



Lecture 3 **Linear Classifiers**

Project 0

- Instructions and code available on the website • Here: <u>deeprob.org/projects/project0/</u>
- Due tonight! January 12th, 11:59 PM EST
- **Everyone granted 1 extra late token (3 total for semester)**

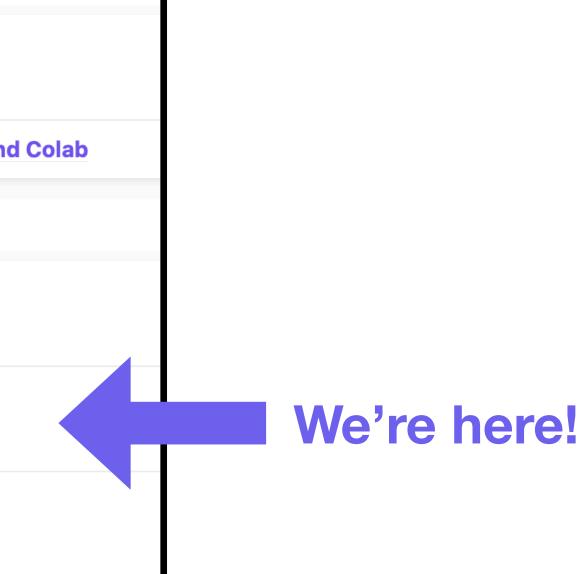
- If you choose to develop locally
 - **PyTorch Version 1.13.0**
- Ensure you save your notebook file before uploading submission
- Close any Colab notebooks not in use to avoid usage limits

Project 0 Suggestions

Project 1

- Instructions and code will be available on the website by tomorrow's discussion section
- Classification using K-Nearest Neighbors and Linear Models

Calendar	
Week 1	
Jan 5:	LEC 1 Course Introduction PROJECT 0 OUT
Jan 6:	DIS 1 Intro to Python, Pytorch and
Week 2	
Jan 10:	LEC 2 Image Classification
Jan 12:	LEC 3 Linear Classifiers PROJECT 0 DUE PROJECT 1 OUT
Jan 13:	DIS 2 Intro to PROPS Dataset



Discussion Forum

- <u>Ed Stem</u> available for course discussion and questions
 - Forum is shared across UMich and UMinn students
 - Participation and use is not required
 - Opt-in using this Google form

Discussion of quizzes and verbatim code must be private

Gradescope Quizzes

- Course not published yet
- Roster will be uploaded and published by discussion section tomorrow
- Time limit of 15 min once quiz is opened

 Quiz links will be published at the start and end of lecture • Each available to take from 3:00pm – 6:00pm on quiz days Covers material from previous lectures and graded projects

- Additional class permissions being issued
 - Both sections (498 & 599)
- If you haven't received a class permission come see Anthony after lecture

Enrollment

Recap: Image Classification—A Core Computer Vision Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar

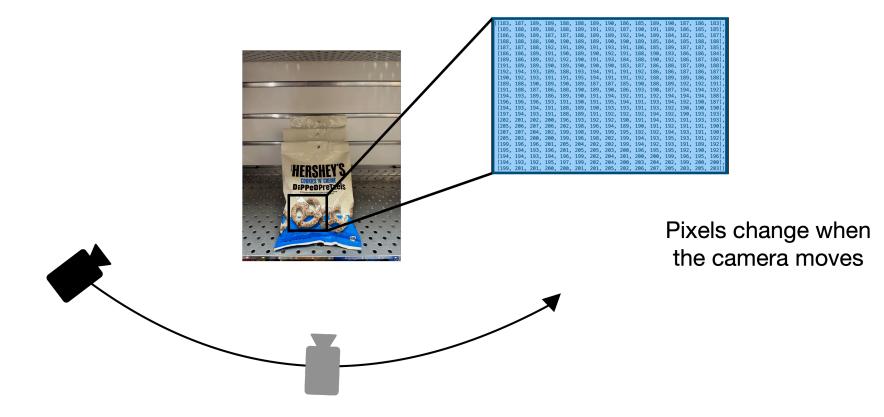
Potato Chips

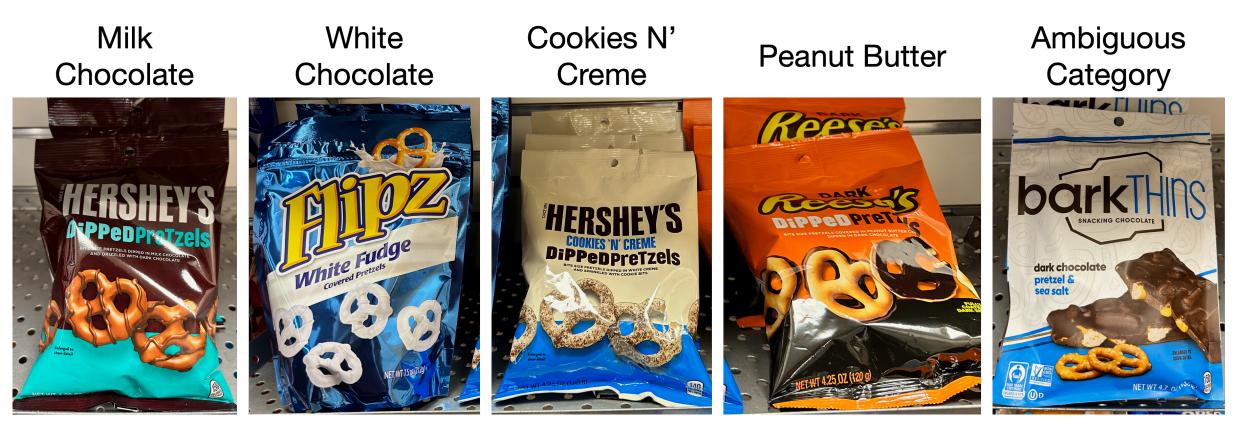
Water Bottle

Popcorn

Image Classification Challenges

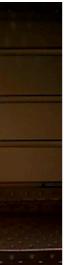
Viewpoint Variation & Semantic Gap





Illumination Changes

Intraclass Variation



Recap: Machine Learning—Data-Driven Approach

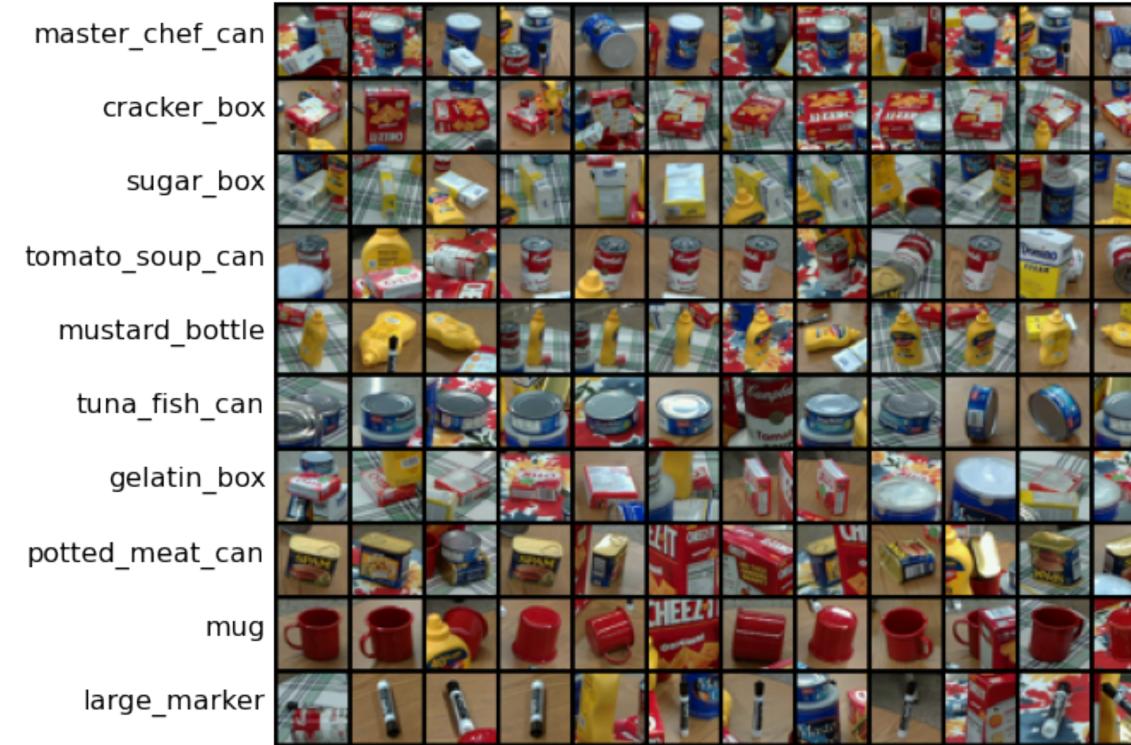
- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

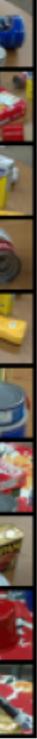
def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

