
1

DeepRob
Lecture 4
Regularization + Optimization
University of Michigan and University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Project 1—Reminder
• Instructions and code available on the website
• Here: deeprob.org/projects/project1/

• Uses Python, PyTorch and Google Colab

• Implement KNN, linear SVM, and linear softmax classifiers

• Autograder is online
• Due Thursday, January 26th 11:59 PM EST

2

http://deeprob.org/projects/project1/

Project 1—Dataset

3

10 classes

32x32 RGB images

50k training images (5k per class)

10k test images (1k per class)

Chen et al., “ProgressLabeller: Visual Data Stream Annotation
for Training Object-Centric 3D Perception”, IROS, 2022.

Progress Robot Object Perception Samples Dataset

Discussion 2—How was this dataset created?

4

Human
Annotator

Idea:
1. Record video of scene

2. Human labels object pose in selected frames

3. Pose labels propagate to (large number
 of) remaining frames

ProgressLabeller: Visual Data Stream Annotation for Training
Object-Centric 3D Perception

Xiaotong Chen Huijie Zhang Zeren Yu Stanley Lewis Odest Chadwicke Jenkins

Abstract— Visual perception tasks often require vast amounts
of labelled data, including 3D poses and image space segmen-
tation masks. The process of creating such training data sets
can prove difficult or time-intensive to scale up to efficacy for
general use. Consider the task of pose estimation for rigid ob-
jects. Deep neural network based approaches have shown good
performance when trained on large, public datasets. However,
adapting these networks for other novel objects, or fine-tuning
existing models for different environments, requires significant
time investment to generate newly labelled instances. Towards
this end, we propose ProgressLabeller as a method for more
efficiently generating large amounts of 6D pose training data
from color images sequences for custom scenes in a scalable
manner. ProgressLabeller is intended to also support trans-
parent or translucent objects, for which the previous methods
based on depth dense reconstruction will fail. We demonstrate
the effectiveness of ProgressLabeller by rapidly create a dataset
of over 1M samples with which we fine-tune a state-of-the-
art pose estimation network in order to markedly improve
the downstream robotic grasp success rates. Progresslabeller
is open-source at https://github.com/huijieZH/ProgressLabeller

I. INTRODUCTION

Visual perception tasks often require vast amounts of
labelled data due to their use of deep neural networks. Such
deep neural networks have outperformed traditional methods
in object pose estimation [1], [2], [3] when trained on public
large-scale datasets [4], [5], [6]. However, considering the
practice of deploying such systems in real-world robotics
applications, such as semantic grasping and manipulation,
current pose estimation systems can prove the difficulty of
adaptation to different objects and settings without retraining
with a customized large-scale dataset.

In particular, our need for training data is a result of object
labels for pose estimation being defined to specific 3D object
models (both geometry shape and texture). Learned models
cannot be fine-tuned to transfer to similar object instances
without additional training data. Recent work has made
advances in category-level or unseen pose estimation [7],
[8]. However, the objects included only cover a small set and
there is no evidence showing the estimated pose is reliable
enough for robotic manipulation. Further, the estimation re-
sults of deep neural networks are often vulnerable to environ-
mental changes [9], including different lighting conditions,
occlusions and object’s special appearance like transparent
or reflective surfaces. Synthetic data generation with domain
randomization and photo-realistic rendering [10], [11] could

⇤X. Chen, H. Zhang, Z. Yu, S. Lewis and O. C. Jenkins are with
the Department of Electrical Engineering and Computer Science, and
Robotics Institute at the University of Michigan, Ann Arbor, MI 48109
USA [cxt|huijiezh|yuzeren|stanlew|ocj] @umich.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1: The ProgressLabeller offers an interactive GUI for aligning
all kinds of objects in the 3D scene to generate large-scale datasets
with ground truth pose labels. The left image shows the rough
6D pose estimates from one state-of-the-art RGB-D deep models
trained on public YCB dataset, and the right images shows fine-
tuned pose estimates from the same model after retraining using
generated data from ProgressLabeller. The pose estimates are then
used for robotic grasping experiments.

improve generalizability, but it is still challenging to simulate
real-world lighting as well as the noise inherent in the sensor
modality. We show in the experiment that the network trained
using real data is still over-performing synthetic data.

