

DeepRob

Lecture 4

Regularization + Optimization
University of Michigan and University of Minnesota

Project 1—Reminder

- Instructions and code available on the website - Here: deeprob.org/projects/project1/
- Uses Python, PyTorch and Google Colab
- Implement KNN, linear SVM, and linear softmax classifiers
- Autograder is online
- Due Thursday, January 26th 11:59 PM EST

Project 1—Dataset

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

10 classes

32x32 RGB images
50k training images (5k per class) 10k test images (1 k per class)

Discussion 2-How was this dataset created?

ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception
 Xiaotong Chen Huijie Zhang Zeren Yu Stanley Lewis Odest Chadwicke Jenkins

Rough Pose Estimates from Pretrained Model

6D pose annotation through

 interactive interface

Human Annotator

Fine-tuned Pose
Estimates

Idea:

1. Record video of scene
2. Human labels object pose in selected frames
3. Pose labels propagate to (large number of) remaining frames

Gradescope Quizzes

- Let course staff know if you have issues accessing
- Quiz links available through gradescope course 480760
- Time limit of 15 min once quiz is opened
- Each available to take from 7:00AM-3:00PM EST on quiz days
- Covers material from previous lectures and graded projects
- Today only: quiz 1 available until 6:00PM EST

Recap-Linear Classifiers

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap—Loss Functions Quantify Preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

$$
s=f(x ; W, b)=W x+b
$$

Softmax: $L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
$\mathrm{SVM}: L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Recap—Loss Functions Quantify Preferences

Q: How do we find the best W, b ?

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

$$
\begin{gathered}
s=f(x ; W, b)=W x+b \\
\text { Linear classifier }
\end{gathered}
$$

Softmax: $L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
$\mathrm{SVM}: L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Recap-Loss Functions Quantify Preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Problem: Loss functions encourage good performance on training data but we care about test data

$$
s=f(x ; W, b)=W x+b
$$

Linear classifier

Softmax: $L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
$\mathrm{SVM}: L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Regularization + Optimization

Overfitting

A model is overfit when it performs too well on the training data, and has poor performance for unseen data

Both models have perfect accuracy on the training data!

Overfitting

A model is overfit when it performs too well on the training data, and has poor performance for unseen data

Example: Linear classifier with 1D inputs, 2 classes, and softmax loss

$$
\begin{aligned}
& s_{i}=w_{i} x+b_{i} \\
& p_{i}=\frac{\exp \left(s_{i}\right)}{\exp \left(s_{1}\right)+\exp \left(s_{2}\right)} \\
& L=-\log \left(p_{y}\right)
\end{aligned}
$$

Both models have perfect accuracy on the training data!

Overfitting

A model is overfit when it performs too well on the training data, and has poor performance for unseen data

Example: Linear classifier with 1D inputs, 2 classes, and softmax loss

$$
\begin{aligned}
s_{i} & =w_{i} x+b_{i} \\
p_{i} & =\frac{\exp \left(s_{i}\right)}{\exp \left(s_{1}\right)+\exp \left(s_{2}\right)} \\
L & =-\log \left(p_{y}\right)
\end{aligned}
$$

Both models have perfect accuracy on the training data!

A model is overfit when it performs too well on the training data, and has poor performance for unseen data

Both models have perfect accuracy on the training data!

Low loss, but unnatural "cliff" between the training points

A model is overfit when it performs too well on the training data, and has poor performance for unseen data

Overconfidence in regions with no training data could give poor generalization

Regularization: Beyond Training Error

$$
L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Data loss: Model predictions
should match training data

Regularization: Beyond Training Error

$$
I(\mathrm{~W})-1{ }^{N} \quad \begin{array}{ll}
\\
\hline
\end{array}
$$

Data loss: Model predictions
Regularization: Prevent the model from doing too well on training data should match training data

Regularization: Beyond Training Error

$$
I(\mathrm{~W})-1{ }^{N} \quad \begin{array}{ll}
\\
\hline
\end{array}
$$

Regularization: Prevent the model
Data loss: Model predictions from doing too well on training data

Simple examples:
L2 regularization: $\quad R(W)=\sum_{k, l} W_{k, l}^{2}$
L1 regularization: $\quad R(W)=\sum_{k, l}\left|W_{k, l}\right|$

Regularization: Beyond Training Error

Data loss: Model predictions should match training data

Simple examples:

L2 regularization: $\quad R(W)=\sum_{k, l} W_{k, l}^{2}$
L1 regularization: $R(W)=\sum_{k, l}\left|W_{k, l}\right|$

More complex:

Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc...