DR

Example training set





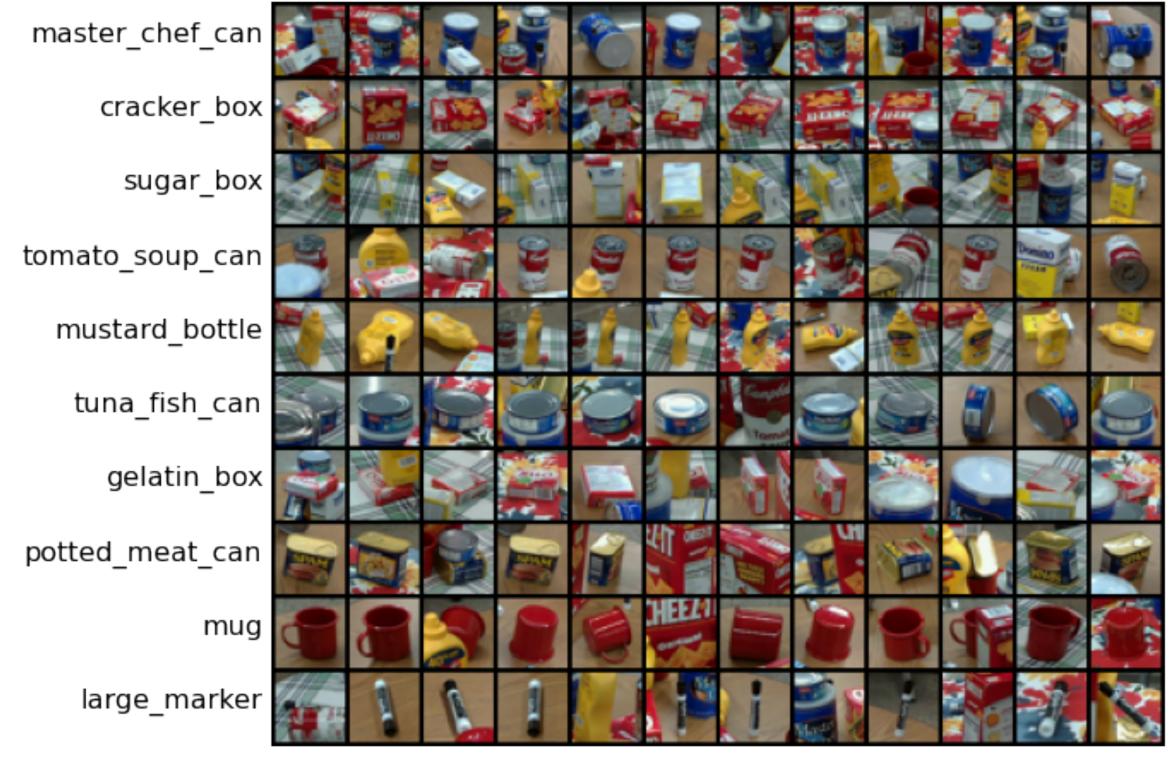
Linear Classifiers

Building Block of Neural Networks

Linear classifiers

This image is <u>CC0 1.0</u> public domain

Progress Robot Object Perception Samples Dataset



Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

Recall PROPS

10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

Parametric Approach

Array of **32x32x3** numbers (3072 numbers total)

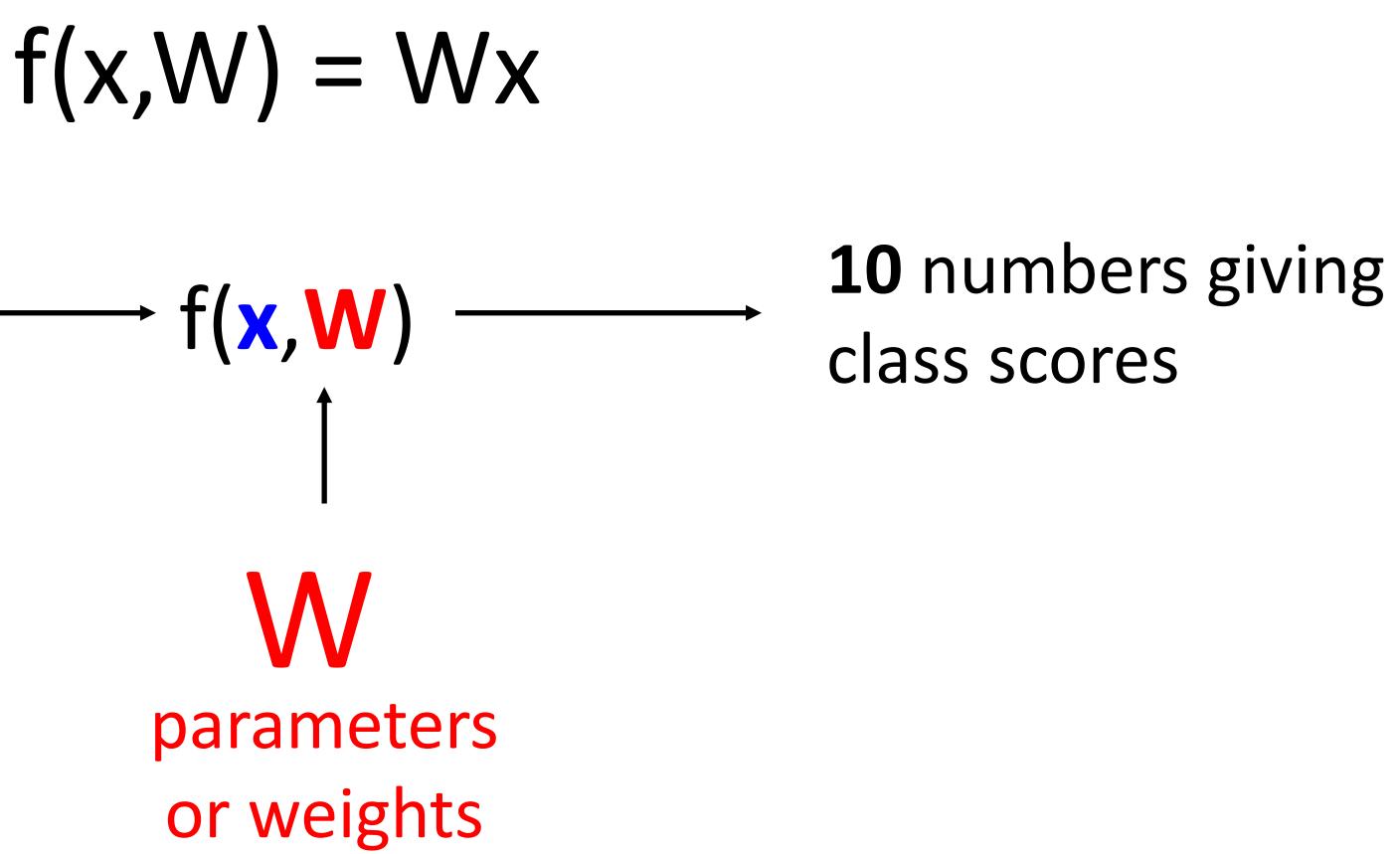
W parameters or weights

→ f(x,W)

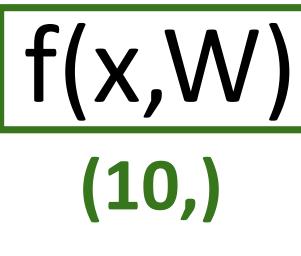
10 numbers giving class scores

Parametric Approach—Linear Classifier

Array of 32x32x3 numbers (3072 numbers total)



Parametric Approach—Linear Classifier



Image

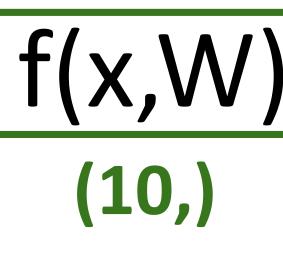
Array of 32x32x3 numbers (3072 numbers total)

(3072,) (10,) (10, 3072) → f(x,W)

10 numbers giving class scores

parameters or weights

Parametric Approach—Linear Classifier



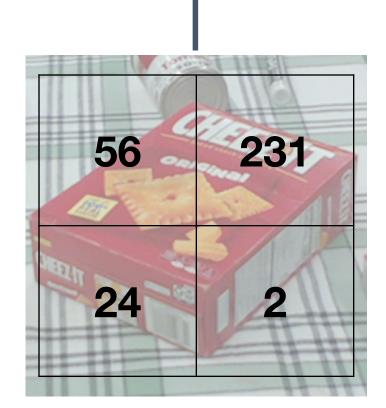
Image

Array of **32x32x3** numbers (3072 numbers total)

parameters or weights

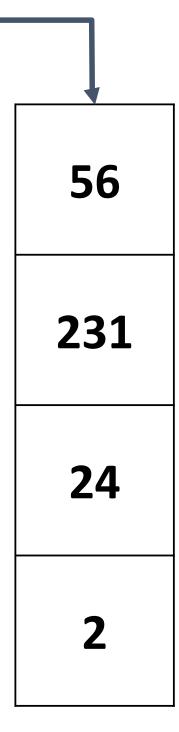
(3072,) f(x,W) = Wx + b(10,) (10,) (10, 3072)**10** numbers giving + f(x,W) class scores

Stretch pixels into column



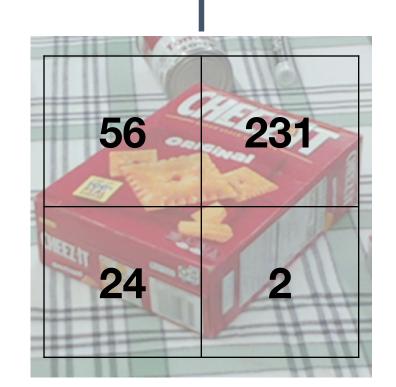
Input image (2, 2)

Example for 2x2 Image, 3 classes (crackers/mug/sugar)



