classifier

Neural Networks
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Input:  x ∈ ℝD Output:  f(x) ∈ ℝC

Before: Linear Classifier:  
Learnable parameters:  

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2
Learnable parameters: W1 ∈ ℝH×D, b1 ∈ ℝH, W2 ∈ ℝC×H, b2 ∈ ℝC



Feature Extraction

Linear Classifier

Neural Networks
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Input:  x ∈ ℝD Output:  f(x) ∈ ℝC

Before: Linear Classifier:  
Learnable parameters:  

f(x) = Wx + b
W ∈ ℝD×C, b ∈ ℝC

Now: Two-Layer Neural Network: f(x) = W2 max(0,W1x + b1) + b2
Learnable parameters: W1 ∈ ℝH×D, b1 ∈ ℝH, W2 ∈ ℝC×H, b2 ∈ ℝC

Or Three-Layer Neural Network:
f(x) = W3 max(0,W2 max(0,W1x + b1) + b2) + b3



Neural Networks

24

Before: Linear Classifier:                             f(x) = Wx + b

Now: Two-Layer Neural Network:               f(x) = W2 max(0,W1x + b1) + b2

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H



x W1 W2h s

Neural Networks
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Before: Linear Classifier:                             f(x) = Wx + b

Now: Two-Layer Neural Network:               f(x) = W2 max(0,W1x + b1) + b2

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

Element  of  
gives the effect on 

 from 

(i, j) W1

hi xj

Element  of  
gives the effect on 

 from 

(i, j) W2

si hj

Input: 
3072

Hidden Layer: 
100

Output:10



x W1 W2h s

Neural Networks
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Before: Linear Classifier:                             f(x) = Wx + b

Now: Two-Layer Neural Network:               f(x) = W2 max(0,W1x + b1) + b2

Element  of  
gives the effect on 

 from 

(i, j) W1

hi xj

Element  of  
gives the effect on 

 from 

(i, j) W2

si hj

All elements of  affect 
all elements of 

x
h

All elements of  affect 
all elements of 

h
s

Fully-connected neural network also 
“Multi-Layer Perceptron” (MLP)

Input: 
3072

Hidden Layer: 
100

Output:10



Neural Networks
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Linear classifier: One template per class
Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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Neural net: first layer is bank of templates; 
Second layer recombines templates Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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Can use different templates to cover 
multiple modes of a class! Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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Can use different templates to cover 
multiple modes of a class! Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

Now: Two-Layer Neural Network:



Neural Networks
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“Distributed representation”: Most 
templates not interpretable! Before: Linear score function

x ∈ ℝD, W1 ∈ ℝH×D, W2 ∈ ℝC×H

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

Now: Two-Layer Neural Network:



Deep Neural Networks
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x W1 h1 W2 h2 W3 h3 W4 h4 W5 h5 W6 s

Input: 
3072

Output:10

s = W6 max(0,W5 max(0,W4 max(0,W3 max(0,W2 max(0,W1x)))))

Depth = number of layers

Width: 
Size of 
each 
layer



Activation Functions
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2-Layer Neural Network            f(x) = W2 max(0,W1x + b1) + b2

The auction  
is called “Rectified Linear Unit”

ReLU(z) = max(0,z) This is called the activation function 
of the neural network

Justin Johnson January 24, 2022

$ ! = ($max 0,(%! + *% + *$
Activation Functions

Lecture 5 - 34

2-layer Neural Network
The function !"#$ % = max(0, %)
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network
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2-Layer Neural Network            f(x) = W2 max(0,W1x + b1) + b2

The auction  
is called “Rectified Linear Unit”

ReLU(z) = max(0,z) This is called the activation function 
of the neural network

Justin Johnson January 24, 2022

$ ! = ($max 0,(%! + *% + *$
Activation Functions

Lecture 5 - 34

2-layer Neural Network
The function !"#$ % = max(0, %)
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network

Q: What happens if we build a neural 
network with no activation function?

f(x) = W2(W1x + b1) + b2
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2-Layer Neural Network            f(x) = W2 max(0,W1x + b1) + b2

The auction  
is called “Rectified Linear Unit”