Regularization: Prefer Simpler Models

$$
\begin{aligned}
s_{i} & =w_{i} x+b_{i} \\
p_{i} & =\frac{\exp \left(s_{i}\right)}{\exp \left(s_{1}\right)+\exp \left(s_{2}\right)} \\
L & =-\log \left(p_{y}\right)+\lambda \sum_{i} w_{i}^{2}
\end{aligned}
$$

Example: Linear classifier with 1D
inputs, 2 classes, and softmax loss

Regularization: Prefer Simpler Models

$$
s_{i}=w_{i} x+b_{i}
$$

Example: Linear classifier with 1D
inputs, 2 classes, and softmax loss

$$
\begin{aligned}
p_{i} & =\frac{\exp \left(s_{i}\right)}{\exp \left(s_{1}\right)+\exp \left(s_{2}\right)} \\
L & =-\log \left(p_{y}\right)+\lambda \sum w_{i}^{2}
\end{aligned}
$$

Regularization term causes loss to increase for model with sharp cliff

Regularization: Expressing Preferences

$$
\begin{aligned}
& x=[1,1,1,1] \\
& w_{1}=[1,0,0,0] \\
& w_{2}=[0.25,0.25,0.25,0.25]
\end{aligned}
$$

L2 Regularization

$$
R(W)=\sum_{k, l} W_{k, l}^{2}
$$

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

Same predictions, so data loss will always be the same

Regularization: Expressing Preferences

$$
\begin{aligned}
& x=[1,1,1,1] \\
& w_{1}=[1,0,0,0] \\
& w_{2}=[0.25,0.25,0.25,0.25]
\end{aligned}
$$

L2 Regularization

$$
R(W)=\sum_{k, l} W_{k, l}^{2}
$$

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

Same predictions, so data loss will always be the same

Finding a good W

$$
L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)+\lambda R(W)
$$

Loss function consists of data loss to fit the training data and regularization to prevent overfitting

Optimization

$w^{*}=\arg \min L(w)$

w

Idea \#1: Random Search (bad idea!)

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt l the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```


Idea \#1: Random Search (bad idea!)

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5 \% accuracy on CIFAR-10! not bad!

Idea \#1: Random Search (bad idea!)

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5 \% accuracy on CIFAR-10! not bad! (SOTA is ~95\%)

Idea \#2: Follow the slope

Idea \#2: Follow the slope

In 1-dimension, the derivative of a function gives the slope:

$$
\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Idea \#2: Follow the slope

In 1-dimension, the derivative of a function gives the slope:

$$
\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension

The slope in any direction is the dot product of the direction with the gradient. The direction of steepest descent is the negative gradient.

DR
Current W:
[0.34,
-1.11,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25347

Gradient $\frac{d L}{d W}$

$$
\begin{aligned}
& \text { [?, } \\
& ?, \\
& ?, \\
& ?, \\
& ? \\
& ? \\
& ? \\
& ? \\
& ? \\
& ? \\
& ?, \\
& \text { ?, ..] }
\end{aligned}
$$

DR
Current W:
[0.34,
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
[0.34 + 0.0001,
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25322

Gradient $\frac{d L}{d W}$
[?
?,
?,
?,
?,
?,
?,
?,
?, ...]

DR
Current W:
[0.34
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
[0.34 + 0.0001,
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25322

Gradient $\frac{d L}{d W}$
[-2.5,
?,
(1.25322-1.25347)/
0.0001
$=-2.5$

$$
\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
?, \ldots]
$$

DR
Current W:
[0.34
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25347

Gradient $\frac{d L}{d W}$
$[-2.5$,
$?$,
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$

DR

Current W:
[0.34
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (second dim):
[0.34,
$-1.11+0.0001$,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25353

Gradient $\frac{d L}{d W}$
[-2.5, 0.6,
$?$,
$?$
(1.25353-1.25347)/ 0.0001
$=0.6$
$\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

DR
Current W:
[0.34
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
$0.78+0.0001$,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25353

Gradient $\frac{d L}{d W}$
[-2.5,
0.6,
0.0,
$?$,
$?$
(1.25347-1.25347)/
0.0001
$=0.0$
$\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