f(x,W) = Wx + b

Stretch pixels into column

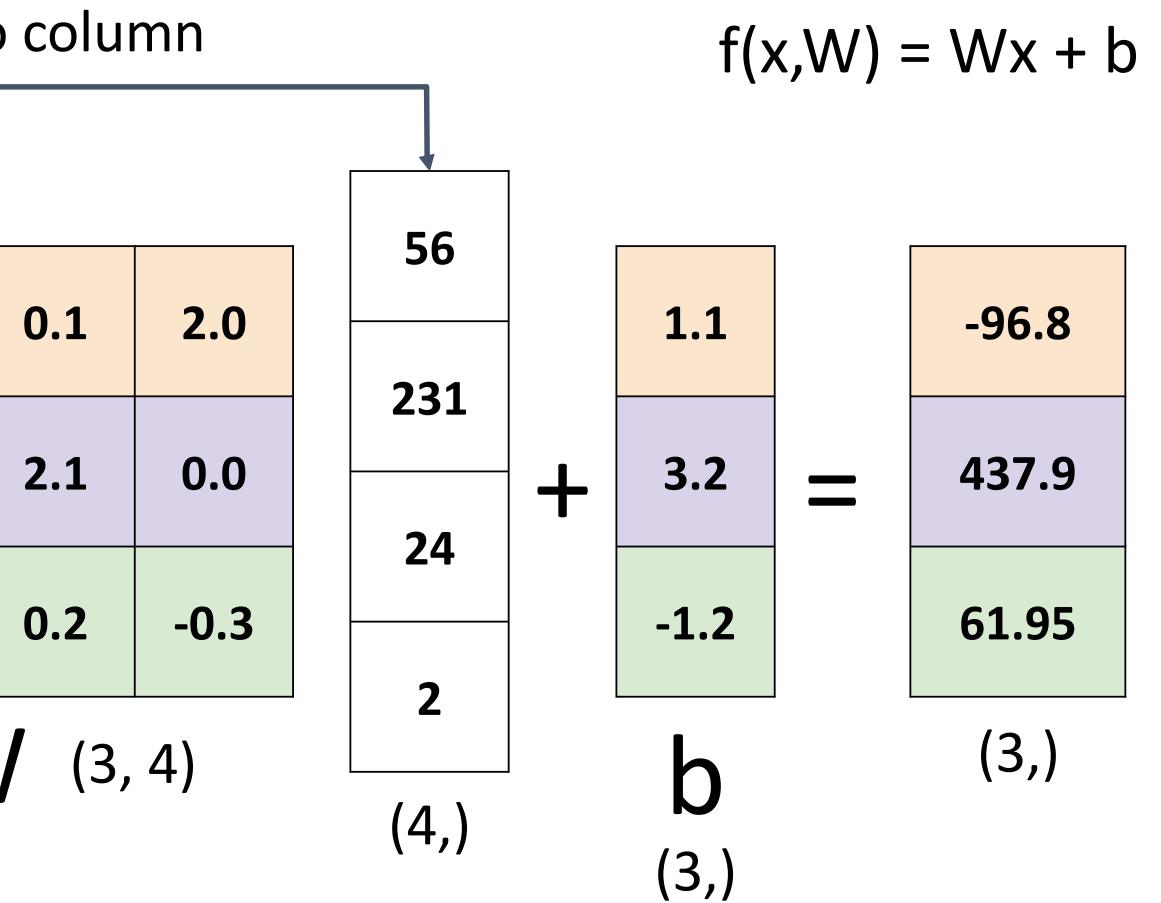


Input image (2, 2)

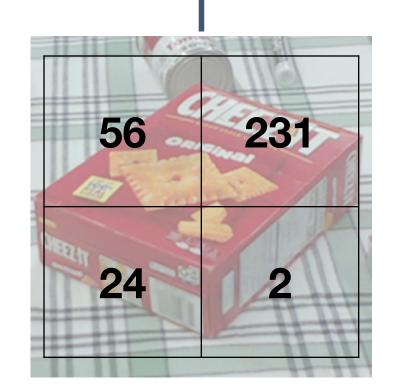
0.2	-0.5	
1.5	1.3	
0	0.25	

W

Example for 2x2 Image, 3 classes (crackers/mug/sugar)



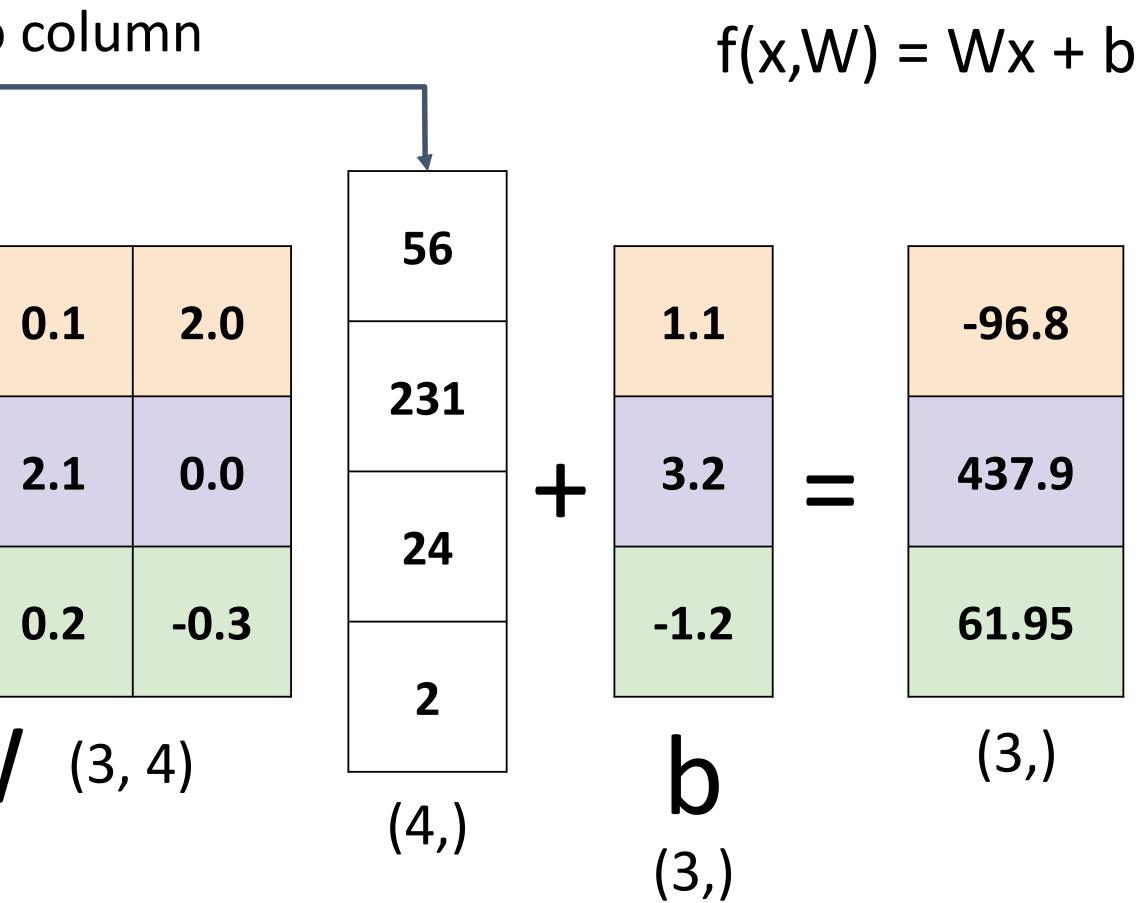
Stretch pixels into column



Input image (2, 2)

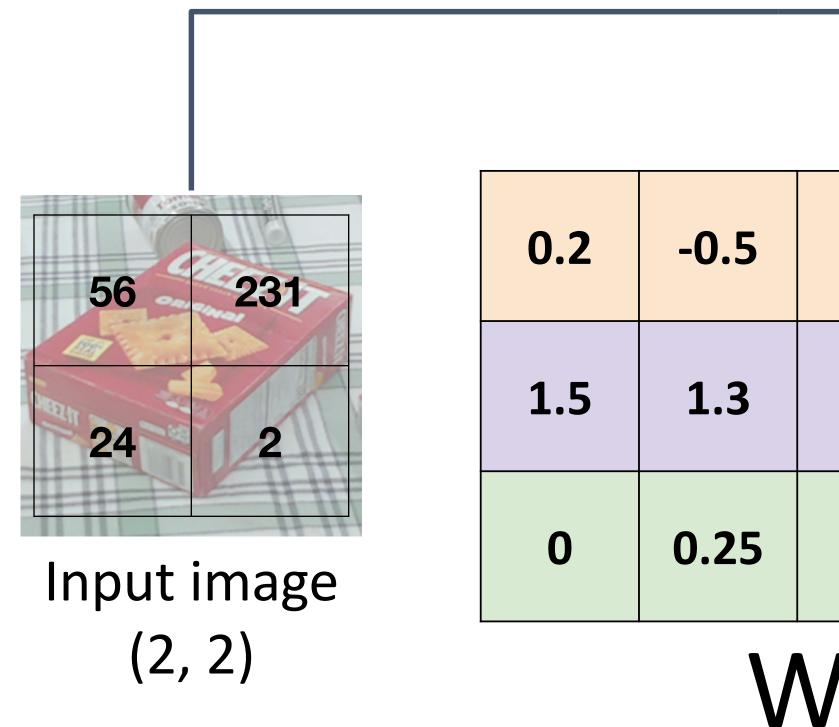
0.2	-0.5	
1.5	1.3	
0	0.25	

Linear Classifier—Algebraic Viewpoint



Linear Classifier—Bias Trick

Stretch pixels into column



Add extra one to data vector; bias is absorbed into last column of weight matrix

DR

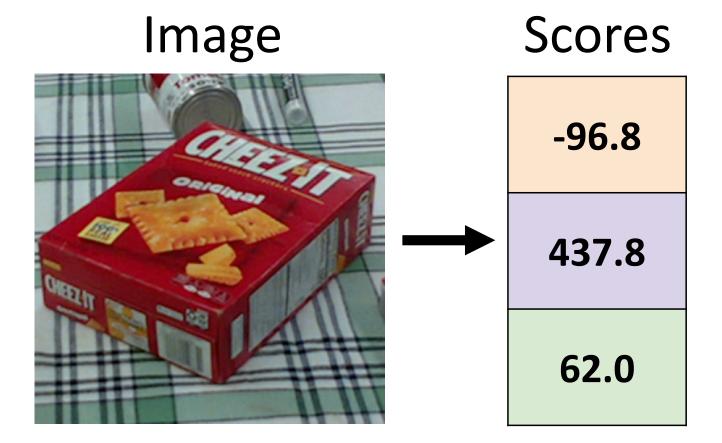
			56)			
0.1	2.0	1.1	32	•		-96.8	
2.1	0.0	3.2	23.	231		_	437.9
0.2	-0.3	-1.2	24			61.95	
0.2	-0.5	-1.2	2			01.95	
(3,	5)					(3,)	
	- -	_	1	(5	,)		

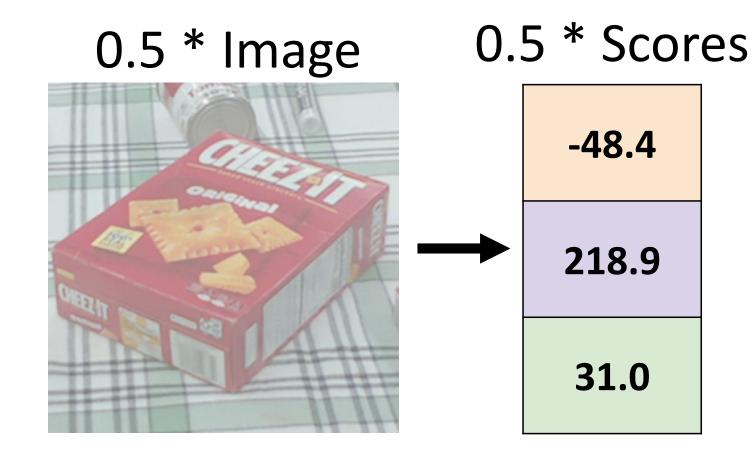
Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