ReLU(z) = max(0,z) This is called the activation function 
of the neural network
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$ ! = ($max 0,(%! + *% + *$
Activation Functions

Lecture 5 - 34

2-layer Neural Network
The function !"#$ % = max(0, %)
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network

Q: What happens if we build a neural 
network with no activation function?

f(x) = W2(W1x + b1) + b2

= (W1W2)x + (W2b1 + b2)

A: We end up with a linear classifier
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Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0

Activation Functions

36

Sigmoid

σ(x) =
1

1 + e − x

tanh

tanh(x) =
e2x − 1
e2x + 1

ReLU
max(0,x)

Leaky ReLU
max(0.2x, x)

Softplus
log(1 + exp(x))

ELU

f(x) = {x, x > 0
α(exp(x) − ), x ≤ 0
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Activation Functions

Lecture 5 - 37

Sigmoid
. / = 1

1 + "!"

tanh
tanh / = "#" − 1

"#" + 1

ReLU
max(0, !)

Leaky ReLU
max 0.2!, !

Softplus
log 1 + exp !

ELU
6 / = 7/, / > 0

9 exp / − 1 , / ≤ 0
ReLU is a good default choice for most 
problems



Neural Net in <20 lines!

38

Input layer
Hidden layer

Output layer

Justin Johnson January 24, 2022

Neural Net in <20 lines!

Lecture 5 - 43

Initialize weights 
and data

Compute loss 
(sigmoid activation, 
L2 loss)

Compute 
gradients

SGD 
step

Initialize weights 
and data

Compute loss (Sigmoid 
activation, L2 loss)

Compute gradients

SGD step



Space Warping

39

x1

x2

Consider a linear transform:  
where  are each 2-dimensional

h = Wx + b
x, b, h



Space Warping
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x1

x2

Consider a linear transform:  
where  are each 2-dimensional

h = Wx + b
x, b, h

h1

h2

Feature transform:
h = Wx + b



Space Warping
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x1

x2

h1

h2A B

C

D
AB

C D

Consider a linear transform:  
where  are each 2-dimensional

h = Wx + b
x, b, h

Feature transform:
h = Wx + b



Space Warping
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x1

x2

Points not linearly separable 
in original space

Consider a linear transform:  
where  are each 2-dimensional

h = Wx + b
x, b, h



Space Warping
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x1

x2

h1

h2

Points not linearly separable 
in original space

Consider a linear transform:  
where  are each 2-dimensional

h = Wx + b
x, b, h

Feature transform:
h = Wx + b

Points still not linearly 
separable in feature space



Space Warping
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x1

x2

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

h1

h2

Feature transform:
h = ReLU(Wx + b)

A
A

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2



Space Warping
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x1

x2

h1

h2A
AB B

B is “collapsed”  
onto +h2 axis

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)
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Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2



Space Warping
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x1

x2

h1

h2A
A
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Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

B B
B is “collapsed”  
onto +h2 axisD

D
D is “collapsed”  
onto +h1 axis

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)



Space Warping
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x1

x2

h1

h2A
AB B

B is “collapsed”  
onto +h2 axisD

D
D is “collapsed”  
onto +h1 axis

C C
C is “collapsed”  
onto origin

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)
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Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2
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x1

x2

h1

h2

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable 
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2
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x1

x2

h1

h2

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable 
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2
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x1

x2

h1

h2

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable 
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Points are linearly 
separable in feature space!
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x1

x2

h1

h2

Consider a neural net hidden layer:  
 where  are each 2-dimensional

h = ReLU(Wx + b)
= max(0,Wx + b) x, b, h

Feature transform:
h = ReLU(Wx + b)

Points not linearly separable 
in original space

Justin Johnson January 24, 2022

Space Warping

Lecture 5 - 58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Points are linearly 
separable in feature space!