DR
Current W:
[0.34
-1.11,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
$0.78+0.0001$,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
loss 1.25353

Gradient $\frac{d L}{d W}$
[-2.5,
0.6,
0.0,
?,
?,

Numeric Gradient:

- Slow: O(\#dimensions)
- Approximate

Loss is a function of W

$$
\begin{aligned}
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
s & =f(x, W)=W x
\end{aligned}
$$

Want $\nabla_{w} L$

Loss is a function of W

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x, W)=W x
\end{aligned}
$$

Use calculus to compute an analytic gradient

Want $\nabla_{w} L$

DR
Current W:
Gradient $\frac{d L}{d W}$
[0.34,
[-2.5,
-1.11,
0.6,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33, ...]
$\frac{d L}{d W}=$ some function of data and W

$\begin{aligned} & 0.0, \\ & 0.2, \\ & 0.7, \\ & -0.5,\end{aligned}$
loss 1.25347

Current W:
[0.34,
[-2.5,
-1.11,
0.6,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25347

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

```
def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-7):
    " ""
    sample a few random elements and only return numerical
    in this dimensions.
    " " "
```


Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
torch.autograd.gradcheck (func, inputs, eps=1e-06, atol=1e-05, rtol=0.001, raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0)

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs that are of floating point type and with requires_grad=True .

The check between numerical and analytical gradients uses allclose().

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

```
torch.autograd.gradgradcheck(func, inputs, grad_outputs=None, eps=1e-06, atol=1e-
05,rtol=0.001, gen_non_contig_grad_outputs=False, raise_exception=True,
nondet_tol=0.0)
```

Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs and grad_outputs that are of floating point type and with requires_grad=True.

This function checks that backpropagating through the gradients computed to the given grad_outputs are correct.

Gradient Descent

- Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent

- Iteratively step in the direction of the negative gradient (direction of local steepest descent)

Negative gradient direction

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent

- Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent

- Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Batch Gradient Descent

$$
\begin{aligned}
& L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
& \nabla_{W} L(W)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
& L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
& \nabla_{W} L(W)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W) \\
& \# \text { Stochastic gradient descent } \\
& \text { w = initialize_weights() } \\
& \text { for t in range(num_steps): } \\
& \text { minibatch = sample_data(data, batch_size) } \\
& \text { dw = compute_gradient(loss_fn, minibatch, w) } \\
& \text { w -= learning_rate } * \text { dw }
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using minibatch of examples 32/64/128 common

Hyperparameters:

- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Stochastic Gradient Descent (SGD)

$$
\left.L(W)=\mathbb{E}_{(x, y) \sim p_{d a t a}}[L(x, y, W)]+\lambda R(W)\right]
$$

$$
\approx \frac{1}{N} \sum_{i=1}^{N} L\left(x_{i}, y_{i}, W\right)+\lambda R(W)
$$

Think of loss as an expectation over the full data distribution $\mathrm{p}_{\text {data }}$

Approximate expectation via sampling

$$
\begin{aligned}
& \left.\nabla_{W} L(W)=\nabla_{W} \mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(x, y, W)]+\lambda R(W)\right] \\
& \approx \sum_{i=1} N \nabla_{w} L\left(x_{i}, y_{i}, W\right)+\nabla_{w} \lambda R(W)
\end{aligned}
$$

DR

Interactive Web Demo

Step size: 0.09976
Single parameter update

Start repeated update

Stop repeated update
Randomize parameters

\mathbf{x} [0]	\mathbf{x} [1]	Y	s [0]	s [1]	s [2]	L
0.50	0.40	0	1.95	-0.10	0.60	0.00
0.80	0.30	0	2.44	0.90	1.60	0.16
0.30	0.80	0	2.29	-2.10	-0.40	0.00
-0.40	0.30	1	-0.32	-1.50	-2.00	2.68
-0.30	0.70	1	0.71	-2.90	-2.10	6.41
-0.70	0.20	1	-1.21	-1.70	-2.80	1.49
0.70	-0.40	2	0.81	3.50	2.00	2.50
0.50	-0.60	2	-0.05	3.90	1.60	3.30
-0.40	-0.50	2	-1.92	1.70	-1.20	4.18
Total data loss: 2.30						mean:
						2.30

$$
\text { Regularization loss: } 3.93
$$

$$
2.30
$$

$$
\text { Total loss: } 6.23
$$

L2 Regularization strength: 0.10000
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient decent do?

