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Project 1—Reminder
• Instructions and code available on the website
• Here: deeprob.org/projects/project1/

• Uses Python, PyTorch and Google Colab

• Implement KNN, linear SVM, and linear softmax classifiers

• Autograder is online
• Due Thursday, January 26th 11:59 PM EST
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http://deeprob.org/projects/project1/


Project 1—Dataset
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10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Chen et al., “ProgressLabeller: Visual Data Stream Annotation 
for Training Object-Centric 3D Perception”, IROS, 2022.

Progress Robot Object Perception Samples Dataset



Discussion 2—How was this dataset created?
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Human 
Annotator

Idea: 
1. Record video of scene

2. Human labels object pose in selected frames

3. Pose labels propagate to (large number     
    of) remaining frames

ProgressLabeller: Visual Data Stream Annotation for Training
Object-Centric 3D Perception

Xiaotong Chen Huijie Zhang Zeren Yu Stanley Lewis Odest Chadwicke Jenkins

Abstract— Visual perception tasks often require vast amounts
of labelled data, including 3D poses and image space segmen-
tation masks. The process of creating such training data sets
can prove difficult or time-intensive to scale up to efficacy for
general use. Consider the task of pose estimation for rigid ob-
jects. Deep neural network based approaches have shown good
performance when trained on large, public datasets. However,
adapting these networks for other novel objects, or fine-tuning
existing models for different environments, requires significant
time investment to generate newly labelled instances. Towards
this end, we propose ProgressLabeller as a method for more
efficiently generating large amounts of 6D pose training data
from color images sequences for custom scenes in a scalable
manner. ProgressLabeller is intended to also support trans-
parent or translucent objects, for which the previous methods
based on depth dense reconstruction will fail. We demonstrate
the effectiveness of ProgressLabeller by rapidly create a dataset
of over 1M samples with which we fine-tune a state-of-the-
art pose estimation network in order to markedly improve
the downstream robotic grasp success rates. Progresslabeller
is open-source at https://github.com/huijieZH/ProgressLabeller

I. INTRODUCTION

Visual perception tasks often require vast amounts of
labelled data due to their use of deep neural networks. Such
deep neural networks have outperformed traditional methods
in object pose estimation [1], [2], [3] when trained on public
large-scale datasets [4], [5], [6]. However, considering the
practice of deploying such systems in real-world robotics
applications, such as semantic grasping and manipulation,
current pose estimation systems can prove the difficulty of
adaptation to different objects and settings without retraining
with a customized large-scale dataset.

In particular, our need for training data is a result of object
labels for pose estimation being defined to specific 3D object
models (both geometry shape and texture). Learned models
cannot be fine-tuned to transfer to similar object instances
without additional training data. Recent work has made
advances in category-level or unseen pose estimation [7],
[8]. However, the objects included only cover a small set and
there is no evidence showing the estimated pose is reliable
enough for robotic manipulation. Further, the estimation re-
sults of deep neural networks are often vulnerable to environ-
mental changes [9], including different lighting conditions,
occlusions and object’s special appearance like transparent
or reflective surfaces. Synthetic data generation with domain
randomization and photo-realistic rendering [10], [11] could

⇤X. Chen, H. Zhang, Z. Yu, S. Lewis and O. C. Jenkins are with
the Department of Electrical Engineering and Computer Science, and
Robotics Institute at the University of Michigan, Ann Arbor, MI 48109
USA [cxt|huijiezh|yuzeren|stanlew|ocj] @umich.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1: The ProgressLabeller offers an interactive GUI for aligning
all kinds of objects in the 3D scene to generate large-scale datasets
with ground truth pose labels. The left image shows the rough
6D pose estimates from one state-of-the-art RGB-D deep models
trained on public YCB dataset, and the right images shows fine-
tuned pose estimates from the same model after retraining using
generated data from ProgressLabeller. The pose estimates are then
used for robotic grasping experiments.

improve generalizability, but it is still challenging to simulate
real-world lighting as well as the noise inherent in the sensor
modality. We show in the experiment that the network trained
using real data is still over-performing synthetic data.