Linear classifier in 
feature space gives 
nonlinear classifier 
in original space



Setting the number of layers and their sizes
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Justin Johnson January 24, 2022

Setting the number of layers and their sizes

Lecture 5 - 67

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units3 hidden units 6 hidden units 20 hidden units

More hidden units = more capacity



Don’t regularize with size; instead use stronger L2
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Justin Johnson January 24, 2022

Don’t regularize with size; instead use stronger L2

Lecture 5 - 68

(Web demo with ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

λ = 0.001 λ = 0.01 λ = 0.1

Web demo with ConvNetJS: https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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A neural network with one hidden layer can approximate 
any function  with arbitrary precision*f : ℝN → ℝM

*Many technical conditions: Only holds on compact subsets of ; function must be continuous; 
need to define "arbitrary precision”; etc.

ℝN
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Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)
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Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p
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Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p
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Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

Output is a sum of shifted, 
scaled ReLUs:

Justin Johnson January 24, 2022

Universal Approximation

Lecture 5 - 73

Example: Approximating a function f: R -> R with a two-layer ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3

Input: 
x (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

Second layer weights: u (1,3)
First layer bias: p (1,)

Output: 
y (1,)

h1 = max(0, w1 * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y = u1 * h1 + u2 * h2 + u3 * h3 + p

y = u1 * max(0, w1 * x + b1)
+ u2 * max(0, w2 * x + b2)
+ u3 * max(0, w3 * x + b3)
+ p

Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of wi

Slope is 
given by uiwi

Position of 
“bend” give by bi
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using 
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using 
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1)

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using 
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1) −m1 max(0,x − s2)

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using 
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1) −m1 max(0,x − s2)

−m2 max(0,x − s3)

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using 
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

m1 max(0,x − s1) −m1 max(0,x − s2)

−m2 max(0,x − s3) m2 max(0,x − s4)

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using 
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

x

With 4K hidden units we can build a 
sum of K bumps

Approximate functions with bumps!

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

We can build a “bump function” using 
four hidden unitsyt

x
s1 s2 s3 s4

m1 m2

m1 = t/(s2 − s1)
m2 = t/(s4 − s3)

x

With 4K hidden units we can build a 
sum of K bumps

Approximate functions with bumps!

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

x

With 4K hidden units we can build a 
sum of K bumps

Approximate functions with bumps!

What about …
- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

See Nielsen, Chapter 4

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ

http://neuralnetworksanddeeplearning.com/chap4.html
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

First layer weights: 
First layer bias: 

w(3,1)
b(3,)

Second layer weights: 
First layer bias: 

u(3,1)
p(1,)

h1 = max(0,w1x + b1)
h2 = max(0,w2x + b2)
h1 = max(0,w3x + b3)
y = u1h1 + u2h2 + u3h3 + p

y = u1 max(0,w1x + b1)
+u2 max(0,w2x + b2)
+u3 max(0,w3x + b3)
+p

x

With 4K hidden units we can build a 
sum of K bumps

Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Justin Johnson January 24, 2022

Universal Approximation

Lecture 5 - 84

Example: Approximating a function f: R -> R with a two-layer ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3

Input: 
x (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

Second layer weights: u (1,3)
First layer bias: p (1,)

Output: 
y (1,)

h1 = max(0, w1 * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y = u1 * h1 + u2 * h2 + u3 * h3 + p

y = u1 * max(0, w1 * x + b1)
+ u2 * max(0, w2 * x + b2)
+ u3 * max(0, w3 * x + b3)
+ p

x
Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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h1

h2

h3

yx Output: 
y(1,)

Input: 
x(1,)

u1
u2

u3w3

w1
w2

x

With 4K hidden units we can build a 
sum of K bumps

Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Justin Johnson January 24, 2022

Universal Approximation

Lecture 5 - 84

Example: Approximating a function f: R -> R with a two-layer ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3

Input: 
x (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

Second layer weights: u (1,3)
First layer bias: p (1,)

Output: 
y (1,)

h1 = max(0, w1 * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y = u1 * h1 + u2 * h2 + u3 * h3 + p

y = u1 * max(0, w1 * x + b1)
+ u2 * max(0, w2 * x + b2)
+ u3 * max(0, w3 * x + b3)
+ p

x
Approximate functions with bumps!

Reality check: Networks don’t really learn bumps!

Universal approximation tells us:
- Neural nets can represent any function
Universal approximation DOES NOT tell us:
- Whether we can actually learn any function with SGD
- How much data we need to learn a function

Remember: kNN is also a universal approximator!