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient decent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

Problems with SGD

What if the loss function has a local minimum or saddle point?

Problems with SGD

What if the loss function has a local minimum or saddle point?

Zero gradient, gradient descent gets stuck

Problems with SGD

Our gradients come from mini batches so they can be noisy!

$$
\begin{aligned}
& L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
& \nabla_{W} L(W)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Problems with SGD

Our gradients come from mini batches so they can be noisy!

$$
\begin{aligned}
& L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
& \nabla_{W} L(W)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Problems with SGD

Our gradients come from mini batches so they can be noisy!

$$
\begin{aligned}
& L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
& \nabla_{W} L(W)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Problems with SGD

What if the loss function has a local minimum or saddle point?

Batched gradient descent always computes same gradients

SGD computes noisy gradients, may help to escape saddle points

SGD + Momentum

$$
\begin{gathered}
\text { SGD } \\
w_{t+1}=w_{t}-\alpha \nabla L\left(w_{t}\right) \\
\text { for } \mathrm{t} \text { in range(num_steps): } \\
\mathrm{dw}=\text { compute_gradient }(\mathrm{w}) \\
\mathrm{w}-=\text { learning_rate } * \mathrm{dw}
\end{gathered}
$$

SGD + Momentum

SGD

$$
w_{t+1}=w_{t}-\alpha \nabla L\left(w_{t}\right)
$$

$$
\begin{gathered}
\text { for } \mathrm{t} \text { in range(num_steps): } \\
\mathrm{dw}=\text { compute_gradient }(\mathrm{w}) \\
\mathrm{w}-=\text { learning_rate } * \mathrm{dw}
\end{gathered}
$$

SGD + Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla L\left(w_{t}\right) \\
& w_{t+1}=w_{t}-\alpha v_{t+1} \\
& v=0 \\
& \text { for } t \text { in range(num_steps): } \\
& \quad \mathrm{dw}=\text { compute_gradient }(w) \\
& v=\text { rho } * v+d w \\
& \mathrm{w}-=\text { learning_rate } * v
\end{aligned}
$$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho $=0.9$ or 0.99

SGD + Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

SGD + Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla L\left(w_{t}\right) \\
& w_{t+1}=w_{t}-\alpha v_{t+1} \\
& v=0 \\
& \text { for } \mathrm{t} \text { in range(num_steps): } \\
& \mathrm{dw}=\text { compute_gradient }(\mathrm{w}) \\
& \mathrm{v}=\text { rho } * v+\text { dw } \\
& \mathrm{w}-=\text { learning_rate } * v
\end{aligned}
$$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho $=0.9$ or 0.99

SGD + Momentum

$$
\begin{aligned}
& \text { SGD }+ \text { Momentum } \\
& v_{t+1}=\rho v_{t}-\alpha \nabla L\left(w_{t}\right) \\
& w_{t+1}=w_{t}+v_{t+1} \\
& v=0 \\
& \text { for } t \text { in range(num_steps): } \\
& d w=\text { compute_gradient(w) } \\
& v=\text { rho } * v-\text { learning_rate } * d w \\
& \mathrm{w}+=\mathrm{v}
\end{aligned}
$$

SGD + Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla L\left(w_{t}\right) \\
& w_{t+1}=w_{t}-\alpha v_{t+1} \\
& v=0 \\
& \text { for } t \text { in range(num_steps): } \\
& \quad \mathrm{dw}=\text { compute_gradient }(\mathrm{w}) \\
& \mathrm{v}=\text { rho } * v+\text { dw } \\
& \mathrm{w}-=\text { learning_rate } * v
\end{aligned}
$$

You may see SGD+Momentun formulated different ways, but they are equivalent - give same sequence of w

SGD + Momentum

Gradient Noise

SGD + Momentum

Gradient Noise

SGD + Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla L\left(w_{t}+\rho v_{t}\right) \\
& w_{t+1}=w_{t}+v_{t+1}
\end{aligned}
$$

Annoying, usually we want to update in terms of $w_{t}, \nabla L\left(w_{t}\right)$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla L\left(w_{t}+\rho v_{t}\right) \\
& w_{t+1}=w_{t}+v_{t+1}
\end{aligned}
$$

Change of variables and rearrange:

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla L\left(\tilde{w}_{t}\right) \\
& \tilde{w}_{t+1}=\tilde{w}_{t}-\rho v_{t}+(1+\rho) v_{t+1} \\
& =\tilde{w}_{t}+v_{t+1}+\rho\left(v_{t+1}-v_{t}\right)
\end{aligned}
$$