To address the problem of adaptation for deep pose
estimation systems and their application to robotic manip-
ulation, we propose ProgressLabeller as a method and
implementation for creating large customized datasets more
efficiently. Inspired by LabelFusion [12], ProgressLabeller
collects training data of objects in situ in a mixed-initiative
manner, similar in spirit to work by Gouravajhala et al. [13].
It takes visual streams of color images that observe objects
in a physical environment as input. Objects in this stream
only need to be labelled once by a human user through
visual annotation. ProgressLabeller builds on recent advances
in Structure-from-Motion [14] and visual SLAM [15] to
produce both a 3D reconstruction and camera pose along the
trajectory of the collected visual stream, where the annotated
object labels can be propagated to all frames.

Compared to depth-based fusion methods, the color
feature-based pipeline of ProgressLabeller suffers less noisy
or invalid readings than that from depth sensing. Further,
the use of color by ProgressLabeller allows it to include
objects that are transparent and reflective [16] into the pose
estimation process, as long as there exists textures from
other objects or background. From an interface perspective,
our implementation of ProgressLabeller aims to provide a
more interactive design geared for users performing labeling

ar
X

iv
:2

20
3.

00
28

3v
2

 [c
s.R

O
]

1
A

ug
 2

02
2

https://arxiv.org/abs/2203.00283

Gradescope Quizzes
• Let course staff know if you have issues accessing

• Quiz links available through gradescope course 480760
• Time limit of 15 min once quiz is opened
• Each available to take from 7:00AM—3:00PM EST on quiz days
• Covers material from previous lectures and graded projects
• Today only: quiz 1 available until 6:00PM EST

5

Recap—Linear Classifiers

6
Justin Johnson January 12, 2022

Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score
= 0

Car score
increases
this way

Car template
on this line

Cat
Score

Airplane
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a
high-dimensional space

Pixel
(15, 8, 0)

Pixel
(11, 11, 0)

Justin Johnson January 12, 2022

Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Justin Johnson January 12, 2022

Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Recap—Loss Functions Quantify Preferences

7

Justin Johnson January 12, 2022

Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7

Recap—Loss Functions Quantify Preferences

8

Q: How do we find the best W,b?

Justin Johnson January 12, 2022

Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7

Recap—Loss Functions Quantify Preferences

9

Justin Johnson January 12, 2022

Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function: Linear classifier

Softmax: !! = − log %&' (%$
∑& %&' (&

SVM: !! = ∑"#$$max 0, /" − /$$ + 1

/ = " #;%, 7 = %# + 7

Problem: Loss functions encourage
good performance on training data
but we care about test data

10

Regularization + Optimization

Overfitting

11

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Both models have perfect accuracy on the training data!

Overfitting

11

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, and softmax loss

si = wix + bi

pi =
exp(si)

exp(s1) + exp(s2)
L = − log(py)

Both models have perfect accuracy on the training data!

Overfitting

11

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, and softmax loss

si = wix + bi

pi =
exp(si)

exp(s1) + exp(s2)
L = − log(py)

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 10

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss
!$ = #$$ + &$
'$ =

exp !$
exp !% + exp !&

+ = − log ''

Low loss, but unnatural “cliff”
between training points

Both models have perfect accuracy on train data!Both models have perfect accuracy on the training data!