To address the problem of adaptation for deep pose
estimation systems and their application to robotic manip-
ulation, we propose ProgressLabeller as a method and
implementation for creating large customized datasets more
efficiently. Inspired by LabelFusion [12], ProgressLabeller
collects training data of objects in situ in a mixed-initiative
manner, similar in spirit to work by Gouravajhala et al. [13].
It takes visual streams of color images that observe objects
in a physical environment as input. Objects in this stream
only need to be labelled once by a human user through
visual annotation. ProgressLabeller builds on recent advances
in Structure-from-Motion [14] and visual SLAM [15] to
produce both a 3D reconstruction and camera pose along the
trajectory of the collected visual stream, where the annotated
object labels can be propagated to all frames.

Compared to depth-based fusion methods, the color
feature-based pipeline of ProgressLabeller suffers less noisy
or invalid readings than that from depth sensing. Further,
the use of color by ProgressLabeller allows it to include
objects that are transparent and reflective [16] into the pose
estimation process, as long as there exists textures from
other objects or background. From an interface perspective,
our implementation of ProgressLabeller aims to provide a
more interactive design geared for users performing labeling
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https://arxiv.org/abs/2203.00283


Gradescope Quizzes
• Let course staff know if you have issues accessing

• Quiz links available through gradescope course 480760
• Time limit of 15 min once quiz is opened
• Each available to take from 7:00AM—3:00PM EST on quiz days
• Covers material from previous lectures and graded projects
• Today only: quiz 1 available until 6:00PM EST
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Recap—Linear Classifiers
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Justin Johnson January 12, 2022

Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)
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Recap—Loss Functions Quantify Preferences
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Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7



Recap—Loss Functions Quantify Preferences
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Q: How do we find the best W,b?

Justin Johnson January 12, 2022

Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7



Recap—Loss Functions Quantify Preferences
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Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7

Problem: Loss functions encourage 
good performance on training data 
but we care about test data
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Regularization + Optimization



Overfitting
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A model is overfit when it performs too well on the training 
data, and has poor performance for unseen data

Both models have perfect accuracy on the training data!
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Overfitting

Lecture 4 - 10

A model is overfit when it performs 
too well on the training data, and has 
poor performance for unseen data

Example: Linear classifier with 1D 
inputs, 2 classes, softmax loss
!$ = #$$ + &$
'$ =

exp !$
exp !% + exp !&

+ = − log ''

Low loss, but unnatural “cliff” 
between training points

Both models have perfect accuracy on train data!Both models have perfect accuracy on the training data!
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A model is overfit when it performs too well on the training 
data, and has poor performance for unseen data

Example: Linear classifier with 1D 
inputs, 2 classes, softmax loss

Overconfidence in regions with no training data could give poor generalization



Regularization: Beyond Training Error
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L(W) =
1
N

N

∑
i=1

Li( f(xi, W), yi) + λR(W)

Data loss: Model predictions 

should match training data



Regularization: Beyond Training Error
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L(W) =
1
N

N

∑
i=1

Li( f(xi, W), yi) + λR(W)

Data loss: Model predictions 

should match training data

Regularization: Prevent the model 

from doing too well on training data

Hyperparameter giving 
regularization strength



Regularization: Beyond Training Error
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L(W) =
1
N

N

∑
i=1

Li( f(xi, W), yi) + λR(W)

Data loss: Model predictions 

should match training data

Regularization: Prevent the model 

from doing too well on training data

Hyperparameter giving 
regularization strength

Simple examples: 
L2 regularization:


L1 regularization:

R(W) = ∑
k,l

W2
k,l

R(W) = ∑
k,l

|Wk,l |



Regularization: Beyond Training Error
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L(W) =
1
N

N

∑
i=1

Li( f(xi, W), yi) + λR(W)

Data loss: Model predictions 

should match training data

Regularization: Prevent the model 

from doing too well on training data

Hyperparameter giving 
regularization strength

Simple examples: 
L2 regularization:


L1 regularization:

More complex: 
Dropout

Batch normalization

Cutout, Mixup, Stochastic depth, etc…


R(W) = ∑
k,l

W2
k,l

R(W) = ∑
k,l

|Wk,l |



Regularization: Prefer Simpler Models
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Example: Linear classifier with 1D 
inputs, 2 classes, and softmax loss

si = wix + bi

pi =
exp(si)

exp(s1) + exp(s2)
L = − log(py) +λ∑

i

w2
i



Regularization: Prefer Simpler Models
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Example: Linear classifier with 1D 
inputs, 2 classes, and softmax loss

si = wix + bi

pi =
exp(si)

exp(s1) + exp(s2)
L = − log(py) +λ∑

i

w2
i

Justin Johnson January 19, 2022

Regularization: Prefer Simpler Models

Lecture 4 - 17

Example: Linear classifier with 1D inputs, 2 classes, softmax loss

!$ = #$$ + &$ '$ =
exp !$

exp !% + exp !&
+ = − log '' + 45

(
6(
)