Example: Approximating a function  with a two-layer ReLU networkf : ℝ → ℝ
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A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Example:  is convex:f(x) = x2
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Example:  is convex:f(x) = x2

x1 x2

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)
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Example:  is convex:f(x) = x2

x1 x2

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)
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Example:  is not 
convex:

f(x) = cos(x) x2

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

x1
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Intuition: A convex function is a 
(multidimensional) bowl

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 92

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

*Many technical details! See e.g. IOE 661 / MATH 663

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*
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Intuition: A convex function is a 
(multidimensional) bowl

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

Linear classifiers optimize a    
convex function!
s = f(x; W) = Wx

Li = − log(
esyi

∑ + jesj
)

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

L =
1
N

N

∑
i=1

Li + R(W)

Softmax

SVM

where  is L2 or 
L1 regularization

R(W)
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Intuition: A convex function is a 
(multidimensional) bowl

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

Neural net losses sometimes look 
convex-ish:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 95

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can 
derive theoretical guarantees about 
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Neural net losses sometimes look 
convex-ish: 

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units 
per hidden layer, 10 categories, with softmax loss
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Intuition: A convex function is a 
(multidimensional) bowl

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

But often clearly nonconvex:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 96

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can 
derive theoretical guarantees about 
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

But often clearly nonconvex: 

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units 
per hidden layer, 10 categories, with softmax loss
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Intuition: A convex function is a 
(multidimensional) bowl

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

With local minima:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 97

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can 
derive theoretical guarantees about 
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

With local minima:

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units 
per hidden layer, 10 categories, with softmax loss



Convex Functions

78

Intuition: A convex function is a 
(multidimensional) bowl

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 
units per hidden layer, 10 categories, with softmax loss
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Convex Functions

Lecture 4 - 98

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can 
derive theoretical guarantees about 
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units 
per hidden layer, 10 categories, with softmax loss
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Intuition: A convex function is a 
(multidimensional) bowl

A function  is convex if for all ,f : X ⊆ ℝN → ℝ x1, x2 ∈ X, t ∈ [0,1]
f(tx1 + (1 − t)x2 ≤ tf(x1) + (1 − t)f(x2)

Generally speaking, convex functions are 
easy to optimize: can derive theoretical 
guarantees about converging to global 
minimum*

Most neural networks need 
nonconvex optimization
- Few or no guarantees 

about convergence
- Empirically it seems to work 

anyway
- Active area of research
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Feature transform + Linear classifier 
allows nonlinear decision boundaries

Neural Networks as learnable feature 
transforms
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From linear classifiers to 
fully-connected networks

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10

  f(x) = W2 max(0,W1x + b1) + b2

Linear classifier: One template per class

Neural networks: Many reusable templates
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From linear classifiers to 
fully-connected networks

  f(x) = W2 max(0,W1x + b1) + b2

Universal approximation

Nonconvex

Justin Johnson January 24, 2022

Convex Functions

Lecture 4 - 98

A function                                      is convex if for all                                     ,

Intuition: A convex function 
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can 
derive theoretical guarantees about 
converging to global minimum*

*Many technical details! See e.g. IOE 661 / MATH 663

Can get very wild!

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units 
per hidden layer, 10 categories, with softmax loss

x

Space Warping

Justin Johnson January 24, 2022

Setting the number of layers and their sizes

Lecture 5 - 67

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units

x W1 W2h sInput: 
3072

Hidden Layer: 
100

Output:10



Problem: How to compute gradients?
                                 Nonlinear score function

                                     Per-element data loss

                                                         L2 regularization

 Total loss

If we can compute  then we can optimize with SGD

s = W2 max(0,W1x + b!) + b2
Li = ∑

j≠yi

max(0,sj − syi
+ 1)

R(W) = ∑
k

W2
k

L(W1, W2, b1, b2) =
1
N

N

∑
i=1

Li + λR(W1) + λR(W2)

δL
δW1

,
δL

δW2
,

δL
δb1

,
δL
δb2

83
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Next time: Backpropagation
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