Overfitting

12

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss

si = wix + bi

pi =
exp(si)

exp(s1) + exp(s2)
L = − log(py)

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 10

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss
!$ = #$$ + &$
'$ =

exp !$
exp !% + exp !&

+ = − log ''

Low loss, but unnatural “cliff”
between training points

Both models have perfect accuracy on train data!Both models have perfect accuracy on the training data! Low loss, but unnatural “cliff”
between the training points

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 11

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss
!$ = #$$ + &$
'$ =

exp !$
exp !% + exp !&

+ = − log ''

Overconfidence in regions with no training data could give poor generalization

Overfitting

13

A model is overfit when it performs too well on the training
data, and has poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss

Overconfidence in regions with no training data could give poor generalization

Regularization: Beyond Training Error

14

L(W) =
1
N

N

∑
i=1

Li(f(xi, W), yi) + λR(W)

Data loss: Model predictions

should match training data

Regularization: Beyond Training Error

15

L(W) =
1
N

N

∑
i=1

Li(f(xi, W), yi) + λR(W)

Data loss: Model predictions

should match training data

Regularization: Prevent the model

from doing too well on training data

Hyperparameter giving
regularization strength

Regularization: Beyond Training Error

16

L(W) =
1
N

N

∑
i=1

Li(f(xi, W), yi) + λR(W)

Data loss: Model predictions

should match training data

Regularization: Prevent the model

from doing too well on training data

Hyperparameter giving
regularization strength

Simple examples:
L2 regularization:

L1 regularization:

R(W) = ∑
k,l

W2
k,l

R(W) = ∑
k,l

|Wk,l |

Regularization: Beyond Training Error

17

L(W) =
1
N

N

∑
i=1

Li(f(xi, W), yi) + λR(W)

Data loss: Model predictions

should match training data

Regularization: Prevent the model

from doing too well on training data

Hyperparameter giving
regularization strength

Simple examples:
L2 regularization:

L1 regularization:

More complex:
Dropout

Batch normalization

Cutout, Mixup, Stochastic depth, etc…

R(W) = ∑
k,l

W2
k,l

R(W) = ∑
k,l

|Wk,l |

Regularization: Prefer Simpler Models

18

Example: Linear classifier with 1D
inputs, 2 classes, and softmax loss

si = wix + bi

pi =
exp(si)

exp(s1) + exp(s2)
L = − log(py) +λ∑

i

w2
i

Regularization: Prefer Simpler Models

18

Example: Linear classifier with 1D
inputs, 2 classes, and softmax loss

si = wix + bi

pi =
exp(si)

exp(s1) + exp(s2)
L = − log(py) +λ∑

i

w2
i

Justin Johnson January 19, 2022

Regularization: Prefer Simpler Models

Lecture 4 - 17

Example: Linear classifier with 1D inputs, 2 classes, softmax loss

!$ = #$$ + &$ '$ =
exp !$

exp !% + exp !&
+ = − log '' + 45

(
6(
)

Regularization term
causes loss to increase
for model with sharp cliff

Regularization term causes
loss to increase for model
with sharp cliff

Regularization: Expressing Preferences

19

x = [1,1,1,1]
w1 = [1,0,0,0]
w2 = [0.25,0.25,0.25,0.25]

R(W) = ∑
k,l

W2
k,l

L2 Regularization

wT
1 x = wT

2 x = 1 Same predictions, so data loss
will always be the same

Regularization: Expressing Preferences

20

x = [1,1,1,1]
w1 = [1,0,0,0]
w2 = [0.25,0.25,0.25,0.25]

R(W) = ∑
k,l

W2
k,l

L2 Regularization

wT
1 x = wT

2 x = 1 Same predictions, so data loss
will always be the same

L2 Regularization prefers weights to be
“spread out”

Finding a good W

21

L(W) =
1
N

N

∑
i=1

Li(f(xi, W), yi) + λR(W)

Loss function consists of data loss to fit the training
data and regularization to prevent overfitting

Optimization

22

w * = arg min
w

L(w)

23
Justin Johnson January 19, 2022Lecture 4 - 22

Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

The valley image and the walking man image are in CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/

23
Justin Johnson January 19, 2022Lecture 4 - 22

Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

The valley image and the walking man image are in CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/

Idea #1: Random Search (bad idea!)