Regularization term 
causes loss to increase
for model with sharp cliff

Regularization term causes 
loss to increase for model 
with sharp cliff




Regularization: Expressing Preferences
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x = [1,1,1,1]
w1 = [1,0,0,0]
w2 = [0.25,0.25,0.25,0.25]

R(W) = ∑
k,l

W2
k,l

L2 Regularization


wT
1 x = wT

2 x = 1 Same predictions, so data loss 
will always be the same




Regularization: Expressing Preferences
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x = [1,1,1,1]
w1 = [1,0,0,0]
w2 = [0.25,0.25,0.25,0.25]

R(W) = ∑
k,l

W2
k,l

L2 Regularization


wT
1 x = wT

2 x = 1 Same predictions, so data loss 
will always be the same


L2 Regularization prefers weights to be 
“spread out”




Finding a good W
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L(W) =
1
N

N

∑
i=1

Li( f(xi, W), yi) + λR(W)

Loss function consists of data loss to fit the training 
data and regularization to prevent overfitting




Optimization

22

w * = arg min
w

L(w)
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Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

The valley image and the walking man image are in CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/
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The valley image and the walking man image are in CC0 1.0 public domain
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Idea #1: Random Search (bad idea!)
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Idea #1: Random Search (bad idea!)

Lecture 4 - 24
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Idea #1: Random Search (bad idea!)

Lecture 4 - 25

15.5% accuracy! not bad!15.5 % accuracy on CIFAR-10! not bad!


Idea #1: Random Search (bad idea!)
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Idea #1: Random Search (bad idea!)

Lecture 4 - 25

15.5% accuracy! not bad!15.5 % accuracy on CIFAR-10! not bad!

(SOTA is ~95%)


Idea #1: Random Search (bad idea!)



Idea #2: Follow the slope
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The valley image and the walking man image are in CC0 1.0 public domainJustin Johnson January 19, 2022Lecture 4 - 22

Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/


Idea #2: Follow the slope
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In 1-dimension, the derivative of a function gives the slope:


df
dx

= lim
h→0

f(x + h) − f(x)
h



Idea #2: Follow the slope

27

In 1-dimension, the derivative of a function gives the slope:


df
dx

= lim
h→0

f(x + h) − f(x)
h

In multiple dimensions, the gradient is the vector of (partial 
derivatives) along each dimension


The slope in any direction is the dot product of the direction with the 
gradient. The direction of steepest descent is the negative gradient.
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[?,

?,

?,

?,

?,

?,

?,

?,

?, …]


W + h (first dim):


[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25322
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[-2.5,

?,

?,

?,

?,

?,

?,

?,

?, …]


W + h (first dim):


[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25322


(1.25322 - 1.25347)/
0.0001 
= -2.5
df
dx

= lim
h→0

f(x + h) − f(x)
h
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[-2.5,

?,

?,

?,

?,

?,

?,

?,

?, …]


W + h (second dim):


[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?, …]


W + h (second dim):


[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353


(1.25353 - 1.25347)/
0.0001 
= 0.6
df
dx

= lim
h→0

f(x + h) − f(x)
h
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[-2.5,

0.6,

0.0,

?,

?,

?,

?,

?,

?, …]


W + h (third dim):


[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353


(1.25347 - 1.25347)/
0.0001 
= 0.0
df
dx

= lim
h→0

f(x + h) − f(x)
h
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[-2.5,

0.6,

0.0,

?,

?,

?,

?,

?,

?, …]


W + h (third dim):


[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353


Numeric Gradient: 
- Slow: O(#dimensions) 
- Approximate



Loss is a function of W
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L =
1
N

N

∑
i=1

Li + ∑
k

W2
k

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

s = f(x, W) = Wx

∇wLWant




Loss is a function of W

35

L =
1
N

N

∑
i=1

Li + ∑
k

W2
k

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

s = f(x, W) = Wx

∇wLWant


Use calculus to compute an 
analytic gradient
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[-2.5,

0.6,

0.0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1, …]


dL
dW

= some function of data and W
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Current W:
 Gradient 

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347


[-2.5,

0.6,

0.0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1, …]


dL
dW

= some function of data and W

In practice we will compute           

using back propagation; 
see Lecture 6


dL
dW



Computing Gradients
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• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone
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• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 44

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 45

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.