Linear Classifier—Predictions are Linear

- f(x, W) = Wx (ignore bias)
- f(cx, W) = W(cx) = c * f(x, W)

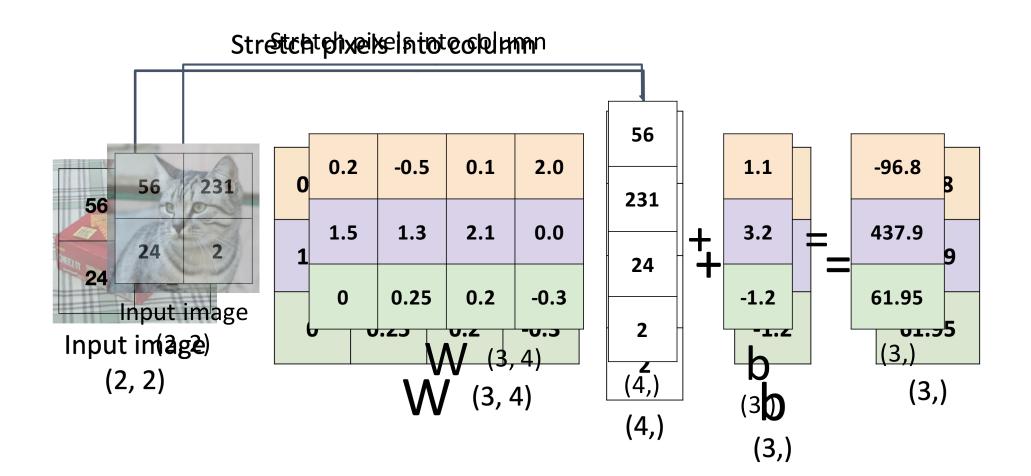




Interpreting a Linear Classifier

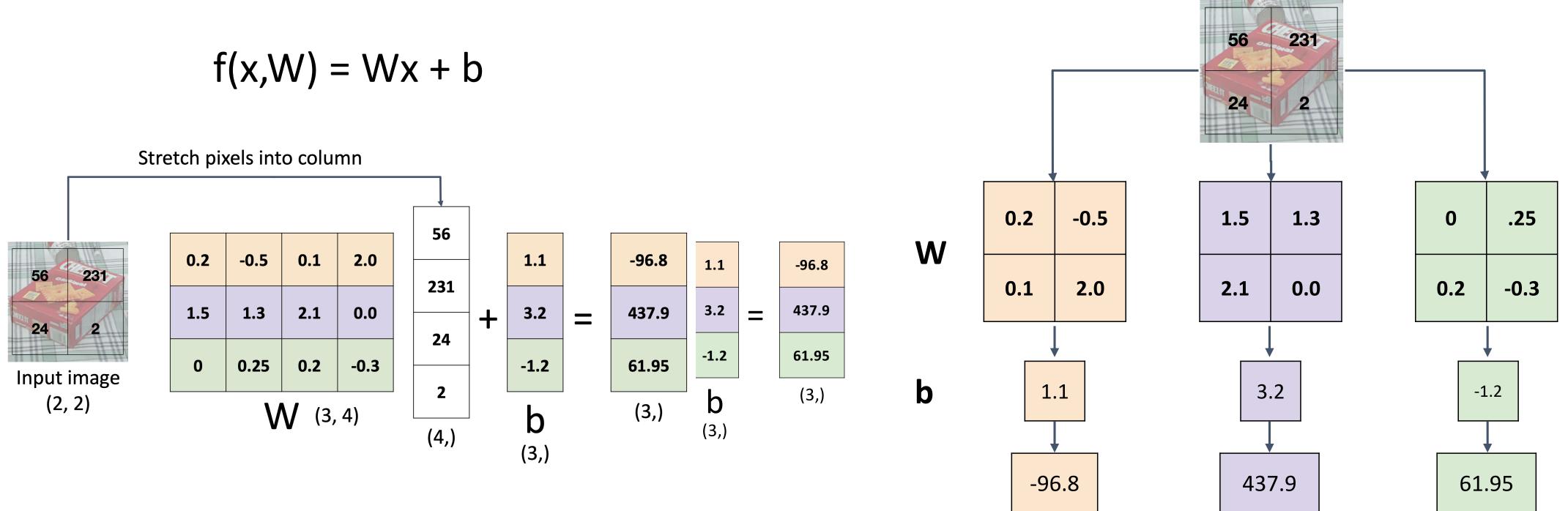
Algebraic Viewpoint

f(x,W) = Wx + b



Interpreting a Linear Classifier

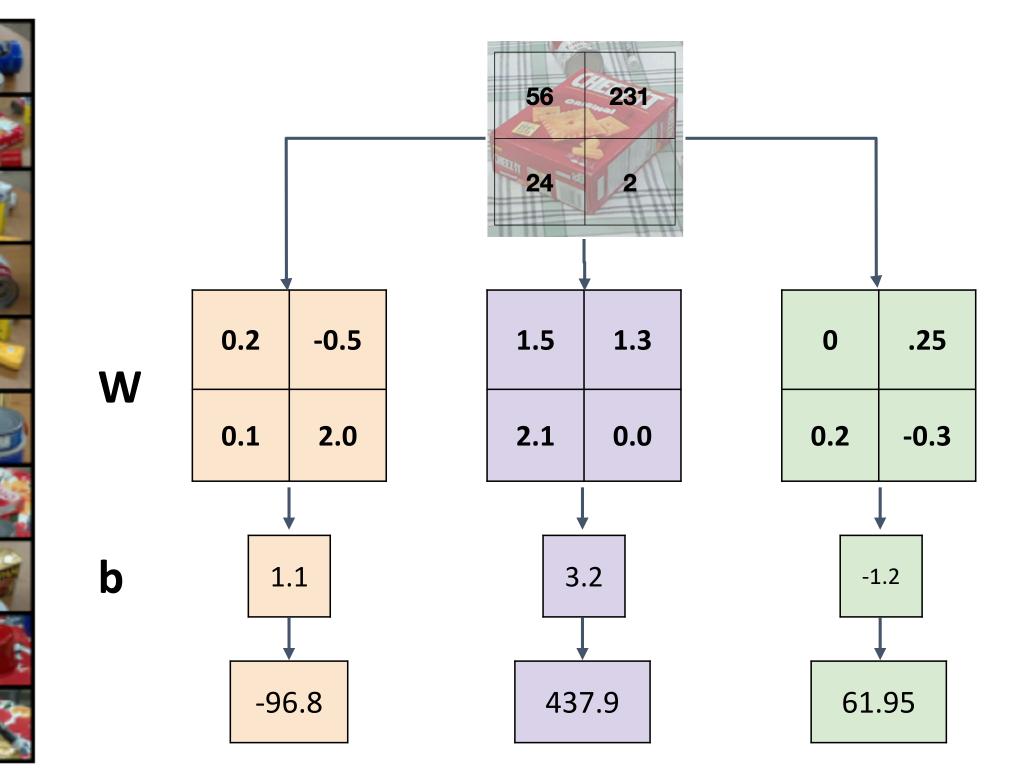
<u>Algebraic Viewpoint</u>

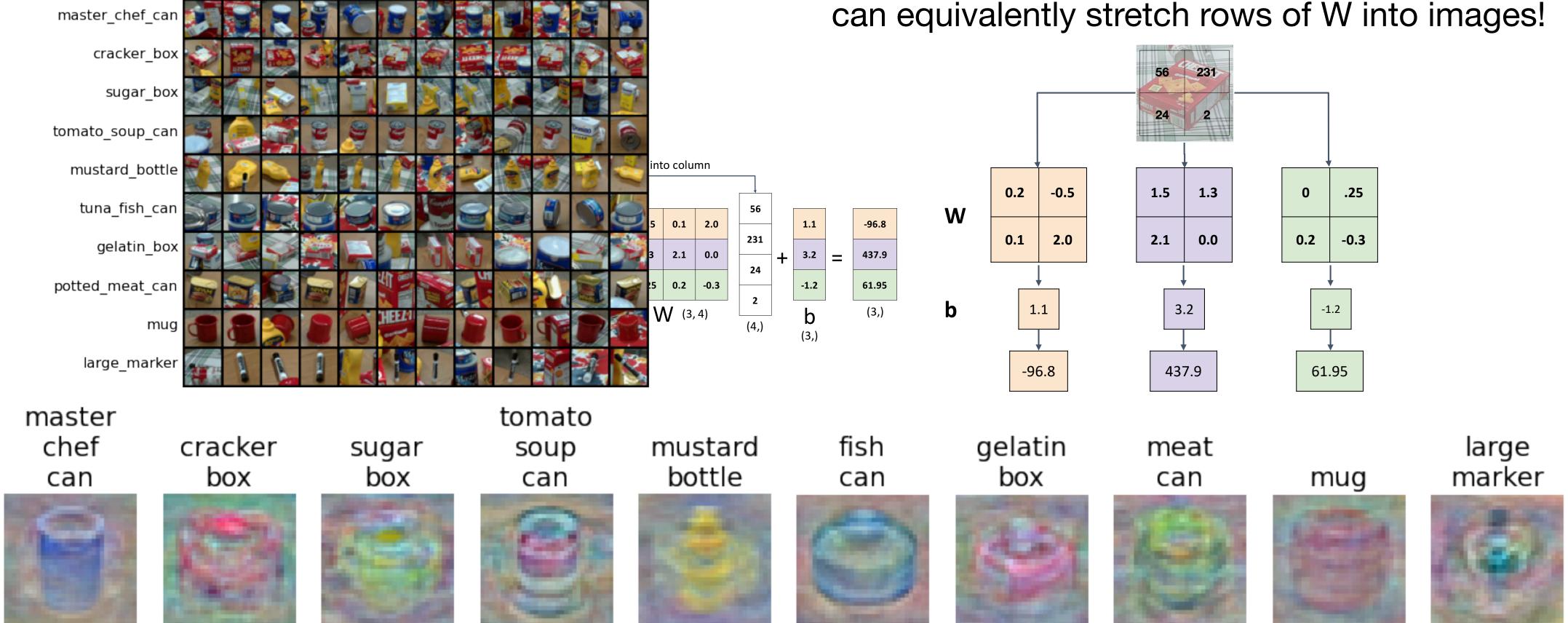




DR

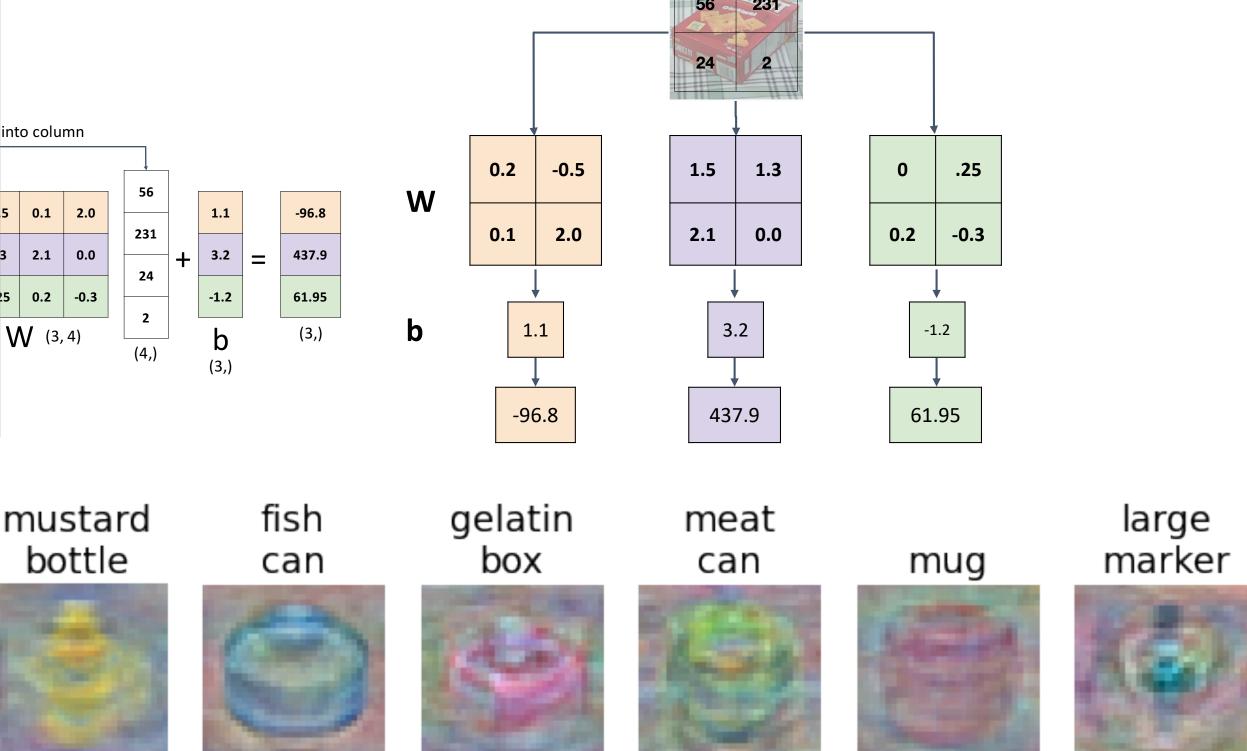