24

Justin Johnson January 19, 2022

Idea #1: Random Search (bad idea!)

Lecture 4 - 24

25
Justin Johnson January 19, 2022

Idea #1: Random Search (bad idea!)

Lecture 4 - 25

15.5% accuracy! not bad!15.5 % accuracy on CIFAR-10! not bad!

Idea #1: Random Search (bad idea!)

25
Justin Johnson January 19, 2022

Idea #1: Random Search (bad idea!)

Lecture 4 - 25

15.5% accuracy! not bad!15.5 % accuracy on CIFAR-10! not bad!

(SOTA is ~95%)

Idea #1: Random Search (bad idea!)

Idea #2: Follow the slope

26
The valley image and the walking man image are in CC0 1.0 public domainJustin Johnson January 19, 2022Lecture 4 - 22

Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://www.publicdomainpictures.net/en/free-download.php?image=walking-man&id=139314
https://creativecommons.org/publicdomain/zero/1.0/

Idea #2: Follow the slope

27

In 1-dimension, the derivative of a function gives the slope:

df
dx

= lim
h→0

f(x + h) − f(x)
h

Idea #2: Follow the slope

27

In 1-dimension, the derivative of a function gives the slope:

df
dx

= lim
h→0

f(x + h) − f(x)
h

In multiple dimensions, the gradient is the vector of (partial
derivatives) along each dimension

The slope in any direction is the dot product of the direction with the
gradient. The direction of steepest descent is the negative gradient.

28

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[?,

?,

?,

?,

?,

?,

?,

?,

?, …]

29

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[?,

?,

?,

?,

?,

?,

?,

?,

?, …]

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25322

30

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?, …]

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25322

(1.25322 - 1.25347)/
0.0001
= -2.5
df
dx

= lim
h→0

f(x + h) − f(x)
h

31

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?, …]

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353

32

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?, …]

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353

(1.25353 - 1.25347)/
0.0001
= 0.6
df
dx

= lim
h→0

f(x + h) − f(x)
h

33

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[-2.5,

0.6,

0.0,

?,

?,

?,

?,

?,

?, …]

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353

(1.25347 - 1.25347)/
0.0001
= 0.0
df
dx

= lim
h→0

f(x + h) − f(x)
h

34

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[-2.5,

0.6,

0.0,

?,

?,

?,

?,

?,

?, …]

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25353

Numeric Gradient:
- Slow: O(#dimensions)
- Approximate

Loss is a function of W

35

L =
1
N

N

∑
i=1

Li + ∑
k

W2
k

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

s = f(x, W) = Wx

∇wLWant

Loss is a function of W

35

L =
1
N

N

∑
i=1

Li + ∑
k

W2
k

Li = ∑
j≠yi

max(0,sj − syi
+ 1)

s = f(x, W) = Wx

∇wLWant

Use calculus to compute an
analytic gradient

36

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[-2.5,

0.6,

0.0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1, …]

dL
dW

= some function of data and W

37

Current W:
 Gradient

dL
dW

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33, …]

loss 1.25347

[-2.5,

0.6,

0.0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1, …]

dL
dW

= some function of data and W

In practice we will compute

using back propagation;
see Lecture 6

dL
dW

Computing Gradients

38

• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

Computing Gradients

38

• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

38

• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 44

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

39

• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 45

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

40

• Numeric gradient: approximate, slow, easy to write
• Analytic gradient: exact, fast, error-prone

Justin Johnson January 19, 2022

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

Lecture 4 - 46

Gradient Descent

41

• Iteratively step in the direction of the negative gradient (direction of local
steepest descent)

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Hyperparameters:
- Weight initialization method

- Number of steps

- Learning rate

Gradient Descent

41

• Iteratively step in the direction of the negative gradient (direction of local
steepest descent)