Computing Gradients
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• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

Justin Johnson January 19, 2022

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.

Computing Gradients

Lecture 4 - 46



Gradient Descent

41

• Iteratively step in the direction of the negative gradient (direction of local 
steepest descent)

Justin Johnson January 19, 2022Lecture 4 - 48

negative 
gradient 
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Hyperparameters: 
- Weight initialization method

- Number of steps

- Learning rate
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L(W) =
1
N

N

∑
i=1

Li(xi, yi, W) + λR(W)

∇W L(W) =
1
N

N

∑
i=1

∇W Li(xi, yi, W) + λ∇W R(W)

Full sum expensive 
when N is large!
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L(W) =
1
N

N

∑
i=1

Li(xi, yi, W) + λR(W)

∇W L(W) =
1
N

N

∑
i=1

∇W Li(xi, yi, W) + λ∇W R(W)

Full sum expensive 
when N is large!


Approximate sum using 
minibatch of examples 
32/64/128 common


Hyperparameters: 
- Weight initialization 

- Number of steps

- Learning rate

- Batch size

- Data sampling
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Stochastic Gradient Descent (SGD)

Lecture 4 - 51

Full sum expensive 
when N is large!

Approximate sum using 
a minibatch of examples
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling
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Stochastic Gradient Descent (SGD)
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L(W) = 𝔼(x,y)∼pdata
[L(x, y, W)] + λR(W)]

≈
1
N

N

∑
i=1

L(xi, yi, W) + λR(W)

Think of loss as an expectation 
over the full data distribution 
pdata

Approximate expectation 
via sampling


∇W L(W) = ∇W𝔼(x,y)∼pdata
[L(x, y, W)] + λR(W)]

≈ ∑
i=1

N ∇wL(xi, yi, W) + ∇wλR(W)



Interactive Web Demo
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http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
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Problems with SGD

Lecture 4 - 55

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value 
of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another?

What does gradient decent do?


Loss function has high condition number: ratio of largest to smallest singular value of 
the Hessian matrix is large
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Problems with SGD

Lecture 4 - 55

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value 
of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another?

What does gradient decent do?


Loss function has high condition number: ratio of largest to smallest singular value of 
the Hessian matrix is large


Very slow progress along shallow dimension, jitter along steep direction
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Problems with SGD

Lecture 4 - 56

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value 
of the Hessian matrix is large
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Problems with SGD

Lecture 4 - 57

What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle 
point

What if the loss function has a 
local minimum or saddle point?
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What if the loss function has a 
local minimum or saddle point?
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Problems with SGD

Lecture 4 - 57

What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle 
point

Zero gradient, gradient descent gets stuck
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Our gradients come from mini batches so 
they can be noisy!


L(W) =
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1
N
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∑
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∇W Li(xi, yi, W) + λ∇W R(W)
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What if the loss function has a 
local minimum or saddle point?
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Problems with SGD

Lecture 4 - 57

What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle 
point

Batched gradient descent always 
computes same gradients


SGD computes noisy gradients, 
may help to escape saddle points
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SGD


wt+1 = wt − α∇L(wt)
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SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,
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SGD + Momentum
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SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

vt+1 = ρvt + ∇L(wt)
wt+1 = wt − αvt+1

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho = 0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013
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SGD + Momentum
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SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Momentum update:


Velocity

Actual step


Combine gradient at current point 
with velocity to get step used to 
update weights

Gradient


vt+1 = ρvt + ∇L(wt)
wt+1 = wt − αvt+1

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho = 0.9 or 0.99



SGD + Momentum

55

SGD + Momentum
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SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

You may see SGD+Momentun formulated different ways, 
but they are equivalent - give same sequence of w

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

SGD + Momentum

vt+1 = ρvt − α∇L(wt)
wt+1 = wt + vt+1

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 63

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

You may see SGD+Momentum formulated different ways, but 
they are equivalent - give same sequence of x