Annoying, usually we want to update in terms of $w_{t}, \nabla L\left(w_{t}\right)$

$$
\begin{aligned}
& v=0 \\
& \text { for } t \text { in range(num_steps): } \\
& d w=\text { compute_gradient }(w) \\
& o l d _v=v \\
& v=r h o * v-\text { learning_rate } * d w \\
& w-=\text { rho } * \text { old_v - }(1+\text { rho }) * v
\end{aligned}
$$

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension
"Per-parameter learning rates" or "adaptive learning rates"

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
grad_squared += dw * dw
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


Q: What happens with AdaGrad?
Progress along "steep" directions is damped; progress along "flat" directions is accelerated

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
grad_squared += dw * dw
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

Problem: AdaGrad will
slow over many iterations

Q: What happens with AdaGrad?
Progress along "steep" directions is damped; progress along "flat" directions is accelerated

RMSProp: "Leaky AdaGrad"

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
                                    \downarrow
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


DR

Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
```


Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
                v = 0
for t in range(num_steps):
    dw = compute_gradient(w)
```

Adam
Momentum

SGD+Momentum

Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w == learning_rate * moment1// (moment2.sqrt() + 1e-7)
grad_squared = 0
for t in range(num_steps):
RMSProp
    dw = compute_gradient(w)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

Adam
Momentum
AdaGrad / RMSProp

RMSProp

Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
Q: What happens at \(\mathrm{t}=1\) ?
(Assume beta2 \(=0.999\) )
```

Adam
Momentum
AdaGrad / RMSProp
Bias correction

DR

Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w)
\begin{tabular}{|l|}
\hline moment1 \(=\) beta1 \(*\) moment1 \(+(1-\operatorname{beta1}) * \mathrm{dw}\) \\
\hline \hline moment2 \(=\) beta2 \(*\) moment2 \(+(1-\mathrm{beta2}) * \mathrm{dw} * \mathrm{dw}\) \\
\hline \hline moment1_unbias \(=\) moment1 \(/(1-\) beta1 \(* * ~ t)\) \\
moment2_unbias \(=\) moment2 \(/(1-\) beta2 \(* * ~ t)\) \\
\hline
\end{tabular}
```


Momentum

```
AdaGrad / RMSProp
w -= learning_rate \(*\) moment1_unbias / (moment2_unbias.sqrt() + 1e-7)
Bias correction
```

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 $=0.9$,
beta2 $=0.999$, and learning_rate $=1 e-3,5 \mathrm{e}-4,1 \mathrm{e}-4$ is a great starting point for many models!

Adam: Very common in Practice!

We train all models using Adam [23] with learning rate 10^{-4} and batch size 32 for 1 million iterations; training takes about 3 days on a single Tesla P100. For each minibatch we first update f, then update $D_{i m g}$ and $D_{o b j}$

Johnson, Gupta, and Fei-Fei, CVPR 2018
ganized into three residual blocks. We train for 25 epochs using Adam [27] with learning rate 10^{-4} and 32 images per batch on 8 Tesla V100 GPUs. We set the cubify thresh-

Gkioxari, Malik, and Johnson, ICCV 2019
sampled with each bit drawn uniformly at random. For gradient descent, we use Adam [29] with a learning rate of 10^{-3} and default hyperparameters. All models are trained with batch size 12. Models are trained for 200 epochs, or 400 epochs if being trained on multiple noise layers.

Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

16 dimensional vectors. We iteratively train the Generator and Discriminator with a batch size of 64 for 200 epochs using Adam [22] with an initial learning rate of 0.001 .

Gupta, Johnson, et al, CVPR 2018

Adam with beta1 $=0.9$,

beta2 $=0.999$, and learning_rate $=1 \mathrm{e}-3,5 \mathrm{e}-4,1 \mathrm{e}-4$ is a great starting point for many models!