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Hyperparameters:
- Weight initialization method

- Number of steps

- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Negative gradient
direction

Original W

Gradient Descent

42

• Iteratively step in the direction of the negative gradient (direction of local
steepest descent)

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Hyperparameters:
- Weight initialization method

- Number of steps

- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Original W

Gradient Descent

42

• Iteratively step in the direction of the negative gradient (direction of local
steepest descent)

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Hyperparameters:
- Weight initialization method

- Number of steps

- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Original W

Final W

Batch Gradient Descent

43

L(W) =
1
N

N

∑
i=1

Li(xi, yi, W) + λR(W)

∇W L(W) =
1
N

N

∑
i=1

∇W Li(xi, yi, W) + λ∇W R(W)

Full sum expensive
when N is large!

Stochastic Gradient Descent (SGD)

44

L(W) =
1
N

N

∑
i=1

Li(xi, yi, W) + λR(W)

∇W L(W) =
1
N

N

∑
i=1

∇W Li(xi, yi, W) + λ∇W R(W)

Full sum expensive
when N is large!

Approximate sum using
minibatch of examples
32/64/128 common

Hyperparameters:
- Weight initialization

- Number of steps

- Learning rate

- Batch size

- Data sampling

Justin Johnson January 19, 2022

Stochastic Gradient Descent (SGD)

Lecture 4 - 51

Full sum expensive
when N is large!

Approximate sum using
a minibatch of examples
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

! " = 1
%&

"#$

%
!" '" ,)" ," + +, "

∇&! " = 1
%&

"#$

%
∇&!" '" ,)" ," + +∇&, "

Stochastic Gradient Descent (SGD)

45

L(W) = 𝔼(x,y)∼pdata
[L(x, y, W)] + λR(W)]

≈
1
N

N

∑
i=1

L(xi, yi, W) + λR(W)

Think of loss as an expectation
over the full data distribution
pdata

Approximate expectation
via sampling

∇W L(W) = ∇W𝔼(x,y)∼pdata
[L(x, y, W)] + λR(W)]

≈ ∑
i=1

N ∇wL(xi, yi, W) + ∇wλR(W)

Interactive Web Demo

46

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Problems with SGD

47
Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 55

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value
of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another?

What does gradient decent do?

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

Problems with SGD

48
Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 55

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value
of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another?

What does gradient decent do?

Loss function has high condition number: ratio of largest to smallest singular value of
the Hessian matrix is large

Very slow progress along shallow dimension, jitter along steep direction

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 56

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value
of the Hessian matrix is large

Problems with SGD

49Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 57

What if the loss function
has a local minimum or
saddle point?

Local
Minimum

Saddle
point

What if the loss function has a
local minimum or saddle point?

Problems with SGD

50

What if the loss function has a
local minimum or saddle point?

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 57

What if the loss function
has a local minimum or
saddle point?

Local
Minimum

Saddle
point

Zero gradient, gradient descent gets stuck

Problems with SGD

51

Our gradients come from mini batches so
they can be noisy!

L(W) =
1
N

N

∑
i=1

Li(xi, yi, W) + λR(W)

∇W L(W) =
1
N

N

∑
i=1

∇W Li(xi, yi, W) + λ∇W R(W)

Problems with SGD

51

Our gradients come from mini batches so
they can be noisy!

L(W) =
1
N

N

∑
i=1

Li(xi, yi, W) + λR(W)

∇W L(W) =
1
N

N

∑
i=1

∇W Li(xi, yi, W) + λ∇W R(W)

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Original W

Problems with SGD

51

Our gradients come from mini batches so
they can be noisy!

L(W) =
1
N

N

∑
i=1

Li(xi, yi, W) + λR(W)

∇W L(W) =
1
N

N

∑
i=1

∇W Li(xi, yi, W) + λ∇W R(W)

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin JohnsonJanuary 19, 2022 Lecture 4 -48

negative
gradient
direction

W_1

W_2original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
-Weight initialization method
-Number of steps
-Learning rate

Original W

Problems with SGD

52

What if the loss function has a
local minimum or saddle point?