Interpreting a Linear Classifier





master chef can

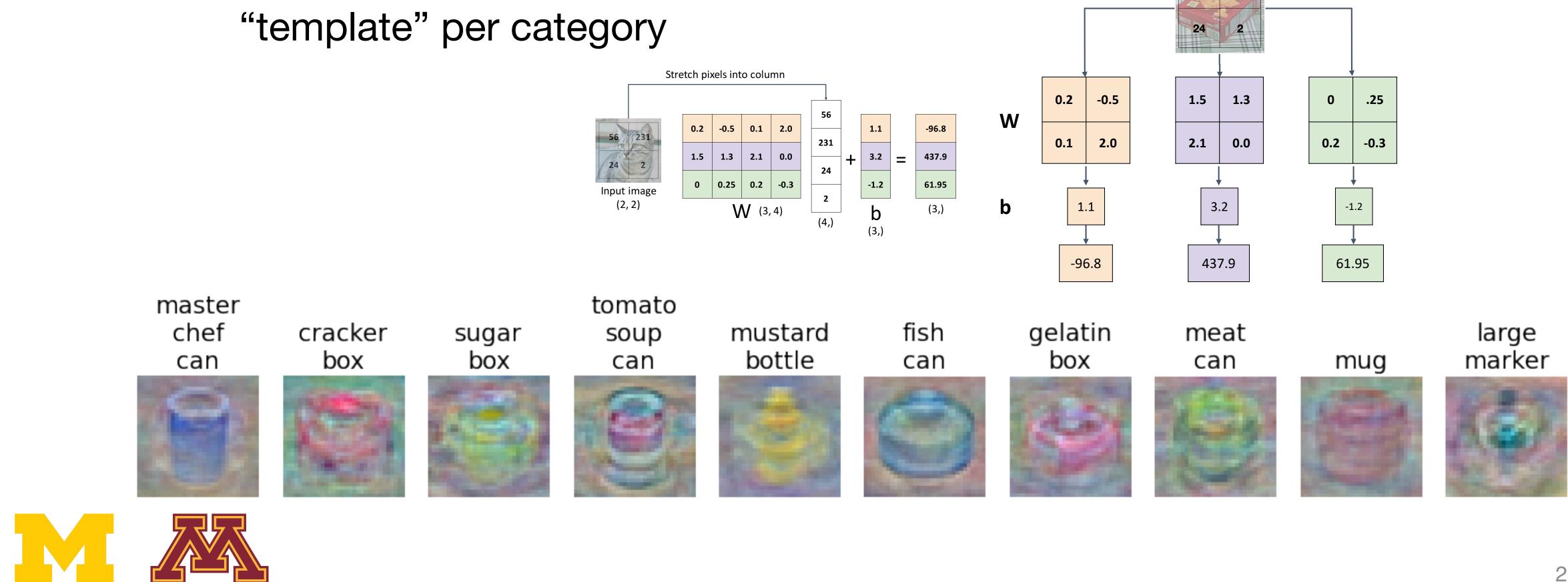
DR



Interpreting a Linear Classifier

Linear classifier has one

Stretch pixels into column				
231 2 t image	0.2	-0.5	0.1	2.0
	1.5	1.3	2.1	0.0
	0	0.25	0.2	-0.3
2, 2)	W (3, 4)			



Interpreting a Linear Classifier—Visual Viewpoint

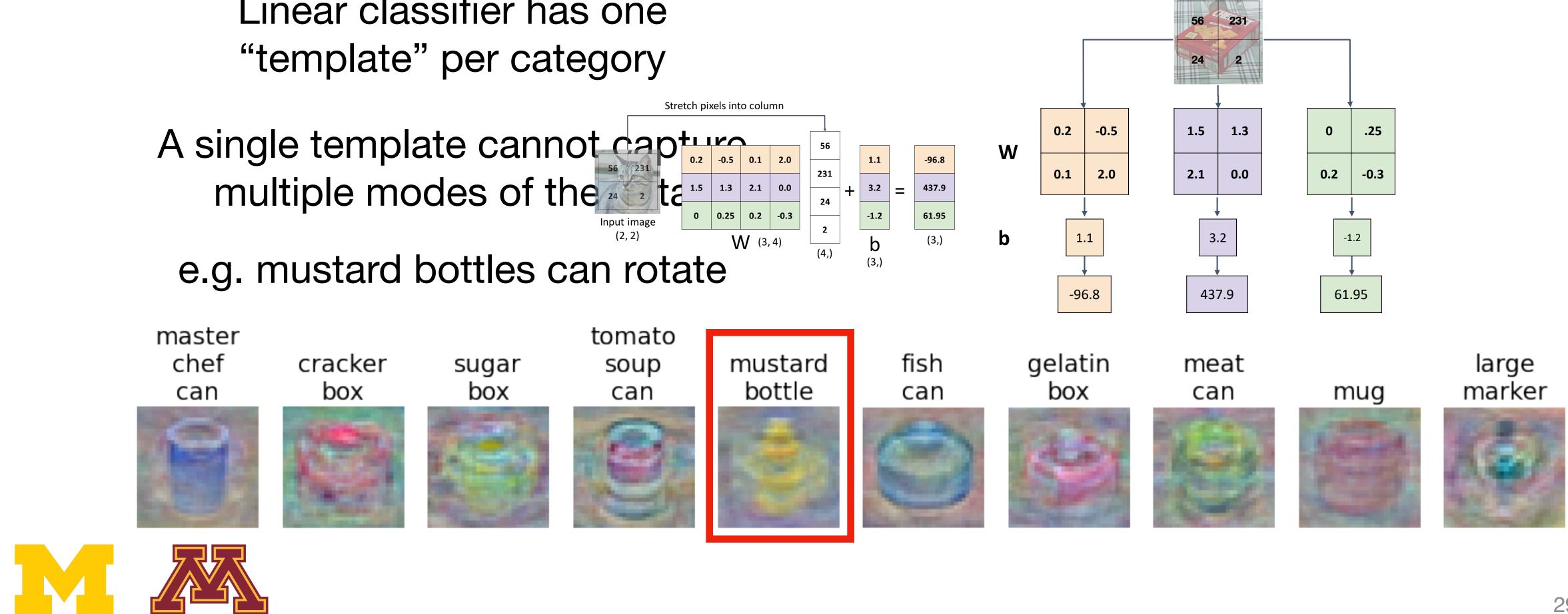
Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