Optimization Algorithm Comparison

Algorithm	Tracks first moments (Momentum)	Tracks second moments (Adaptive learning rates)	Leaky second moments	Bias correction for moment estimates
SGD	X	X	X	X
SGD+Momentum	\checkmark	X	X	X
Nesterov	\checkmark	\boldsymbol{X}	X	X
AdaGrad	X	\checkmark	\boldsymbol{X}	X
RMSProp	x	\checkmark	\checkmark	x
Adam	\checkmark	\checkmark	\checkmark	\checkmark

L2 Regularization vs Weight Decay

Optimization Algorithm

$$
\begin{aligned}
& L(w)=L_{\text {data }}(w)+L_{r e g}(w) \\
& g_{t}=\nabla L\left(w_{t}\right) \\
& s_{t}=\operatorname{optimizer}\left(g_{t}\right) \\
& w_{t+1}=w_{t}-\alpha s_{t}
\end{aligned}
$$

L2 Regularization and Weight Decay are equivalent for SGD, SGD+Momentum so people often use the terms interchangeably!

But they are not the same for adaptive methods (AdaGrad, RMSProp, Adam, etc)

L2 Regularization

$$
\begin{aligned}
& L(w)=L_{\text {data }}(w)+\lambda|w|^{2} \\
& g_{t}=\nabla L\left(w_{t}\right)=\nabla L_{\text {data }}\left(w_{t}\right)+2 \lambda w_{t} \\
& s_{t}=\operatorname{optimizer}\left(g_{t}\right) \\
& w_{t+1}=w_{t}-\alpha s_{t}
\end{aligned}
$$

Optimization Algorithm

$$
L(w)=L_{\text {data }}(w)
$$

$$
g_{t}=\nabla L_{\text {data }}\left(w_{t}\right)
$$

$$
s_{t}=\operatorname{optimizer}\left(g_{t}\right)+2 \lambda w_{t}
$$

$$
w_{t+1}=w_{t}-\alpha s_{t}
$$

AdamW: Decouple Weight Decay

```
Algorithm 2 Adam with \(L_{2}\) regularization and Adam with decoupled weight decay (AdamW)
    given \(\alpha=0.001, \beta_{1}=0.9, \beta_{2}=0.999, \epsilon=10^{-8}, \lambda \in \mathbb{R}\)
    initialize time step \(t \leftarrow 0\), parameter vector \(\boldsymbol{\theta}_{t=0} \in \mathbb{R}^{n}\), first moment vector \(\boldsymbol{m}_{t=0} \leftarrow \boldsymbol{0}\), second moment
    vector \(\boldsymbol{v}_{t=0} \leftarrow \mathbf{0}\), schedule multiplier \(\eta_{t=0} \in \mathbb{R}\)
    repeat
        \(t \leftarrow t+1\)
        \(\nabla f_{t}\left(\boldsymbol{\theta}_{t-1}\right) \leftarrow \operatorname{SelectBatch}\left(\boldsymbol{\theta}_{t-1}\right) \quad \triangleright\) select batch and return the corresponding gradient
        \(\boldsymbol{g}_{t} \leftarrow \nabla f_{t}\left(\boldsymbol{\theta}_{t-1}\right)+\lambda \boldsymbol{\theta}_{t-1}\)
        \(\boldsymbol{m}_{t} \leftarrow \beta_{1} \boldsymbol{m}_{t-1}+\left(1-\beta_{1}\right) \boldsymbol{g}_{t} \quad \triangleright\) here and below all operations are element-wise
        \(\boldsymbol{v}_{t} \leftarrow \beta_{2} \boldsymbol{v}_{t-1}+\left(1-\beta_{2}\right) \boldsymbol{g}_{t}^{2}\)
        \(\hat{\boldsymbol{m}}_{t} \leftarrow \boldsymbol{m}_{t} /\left(1-\beta_{1}^{t}\right) \quad \triangleright \beta_{1}\) is taken to the power of \(t\)
        \(\hat{\boldsymbol{v}}_{t} \leftarrow \boldsymbol{v}_{t} /\left(1-\beta_{2}^{t}\right) \quad \triangleright \beta_{2}\) is taken to the power of \(t\)
        \(\eta_{t} \leftarrow\) SetScheduleMultiplier \((t) \quad \triangleright\) can be fixed, decay, or also be used for warm restarts
        \(\boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t-1}-\eta_{t}\left(\alpha \hat{\boldsymbol{m}}_{t} /\left(\sqrt{\hat{\boldsymbol{v}}_{t}}+\epsilon\right)+\lambda \boldsymbol{\theta}_{t-1}\right)\)
    until stopping criterion is met
    return optimized parameters \(\boldsymbol{\theta}_{t}\)
```