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 57

What if the loss function
has a local minimum or
saddle point?

Local
Minimum

Saddle
point

Batched gradient descent always
computes same gradients

SGD computes noisy gradients,
may help to escape saddle points

SGD + Momentum

53

SGD

wt+1 = wt − α∇L(wt)

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

SGD + Momentum

53

SGD
 SGD + Momentum

wt+1 = wt − α∇L(wt)

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

vt+1 = ρvt + ∇L(wt)
wt+1 = wt − αvt+1

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho = 0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

SGD + Momentum

54

SGD + Momentum

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Momentum update:

Velocity

Actual step

Combine gradient at current point
with velocity to get step used to
update weights

Gradient

vt+1 = ρvt + ∇L(wt)
wt+1 = wt − αvt+1

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho = 0.9 or 0.99

SGD + Momentum

55

SGD + Momentum

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

You may see SGD+Momentun formulated different ways,
but they are equivalent - give same sequence of w

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

SGD + Momentum

vt+1 = ρvt − α∇L(wt)
wt+1 = wt + vt+1

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 63

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

You may see SGD+Momentum formulated different ways, but
they are equivalent - give same sequence of x

SGD+Momentum
:*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

:*+, = ;:* − 8∇0 1*
1*+, = 1* + :*+,

vt+1 = ρvt + ∇L(wt)
wt+1 = wt − αvt+1

SGD + Momentum

56Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

SGD SGD+Momentum
Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Local Minima
 Saddle Points

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor ConditioningPoor Conditioning

Gradient Noise

SGD + Momentum

56Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

SGD SGD+Momentum
Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Local Minima
 Saddle Points

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor ConditioningPoor Conditioning

Gradient Noise

SGD + Momentum

57

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2),”, 1983”

Nesterov, “Introductory lectures on convex optimization: a basic course,” 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Momentum update:

Velocity

Actual step

Combine gradient at current point
with velocity to get step used to
update weights

Nesterov Momentum

Velocity

Actual step

Gradient

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction

Gradient

Nesterov Momentum

58

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2),”, 1983”

Nesterov, “Introductory lectures on convex optimization: a basic course,” 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning,” ICML 2013

Momentum update:

Velocity

Actual step

Combine gradient at current point
with velocity to get step used to
update weights

Nesterov Momentum

Velocity

Actual step

Gradient

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction

Gradient

Nesterov Momentum

59

vt+1 = ρvt − α∇L(wt + ρvt)
wt+1 = wt + vt+1

Velocity

Actual step

Gradient

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to get
actual update direction

Annoying, usually we
want to update in terms of wt, ∇L(wt)

Nesterov Momentum

60

vt+1 = ρvt − α∇L(w̃t)
w̃t+1 = w̃t − ρvt + (1 + ρ)vt+1

= w̃t + vt+1 + ρ(vt+1 − vt)

Change of variables
and rearrange: w̃t = wt + ρvt

Justin Johnson January 19, 2022

Nesterov Momentum

Lecture 4 - 69

Change of variables
and rearrange:

Annoying, usually we want
update in terms of

vt+1 = ρvt − α∇L(wt + ρvt)
wt+1 = wt + vt+1

Annoying, usually we
want to update in terms of wt, ∇L(wt)

AdaGrad

61

Justin Johnson January 19, 2022Lecture 4 - 71

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

“Per-parameter learning rates” or “adaptive learning rates”

Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011

AdaGrad

62

Justin Johnson January 19, 2022Lecture 4 - 71

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011Justin Johnson January 19, 2022Lecture 4 - 74

AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped;
progress along “flat” directions is accelerated

Progress along “steep” directions is damped;
progress along “flat” directions is acceleratedQ: What happens with AdaGrad?

