

Lecture 3

Linear Classifiers
University of Michigan and University of Minnesota

Project 0

- Instructions and code available on the website
- Here: deeprob.org/projects/project0/
- Due tonight! January 12th, 11:59 PM EST
- Everyone granted 1 extra late token (3 total for semester)

Project 0 Suggestions

- If you choose to develop locally
- PyTorch Version 1.13.0
- Ensure you save your notebook file before uploading submission
- Close any Colab notebooks not in use to avoid usage limits

Project 1

- Instructions and code will be available on the website by tomorrow's discussion section
- Classification using K-Nearest Neighbors and Linear Models

Discussion Forum

- Ed Stem available for course discussion and questions
- Forum is shared across UMich and UMinn students
- Participation and use is not required
- Opt-in using this Google form
- Discussion of quizzes and verbatim code must be private

Gradescope Quizzes

- Course not published yet
- Roster will be uploaded and published by discussion section tomorrow
- Quiz links will be published at the start and end of lecture
- Time limit of 15 min once quiz is opened
- Each available to take from 3:00pm-6:00pm on quiz days
- Covers material from previous lectures and graded projects

Enrollment

- Additional class permissions being issued
- Both sections (498 \& 599)
- If you haven't received a class permission come see

Anthony after lecture

Recap: Image Classification-A Core Computer Vision Task

Output: assign image to one of a fixed set of categories

Chocolate Pretzels Granola Bar
Potato Chips
\section*{Water Bottle}
Popcorn

Image Classification Challenges

Viewpoint Variation \& Semantic Gap

Illumination Changes

White Chocolate

Cookies N' Creme

Intraclass Variation

DR

Recap: Machine Learning-Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images
```
def train(images, labels):
    # Machine learning!
    return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```


Linear Classifiers

Building Block of Neural Networks

This image is CCO 1.0 public domain

Recall PROPS

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

10 classes
32x32 RGB images
50k training images (5k per class) 10k test images (1k per class)

Parametric Approach

Image

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)
$\longrightarrow f(x, W)$

parameters
or weights

10 numbers giving class scores

Parametric Approach—Linear Classifier

Image
$f(x, W)=W x$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)
$\mathrm{f}(\mathrm{x}, \mathrm{W})$

parameters
or weights

10 numbers giving class scores

Parametric Approach—Linear Classifier

10 numbers giving class scores

Parametric Approach—Linear Classifier

DR

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

DR

Example for 2x2 Image, 3 classes (crackers/mug/sugar)

Linear Classifier-Algebraic Viewpoint

Linear Classifier-Bias Trick

Stretch pixels into column

Linear Classifier-Predictions are Linear

$$
\begin{aligned}
& f(x, W)=W x \quad \text { (ignore bias) } \\
& f(c x, W)=W(c x)=c * f(x, W)
\end{aligned}
$$

Linear Classifier-Predictions are Linear

$$
\begin{aligned}
& f(x, W)=W x \quad \text { (ignore bias) } \\
& f(c x, W)=W(c x)=c * f(x, W)
\end{aligned}
$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$
f(x, W)=W x+b
$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$
f(x, W)=W x+b
$$

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

fish can

DR

Interpreting a Linear Classifier-Visual Viewpoint

Linear classifier has one "template" per category
master
chef
can

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!
large

$$
\begin{gathered}
\text { gelatin } \\
\text { box } \\
\text { mbty } \\
\hline
\end{gathered}
$$

 fish
can

DR

Interpreting a Linear Classifier-Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot capture multiple modes of the data
e.g. mustard bottles can rotate

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

DR

Interpreting a Linear Classifier-Geometric Viewpoint

$$
f(x, W)=W x+b
$$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

DR

Interpreting a Linear Classifier-Geometric Viewpoint
$f(x, W)=W x+b$

Array of $\mathbf{3 2 \times 3 2 \times 3}$ numbers (3072 numbers total)

DR

Interpreting a Linear Classifier-Geometric Viewpoint

Hard Cases for a Linear Classifier

Class 1:

First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
1 <= L2 norm <= 2
Class 2:
Everything else

Class 1:
Three modes
Class 2:
Everything else

Linear Classifier-Three Viewpoints

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So far—Defined a Score Function

$$
f(x, W)=W x+b
$$

Given a W, we can compute class scores for an image, x.

But how can we actually choose a good W?

So far-Choosing a Good W

$$
f(x, W)=W x+b
$$

TODO:

1. Use a loss function to quantify how good a value of W is
2. Find a W that minimizes the loss function (optimization)

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier
High loss = bad classifier
Also called: objective function, cost function

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier
High loss = bad classifier
Also called: objective function, cost function

Negative loss function
sometimes called reward
function, profit function, utility function, fitness function, etc.

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier High loss = bad classifier

Also called: objective function, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

where x_{i} is an image and
y_{i} is a (discrete) label

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier High loss = bad classifier

Also called: objective function, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

where x_{i} is an image and

$$
y_{i} \text { is a (discrete) label }
$$

Loss for a single example is

$$
L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Loss Function

A loss function measures how good our current classifier is

Low loss = good classifier High loss = bad classifier