SGD+Momentum
:*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

:*+, = ;:* − 8∇0 1*
1*+, = 1* + :*+,

vt+1 = ρvt + ∇L(wt)
wt+1 = wt − αvt+1
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SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

SGD SGD+Momentum
Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Local Minima
 Saddle Points
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SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor ConditioningPoor Conditioning


Gradient Noise
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SGD + Momentum
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Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Local Minima
 Saddle Points
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SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor ConditioningPoor Conditioning


Gradient Noise




SGD + Momentum
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Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2),”, 1983”

Nesterov, “Introductory lectures on convex optimization: a basic course,” 2004


Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Momentum update:


Velocity

Actual step


Combine gradient at current point 
with velocity to get step used to 
update weights

Nesterov Momentum


Velocity


Actual step


Gradient


“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to get 
actual update direction

Gradient
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Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2),”, 1983”

Nesterov, “Introductory lectures on convex optimization: a basic course,” 2004


Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Momentum update:


Velocity

Actual step


Combine gradient at current point 
with velocity to get step used to 
update weights

Nesterov Momentum


Velocity


Actual step


Gradient


“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to get 
actual update direction

Gradient




Nesterov Momentum
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vt+1 = ρvt − α∇L(wt + ρvt)
wt+1 = wt + vt+1

Velocity


Actual step


Gradient


“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to get 
actual update direction

Annoying, usually we 
want to update in terms of wt, ∇L(wt)



Nesterov Momentum

60

vt+1 = ρvt − α∇L(w̃t)
w̃t+1 = w̃t − ρvt + (1 + ρ)vt+1

= w̃t + vt+1 + ρ(vt+1 − vt)

Change of variables 
and rearrange: w̃t = wt + ρvt

Justin Johnson January 19, 2022

Nesterov Momentum

Lecture 4 - 69

Change of variables                                   
and rearrange: 

Annoying, usually we want 
update in terms of

vt+1 = ρvt − α∇L(wt + ρvt)
wt+1 = wt + vt+1

Annoying, usually we 
want to update in terms of wt, ∇L(wt)
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Added element-wise scaling of the gradient based on the 
historical sum of squares in each dimension

“Per-parameter learning rates” or “adaptive learning rates”

Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011Justin Johnson January 19, 2022Lecture 4 - 74

AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated

Progress along “steep” directions is damped; 
progress along “flat” directions is acceleratedQ: What happens with AdaGrad?
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011Justin Johnson January 19, 2022Lecture 4 - 74

AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated

Progress along “steep” directions is damped; 
progress along “flat” directions is acceleratedQ: What happens with AdaGrad?

Problem: AdaGrad will 
slow over many iterations



RMSProp: “Leaky AdaGrad”
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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RMSProp: “Leaky Adagrad”

AdaGrad

Tieleman and Hinton, 2012

RMSProp
RMSProp

AdaGrad
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Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015
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Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

SGD+Momentum

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015
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Adam (almost): RMSProp + Momentum

Lecture 4 - 79

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

RMSProp

Adam

Momentum
AdaGrad / RMSProp

Adam (almost): RMSProp + Momentum
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Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp

RMSProp



Adam (almost): RMSProp + Momentum
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Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp
Bias correction

Q: What happens at t=1?

(Assume beta2 = 0.999)



Adam (almost): RMSProp + Momentum
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Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp
Bias correction

Bias correction for the fact that first 
and second moment estimates start at 
zero

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 82

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction for the fact 
that first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 

Adam with beta1 = 0.9,

beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4 
is a great starting point for many models!



Adam: Very common in Practice!
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Adam: Very Common in Practice!

Lecture 4 - 83

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019

Adam with beta1 = 0.9,

beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4 
is a great starting point for many models!
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Optimization Algorithm Comparison

Lecture 4 - 85

Algorithm
Tracks first 
moments 

(Momentum)

Tracks second 
moments 
(Adaptive

learning rates)

Leaky 
second 

moments

Bias correction for 
moment estimates

SGD 2 2 2 2
SGD+Momentum ✓ 2 2 2
Nesterov ✓ 2 2 2
AdaGrad 2 ✓ 2 2
RMSProp 2 ✓ ✓ 2
Adam ✓ ✓ ✓ ✓