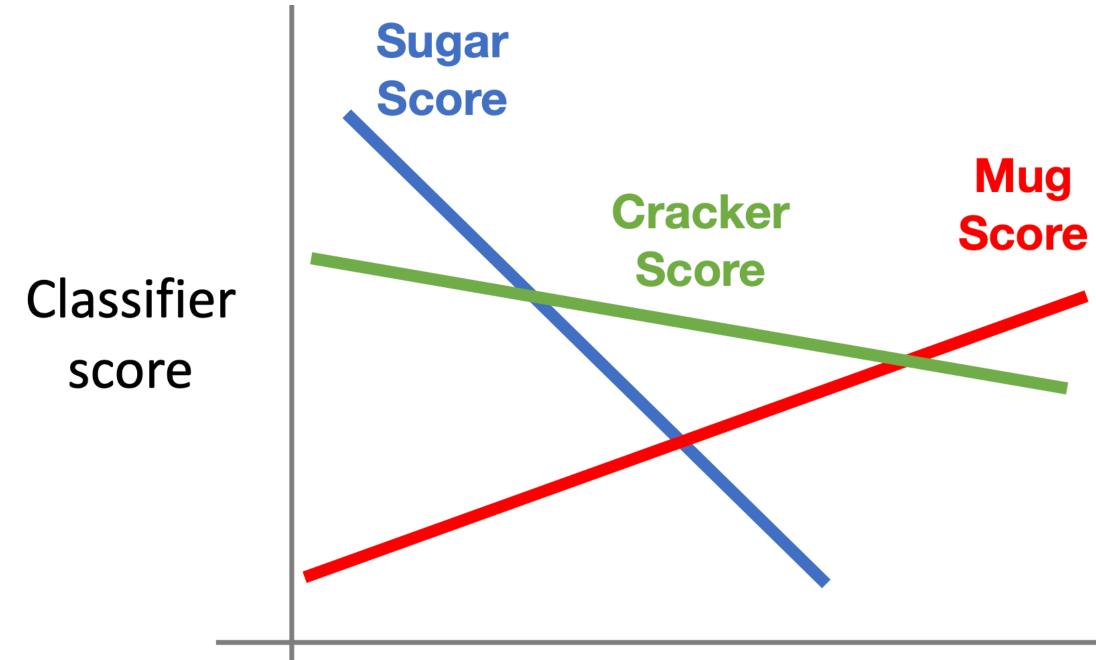
56 231

DR Interpreting a Linear Classifier—Visual Viewpoint

Linear classifier has one "template" per category

0.2 0.25

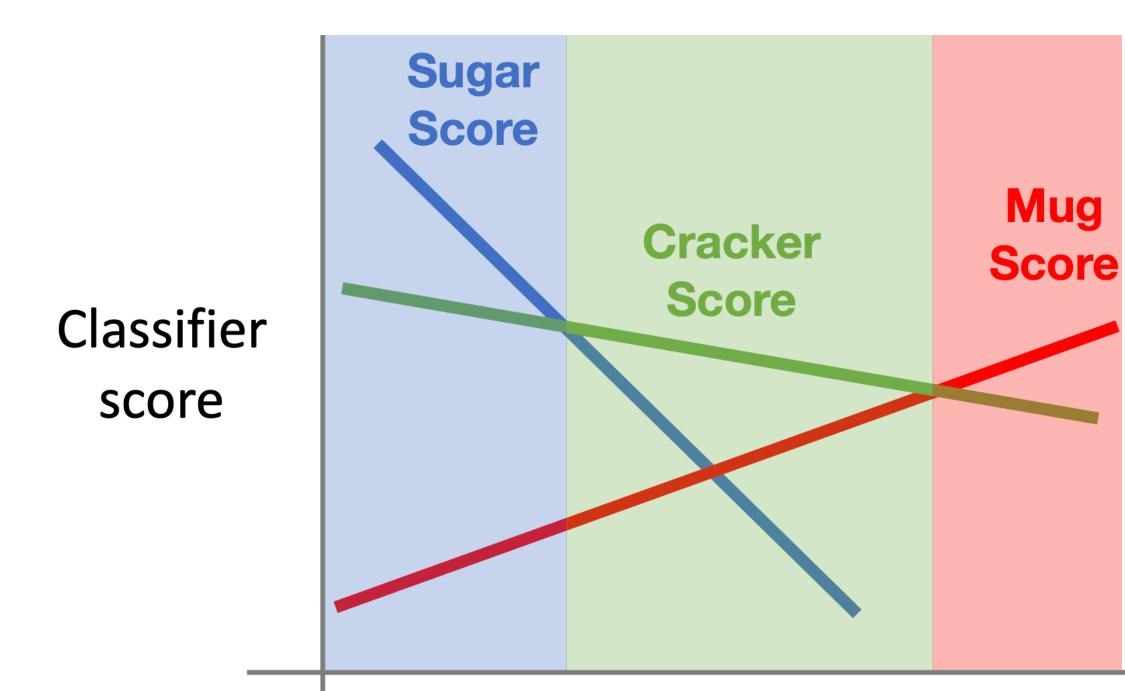




Value of pixel (15, 8, 0)

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

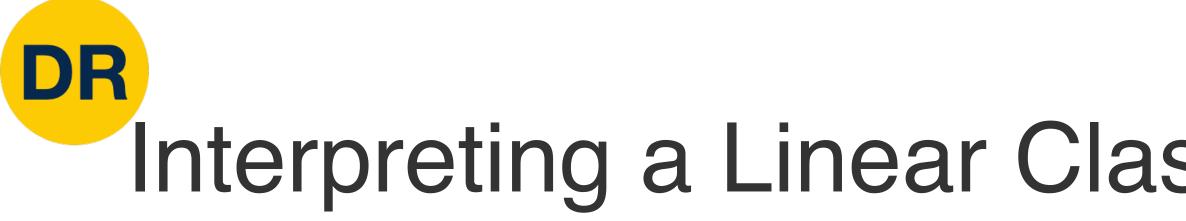


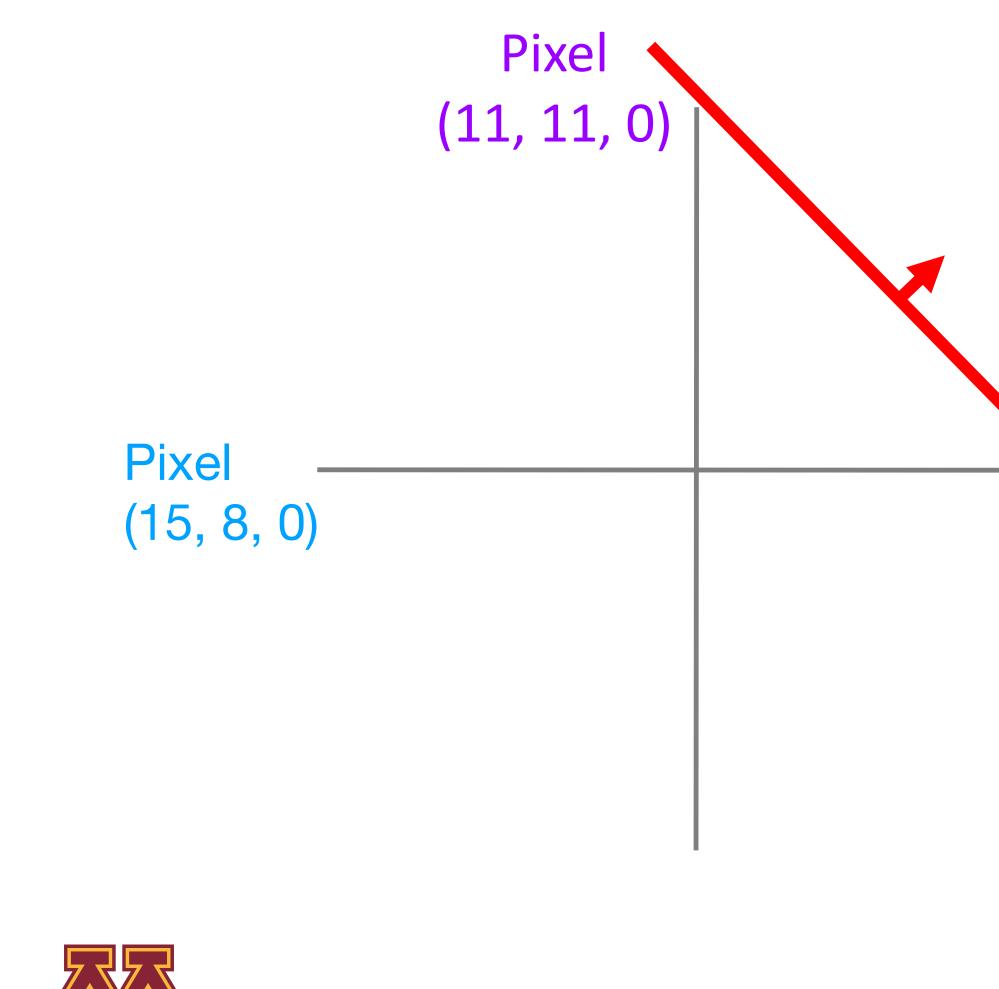
Value of pixel (15, 8, 0)

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

t



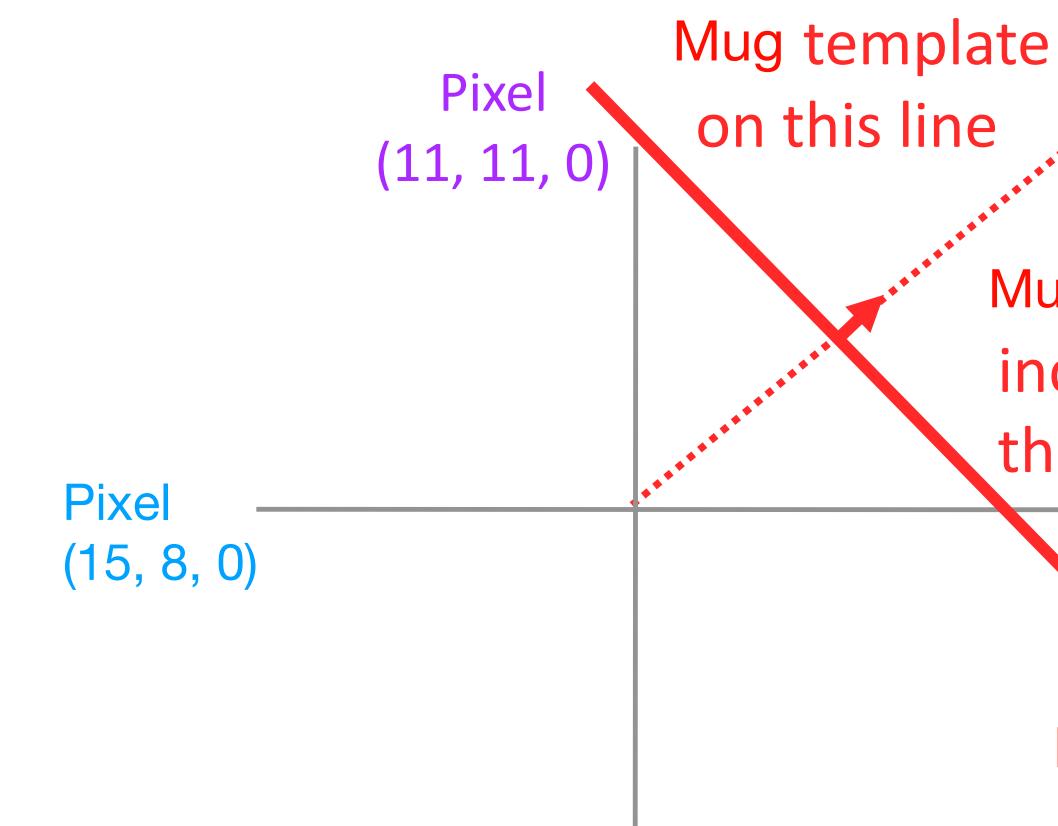


f(x,W) = Wx + b

Mug score increases this way

Array of **32x32x3** numbers (3072 numbers total)