AdamW: Decouple Weight Decay

```
Algorithm 2 Adam with \(\mathrm{L}_{2}\) regularization and Adam with decoupled weight decay (AdamW)
1: given \(\alpha=0.001, \beta_{1}=0.9, \beta_{2}=0.999, \epsilon=10^{-8}, \lambda \in \mathbb{R}\)
2: initialize time step \(t \leftarrow 0\), parameter vector \(\boldsymbol{\theta}_{t=0} \in \mathbb{R}^{n}\), first moment vector \(\boldsymbol{m}_{t=0} \leftarrow \boldsymbol{0}\), second moment
vector \(\boldsymbol{v}_{t=0} \leftarrow \mathbf{0}\), schedule multiplier \(\eta_{t=0} \in \mathbb{R}\)
```


AdamW should probably be your "default" optimizer for new problems

12: $\quad \boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t-1}-\eta_{t}\left(\alpha \hat{\boldsymbol{m}}_{t} /\left(\sqrt{\hat{\boldsymbol{v}}_{t}}+\epsilon\right)+\lambda \boldsymbol{\theta}_{t-1}\right)$
13: until stopping criterion is met
14: return optimized parameters $\boldsymbol{\theta}_{t}$

So far: First-order Optimization

So far: First-order Optimization

Second-order Optimization

Second-order Optimization

Second-order Optimization

Second-order Taylor Expansion:
$L(w) \approx L\left(w_{0}\right)+\left(w-w_{0}\right)^{T} \nabla_{w} L\left(w_{0}\right)+\frac{1}{2}\left(w-w_{0}\right)^{T} H_{w} L\left(w_{0}\right)\left(w-w_{0}\right)$

Solving for the critical point we obtain the Newton parameter update:

$$
w^{*}=w_{0}-\mathbf{H}_{w} L\left(w_{0}\right)^{-1} \nabla_{w} L\left(w_{0}\right)
$$

Second-order Optimization

Second-order Taylor Expansion:
$L(w) \approx L\left(w_{0}\right)+\left(w-w_{0}\right)^{T} \nabla_{w} L\left(w_{0}\right)+\frac{1}{2}\left(w-w_{0}\right)^{T} H_{w} L\left(w_{0}\right)\left(w-w_{0}\right)$

Solving for the critical point we obtain the Newton parameter update:

$$
w^{*}=w_{0}-\mathbf{H}_{w} L\left(w_{0}\right)^{-1} \nabla_{w} L\left(w_{0}\right)
$$

Q: Why is this impractical?

Hessian has $\mathrm{O}(\mathrm{N} \wedge 2)$ elements
Inverting takes $\mathrm{O}\left(\mathrm{N}^{\prime} 3\right)$
$N=$ (Tens or Hundreds of) Millions

Second-order Optimization

$$
w^{*}=w_{0}-\mathbf{H}_{w} L\left(w_{0}\right)^{-1} \nabla_{w} L\left(w_{0}\right)
$$

- Quasi-Newton methods (BGFS most popular): instead of inverting the Hessian ((O($\left.\left.n^{\wedge} 3\right)\right)$, approximate inverse Hessian with rank 1 updates over time $\left(O\left(n^{\wedge} 2\right)\right.$ each $)$.
- L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian

Second-order Optimization: L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic $f(x)$ then L-BFGS will probably work very nicely.
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting second-order methods to large-scale, stochastic setting is an active area of research.

In practice:

- Adam is a good default choice in many cases SGD+Momentum can outperform Adam but may require more tuning.
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

Summary

- Use Linear Models for image classification problems.
- Use Loss Functions to express preferences over different choices of weights.
- Use Regularization to prevent overfitting to training data.
- Use Stochastic Gradient Descent to minimize our loss functions and train the model.

$$
\begin{aligned}
& s=f(x ; W)=W x
\end{aligned}
$$

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{\exp ^{5_{i,}}}{\sum_{i} \text { exp }^{5}}\right) \text { Softmax } \\
& L_{i}=\sum_{j \neq 1} \max \left(0, s_{j}=-s_{y}+1\right) \text { SVM } \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \\
& v=0 \\
& \text { for t in range(num_steps): } \\
& d w=\text { compute_gradient }(w) \\
& \mathrm{v}=\text { rho } * \mathrm{v}+\mathrm{dw} \\
& \text { w -= learning_rate * v }
\end{aligned}
$$

Next time: Neural Networks

DeepRob

Lecture 4

Regularization + Optimization
University of Michigan and University of Minnesota