Also called: objective function, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

where x_{i} is an image and

$$
y_{i} \text { is a (discrete) label }
$$

Loss for a single example is

$$
L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Loss for the dataset is average of per-example losses:

$$
L=\frac{1}{N} \sum_{i} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Cross-Entropy Loss Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

cracker 3.2

$$
\begin{array}{lr}
\text { mug } & 5.1 \\
\text { sugar } & -1.7
\end{array}
$$

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

mug $\quad 5.1$

$$
\text { sugar } \quad-1.7
$$

Want to interpret raw classifier scores as probabilities

$$
S=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

Cross-Entropy Loss

Multinomial Logistic Regression

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

Cross-Entropy Loss

Multinomial Logistic Regression

Cross-Entropy Loss

 Multinomial Logistic Regression

Cross-Entropy Loss

Multinomial Logistic Regression

Cross-Entropy Loss

Multinomial Logistic Regression

Cross-Entropy Loss

 Multinomial Logistic Regression

Cross-Entropy Loss

 Multinomial Logistic Regression

Cross-Entropy Loss

 Multinomial Logistic Regression

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \begin{aligned}
& \text { function }
\end{aligned}
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$
5.1

$$
\begin{aligned}
& \text { Putting it all together } \\
& L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
\end{aligned}
$$

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$
Putting it all together
$L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
sugar -1.7
Q: What is the min / max possible loss L_{i} ?

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$

$$
\begin{aligned}
& \text { Putting it all together } \\
& L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
\end{aligned}
$$

Q: What is the min / max possible loss L_{i} ?

A: Min: 0, Max: $+\infty$

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$

Q: If all scores are small random values, what is the loss?

$$
\begin{aligned}
& \text { Putting it all together } \\
& L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
\end{aligned}
$$

Cross-Entropy Loss Multinomial Logistic Regression

cracker 3.2

mug 5.1

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{\exp \left(s_{k}\right)}{\sum_{j} \exp \left(s_{j}\right)} \text { Softmax } \text { function }
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$

> Putting it all together

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

Q: If all scores are small random values, what is the loss?

$$
\text { A: } \begin{aligned}
- & \log \left(\frac{1}{C}\right) \\
& \quad \log \left(\frac{1}{10}\right) \approx 2.3
\end{aligned}
$$

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

DR

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9		

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores

Then the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1) \\
& =\max (0,2.9)+\max (0,-3.9) \\
& =2.9+0 \\
& =2.9
\end{aligned}
$$

DR

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores

Then the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
& =\max (0,-2.6)+\max (0,-1.9) \\
& =0+0 \\
& =0
\end{aligned}
$$

DR

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores

Then the SVM loss has the form:

$$
\begin{aligned}
L_{i}= & \sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
= & \max (0,2.2-(-3.1)+1) \\
& +\max (0,2.5-(-3.1)+1) \\
= & \max (0,6.3)+\max (0,6.6) \\
= & 6.3+6.6 \\
= & 12.9
\end{aligned}
$$

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Loss over the dataset is:

$$
\begin{aligned}
\mathrm{L} & =(2.9+0.0+12.9) / 3 \\
& =5.27
\end{aligned}
$$

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores

Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to the loss if the scores for the mug image change a bit?

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q2: What are the min and max possible loss?

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q3: If all the scores
were random, what loss would we expect?

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores
Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q4: What would happen if the sum were over all classes? (including $i=y_{i}$)

Multiclass SVM Loss

Given an example $\left(x_{i}, y_{i}\right)$
(x_{i} is image, y_{i} is label)
Let $s=f\left(x_{i}, W\right)$ be scores

Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q5: What if the loss used a mean instead of a sum?

DR

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example $\left(x_{i}, y_{i}\right)$ (x_{i} is image, y_{i} is label)

Let $s=f\left(x_{i}, W\right)$ be scores

Then the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q6: What if we used this loss instead?

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)^{2}
$$

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What is cross-entropy loss? What is SVM loss?

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

Cross-Entropy vs SVM Loss

$$
L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-entropy loss will decrease,
SVM loss still 0

Recap—Three Ways to Interpret Linear Classifiers

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap—Loss Functions Quantify Preferences

- We have some dataset of (x, y)
- We have a score function:

$$
s=f(x ; W, b)=W x+b
$$

Linear classifier

Softmax: $L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
SVM: $L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Recap—Loss Functions Quantify Preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax: $L_{i}=-\log \left(\frac{\exp \left(s_{y_{i}}\right)}{\sum_{j} \exp \left(s_{j}\right)}\right)$
SVM: $L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Next time: Regularization + Optimization

Negative gradient direction

1
n-

 5

Lecture 3

Linear Classifiers
University of Michigan and University of Minnesota