AdaGrad

62

Justin Johnson January 19, 2022Lecture 4 - 71

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011Duchi et al, “Adaptive sub gradient methods for online learning and stochastic optimization,” JMLR 2011Justin Johnson January 19, 2022Lecture 4 - 74

AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped;
progress along “flat” directions is accelerated

Progress along “steep” directions is damped;
progress along “flat” directions is acceleratedQ: What happens with AdaGrad?

Problem: AdaGrad will
slow over many iterations

RMSProp: “Leaky AdaGrad”

63

Justin Johnson January 19, 2022Lecture 4 - 71

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Justin Johnson January 19, 2022Lecture 4 - 75

RMSProp: “Leaky Adagrad”

AdaGrad

Tieleman and Hinton, 2012

RMSProp
RMSProp

AdaGrad

Adam (almost): RMSProp + Momentum

64Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

Adam (almost): RMSProp + Momentum

65Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

SGD+Momentum

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 79

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

RMSProp

Adam

Momentum
AdaGrad / RMSProp

Adam (almost): RMSProp + Momentum

66Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp

RMSProp

Adam (almost): RMSProp + Momentum

67Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp
Bias correction

Q: What happens at t=1?

(Assume beta2 = 0.999)

Adam (almost): RMSProp + Momentum

68

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization,” ICLR 2015

AdaGrad / RMSProp
Bias correction

Bias correction for the fact that first
and second moment estimates start at
zero

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 82

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction for the fact
that first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Adam with beta1 = 0.9,

beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Adam: Very common in Practice!

69

Justin Johnson January 19, 2022

Adam: Very Common in Practice!

Lecture 4 - 83

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019

Adam with beta1 = 0.9,

beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Optimization Algorithm Comparison

70Justin Johnson January 19, 2022

Optimization Algorithm Comparison

Lecture 4 - 85

Algorithm
Tracks first
moments

(Momentum)

Tracks second
moments
(Adaptive

learning rates)

Leaky
second

moments

Bias correction for
moment estimates

SGD 2 2 2 2
SGD+Momentum ✓ 2 2 2
Nesterov ✓ 2 2 2
AdaGrad 2 ✓ 2 2
RMSProp 2 ✓ ✓ 2
Adam ✓ ✓ ✓ ✓

L2 Regularization vs Weight Decay

71

L(w) = Ldata(w) + Lreg(w)
gt = ∇L(wt)
st = optimizer(gt)
wt+1 = wt − αst

Optimization Algorithm L2 Regularization

L(w) = Ldata(w) + Lreg(w)
gt = ∇L(wt) = ∇Ldata(wt)
st = optimizer(gt)
wt+1 = wt − αst

+λ |w |2

+2λwt

Optimization Algorithm

+2λwt

L(w) = Ldata(w) + Lreg(w)
gt = ∇Ldata(wt)
st = optimizer(gt)
wt+1 = wt − αst

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so people
often use the terms interchangeably!

But they are not the same for adaptive methods
(AdaGrad, RMSProp, Adam, etc)

Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

AdamW: Decouple Weight Decay

72
Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

Justin Johnson January 19, 2022

AdamW: Decoupled Weight Decay

Lecture 4 - 91

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

AdamW: Decouple Weight Decay

72
Loshchilov and Hunter, “Decoupled Weight Decay Regularization,” ICLR 2019

Justin Johnson January 19, 2022

AdamW: Decoupled Weight Decay

Lecture 4 - 91

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

AdamW should probably be your “default”
optimizer for new problems

So far: First-order Optimization

73

Loss

w1

Justin Johnson January 19, 2022

So far: First-Order Optimization

Lecture 4 - 93

Loss

w1

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 96

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas
of low curvature

So far: First-order Optimization

74

Loss

w1

Justin Johnson January 19, 2022

So far: First-Order Optimization

Lecture 4 - 93

Loss

w1

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 96

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas
of low curvature

1. Use gradient to make linear approximation

2. Step to minimize the approximation

Second-order Optimization

75

Loss

w1

Justin Johnson January 19, 2022

So far: First-Order Optimization

Lecture 4 - 93

Loss

w1

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 96

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas
of low curvature

1. Use gradient and Hessian to make quadratic approximation

2. Step to minimize the approximation

Second-order Optimization

76

Loss

w1

Justin Johnson January 19, 2022

So far: First-Order Optimization

Lecture 4 - 93

Loss

w1

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 96

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas
of low curvature

1. Use gradient and Hessian to make quadratic approximation

2. Step to minimize the approximation

Take bigger steps in areas of
low curvature

Second-order Optimization

77

L(w) ≈ L(w0) + (w − w0)T ∇wL(w0) +
1
2

(w − w0)THwL(w0)(w − w0)

Second-order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

w* = w0 − HwL(w0)−1 ∇wL(w0)

Second-order Optimization

77

L(w) ≈ L(w0) + (w − w0)T ∇wL(w0) +
1
2

(w − w0)THwL(w0)(w − w0)

Second-order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

w* = w0 − HwL(w0)−1 ∇wL(w0)

Q: Why is this impractical? Hessian has O(N^2) elements

Inverting takes O(N^3)

N = (Tens or Hundreds of) Millions

Second-order Optimization

78

- Quasi-Newton methods (BGFS most popular): instead of inverting the
Hessian ((O(n^3)), approximate inverse Hessian with rank 1 updates over
time (O(n^2) each).

w* = w0 − HwL(w0)−1 ∇wL(w0)

- L-BFGS (Limited memory BFGS): Does not form/store the full inverse
Hessian

Second-order Optimization: L-BFGS

79

- Usually works very well in full batch, deterministic mode i.e. if you have
a single, deterministic f(x) then L-BFGS will probably work very nicely.

- Does not transfer very well to mini-batch setting. Gives bad results.
Adapting second-order methods to large-scale, stochastic setting is an
active area of research.

Le et al, “On optimization methods for deep learning,” ICML 2011

Ba et al, “Distributed second-order optimization using Kronecker-factored approximations,” ICLR 2017

In practice:

80

• Adam is a good default choice in many cases
SGD+Momentum can outperform Adam but may require
more tuning.

• If you can afford to do full batch updates then try out L-BFGS
(and don’t forget to disable all sources of noise)

Summary

81

• Use Linear Models for image
classification problems.

• Use Loss Functions to express
preferences over different choices
of weights.

• Use Regularization to prevent
overfitting to training data.

• Use Stochastic Gradient Descent
to minimize our loss functions and
train the model.

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

1*+, = 1* − 8∇0 1* :*+, = ;:* + ∇0 1*
1*+, = 1* − 8:*+,

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Li = − log(
expsyi

∑i expsj
)

Li = ∑
j≠yi

max(0,sj = − syi
+ 1)

L =
1
N

N

∑
i=1

Li + R(W)

Softmax

SVM

Justin Johnson January 12, 2022

Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score
= 0

Car score
increases
this way

Car template
on this line

Cat
Score

Airplane
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a
high-dimensional space

Pixel
(15, 8, 0)

Pixel
(11, 11, 0)

Justin Johnson January 19, 2022

Summary

Lecture 4 - 103

1. Use Linear Models for image
classification problems

2. Use Loss Functions to express
preferences over different
choices of weights

3. Use Regularization to prevent
overfitting to training data

4. Use Stochastic Gradient
Descent to minimize our loss
functions and train the model

Softmax SVM

82

Next time: Neural Networks

83

DeepRob
Lecture 4
Regularization + Optimization
University of Michigan and University of Minnesota

Slides adapted from Justin Johnson’s Deep Learning for Computer Vision course

https://deeprob.org
https://deeprob.org
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