L2 Regularization vs Weight Decay
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L(w) = Ldata(w) + Lreg(w)
gt = ∇L(wt)
st = optimizer(gt)
wt+1 = wt − αst

Optimization Algorithm L2 Regularization 

L(w) = Ldata(w) + Lreg(w)
gt = ∇L(wt) = ∇Ldata(wt)
st = optimizer(gt)
wt+1 = wt − αst

+λ |w |2

+2λwt

Optimization Algorithm

+2λwt

L(w) = Ldata(w) + Lreg(w)
gt = ∇Ldata(wt)
st = optimizer(gt)
wt+1 = wt − αst

L2 Regularization and Weight Decay are 
equivalent for SGD, SGD+Momentum so people 
often use the terms interchangeably!

But they are not the same for adaptive methods 
(AdaGrad, RMSProp, Adam, etc)

Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019



AdamW: Decouple Weight Decay
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Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

Justin Johnson January 19, 2022

AdamW: Decoupled Weight Decay

Lecture 4 - 91

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019



AdamW: Decouple Weight Decay
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Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019
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AdamW: Decoupled Weight Decay

Lecture 4 - 91

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

AdamW should probably be your “default” 
optimizer for new problems



So far: First-order Optimization
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Loss

w1
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So far: First-Order Optimization

Lecture 4 - 93

Loss

w1

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 96

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas 
of low curvature
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Loss
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Second-Order Optimization
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1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas 
of low curvature

1. Use gradient to make linear approximation

2. Step to minimize the approximation
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1. Use gradient and Hessian to make quadratic approximation
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1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas 
of low curvature

1. Use gradient and Hessian to make quadratic approximation

2. Step to minimize the approximation

Take bigger steps in areas of 
low curvature
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L(w) ≈ L(w0) + (w − w0)T ∇wL(w0) +
1
2

(w − w0)THwL(w0)(w − w0)

Second-order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

w* = w0 − HwL(w0)−1 ∇wL(w0)
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77

L(w) ≈ L(w0) + (w − w0)T ∇wL(w0) +
1
2

(w − w0)THwL(w0)(w − w0)

Second-order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

w* = w0 − HwL(w0)−1 ∇wL(w0)

Q: Why is this impractical? Hessian has O(N^2) elements

Inverting takes O(N^3)

N = (Tens or Hundreds of) Millions



Second-order Optimization
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- Quasi-Newton methods (BGFS most popular): instead of inverting the 
Hessian ((O(n^3)), approximate inverse Hessian with rank 1 updates over 
time (O(n^2) each).

w* = w0 − HwL(w0)−1 ∇wL(w0)

- L-BFGS (Limited memory BFGS): Does not form/store the full inverse 
Hessian



Second-order Optimization: L-BFGS
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- Usually works very well in full batch, deterministic mode i.e. if you have 
a single, deterministic f(x) then L-BFGS will probably work very nicely.

- Does not transfer very well to mini-batch setting. Gives bad results. 
Adapting second-order methods to large-scale, stochastic setting is an 
active area of research.

Le et al, “On optimization methods for deep learning,” ICML 2011

Ba et al, “Distributed second-order optimization using Kronecker-factored approximations,” ICLR 2017



In practice:
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• Adam is a good default choice in many cases 
SGD+Momentum can outperform Adam but may require 
more tuning.

• If you can afford to do full batch updates then try out L-BFGS 
(and don’t forget to disable all sources of noise)



Summary
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• Use Linear Models for image 
classification problems.

• Use Loss Functions to express 
preferences over different choices 
of weights.

• Use Regularization to prevent 
overfitting to training data.

• Use Stochastic Gradient Descent 
to minimize our loss functions and 
train the model.

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,
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SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Li = − log(
expsyi

∑i expsj
)

Li = ∑
j≠yi

max(0,sj = − syi
+ 1)

L =
1
N

N

∑
i=1

Li + R(W )

Softmax

SVM

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

Justin Johnson January 19, 2022

Summary

Lecture 4 - 103

1. Use Linear Models for image 
classification problems

2. Use Loss Functions to express 
preferences over different 
choices of weights

3. Use Regularization to prevent 
overfitting to training data

4. Use Stochastic Gradient 
Descent to minimize our loss 
functions and train the model

Softmax SVM
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Next time: Neural Networks
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DeepRob
Lecture 4
Regularization + Optimization
University of Michigan and University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