t



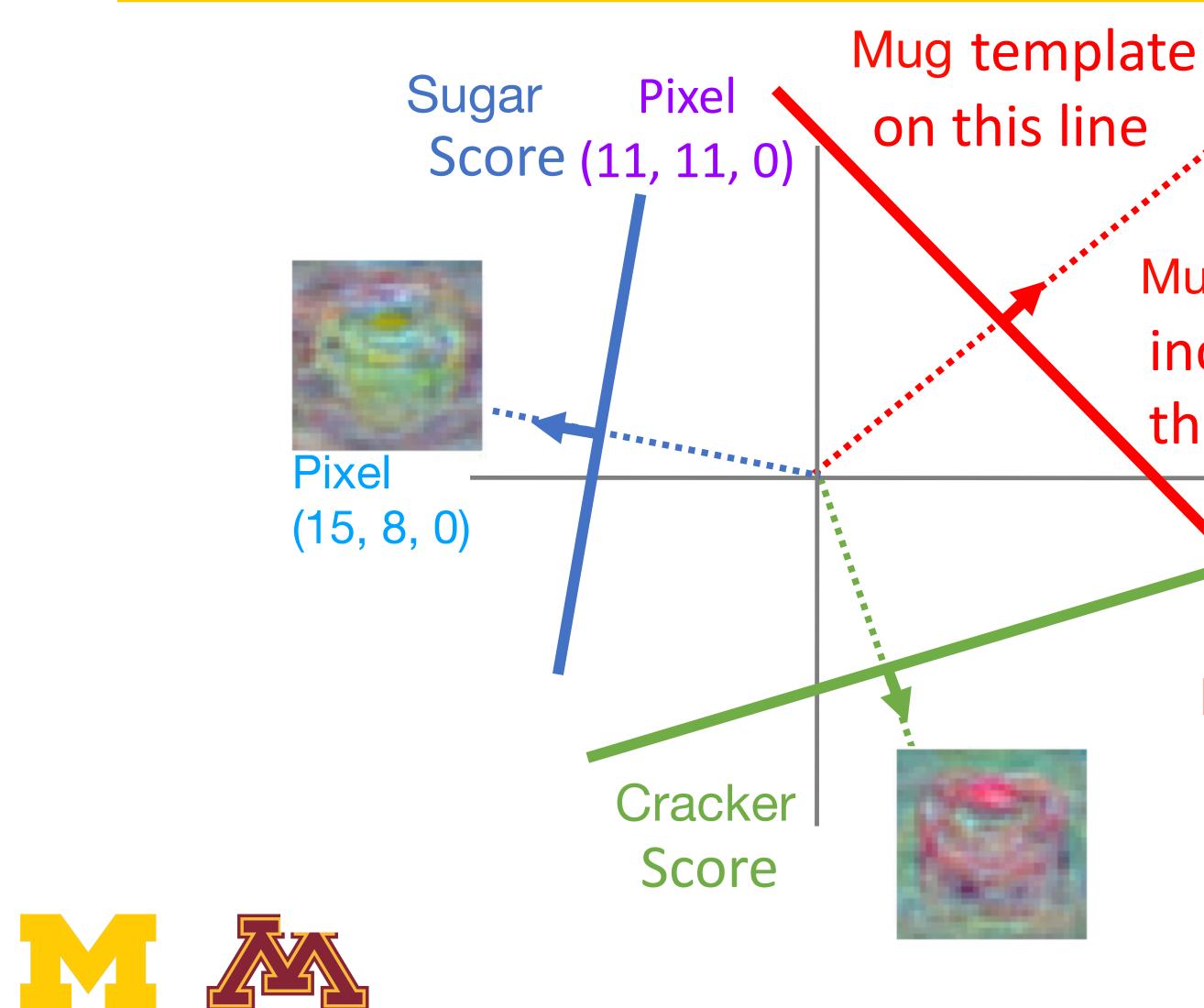
late e

f(x,W) = Wx + b

Mug score increases this way

Array of **32x32x3** numbers (3072 numbers total)

t



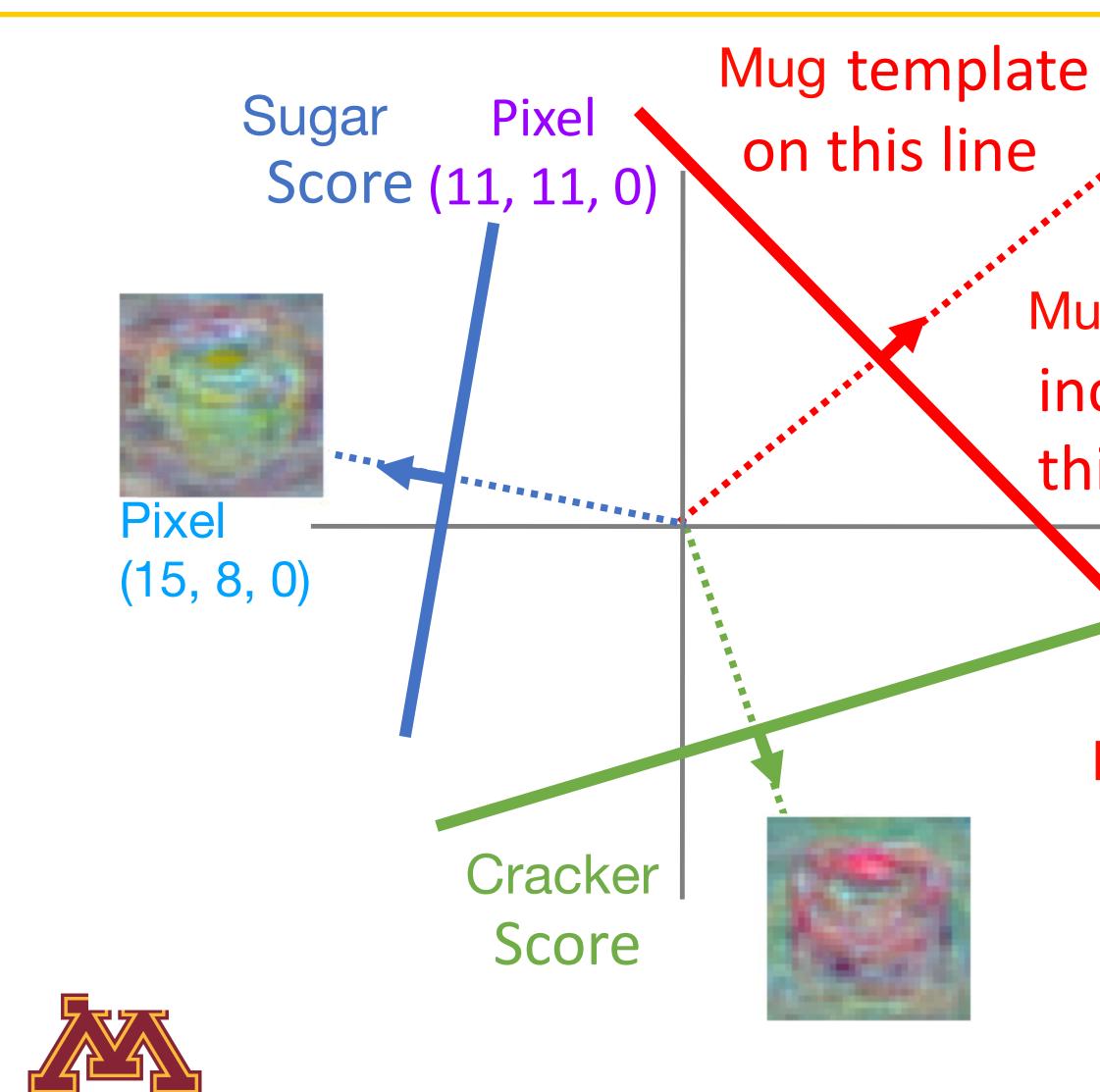
late e

f(x,W) = Wx + b

Mug score increases this way

Mug Score = 0 Array of **32x32x3** numbers (3072 numbers total)

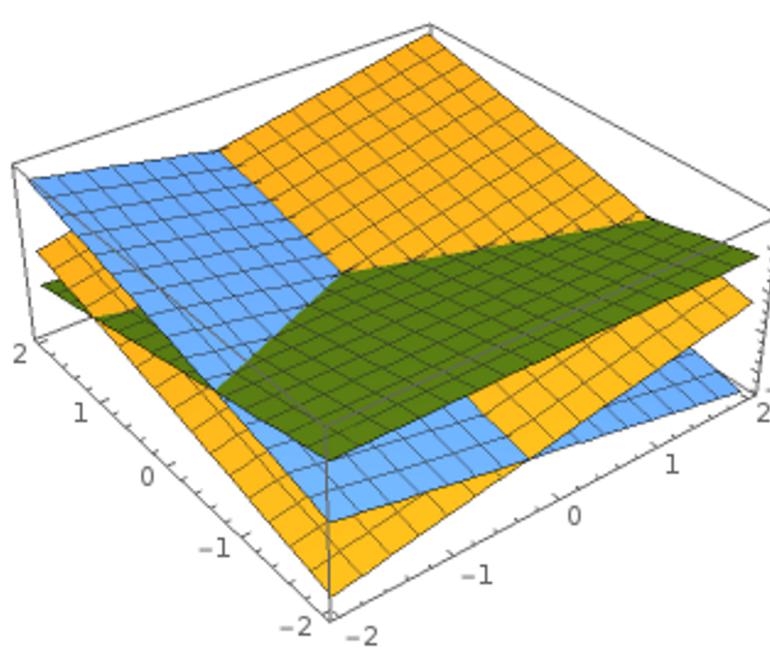
t



Mug score increases this way

> Mug Score = 0

Hyperplanes carving up a high-dimensional space



Plot created using Wolfram Cloud

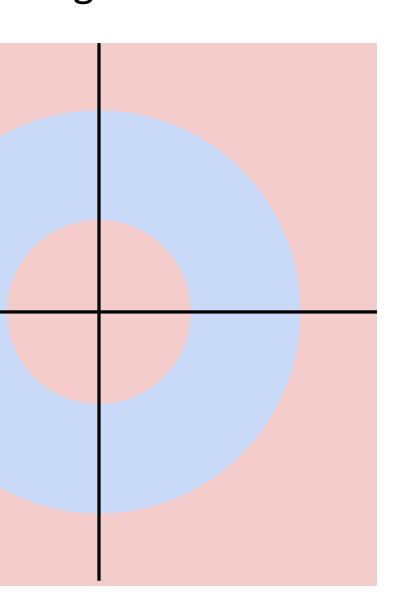
Hard Cases for a Linear Classifier

Class 1: First and third quadrants			Cla 1 <:
Class 2: Second and fo	urth quadrants		Cla Eve

ass 1:

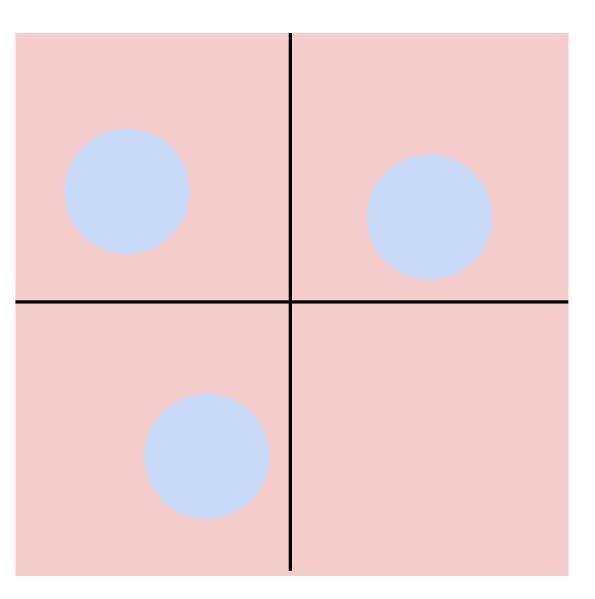
= L2 norm <= 2

ass 2: erything else



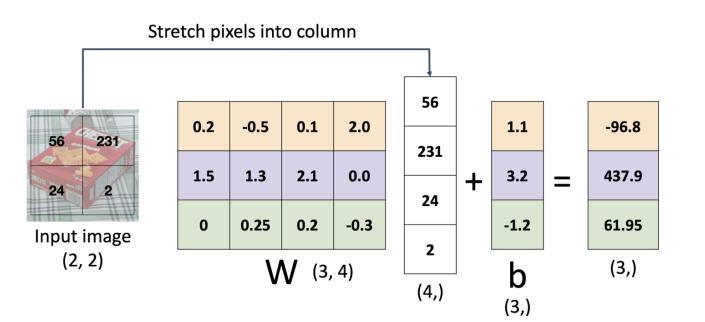
Class 1: Three modes

Class 2: Everything else



Algebraic Viewpoint

f(x,W) = Wx



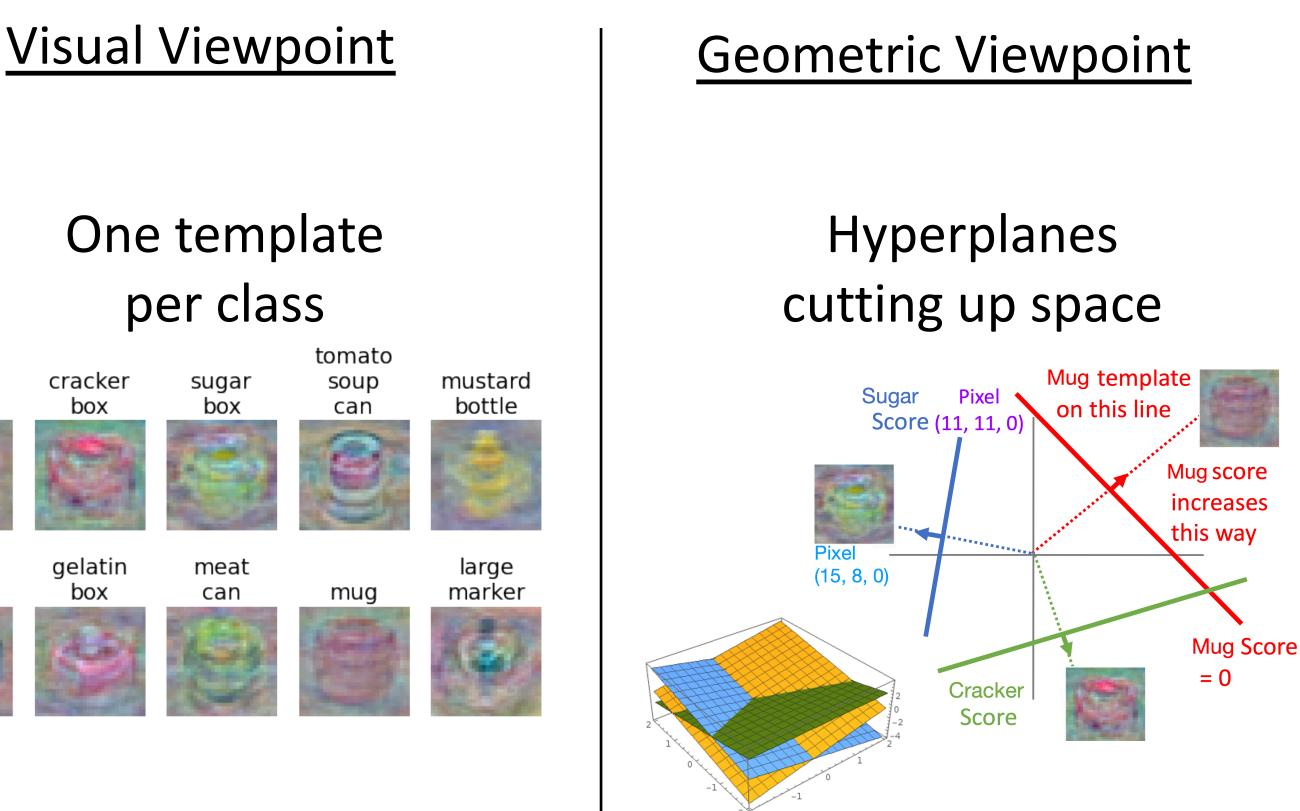
master chef can

cracker box

fish can

box

Linear Classifier — Three Viewpoints



-2 -2

Plot created using Wolfram Clou

So far—Defined a Score Function

-2.93

master chef can	-3.45	-0.51	3.42
mug	-8.87	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can	-0.36	-2.09	-4.79
large marker	-0.72	-2.93	6.14

6.14

f(x,W) = Wx + b

Given a W, we can compute class scores for an image, x.

But how can we actually choose a good W?

So far—Choosing a Good W

-2.93

master chef can	-3.45	-0.51	3.42
mug –	-8.87	6.04	4.64
tomato soup can	0.09	5.31	2.65
cracker box	2.9	-4.22	5.1
mustard bottle	4.48	-4.19	2.64
tuna fish can	8.02	3.58	5.55
sugar box	3.78	4.49	-4.34
gelatin box	1.06	-4.37	-1.5
potted meat can _	-0.36	-2.09	-4.79
large marker	-0.72	-2 93	6 1 4

6.14

$$f(x,W) = Wx + b$$

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- 2. Find a W that minimizes the loss function (optimization)

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Loss Function

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Low loss = good classifier High loss = bad classifier

Also called: **objective function**, cost function

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc.

Loss Function

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i is an image and y_i is a (discrete) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Loss for the dataset is average of per-example losses:

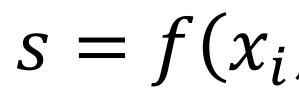
$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Want to interpret raw classifier scores as probabilities

cracker 3.2 mug 5.1

sugar -1.7

Want to interpret raw classifier scores as probabilities



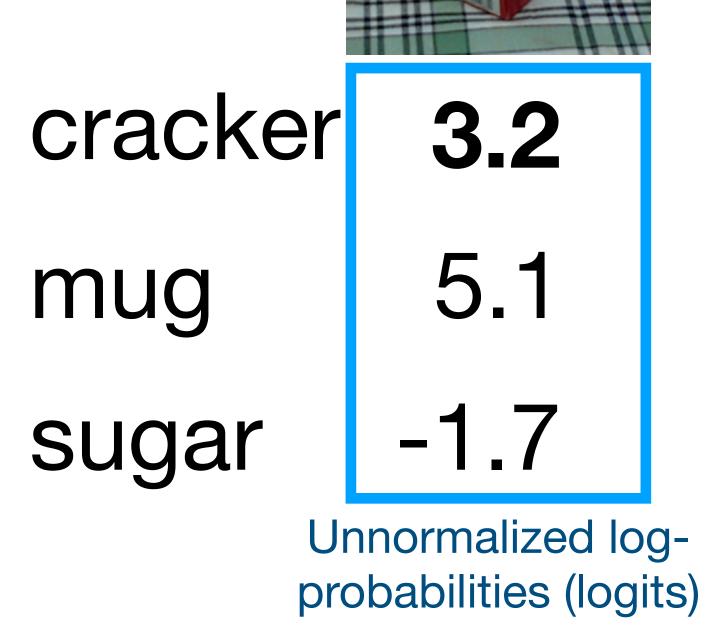
cracker3.2mug5.1

sugar -1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Want to interpret raw classifier scores as probabilities

 $s = f(x_i)$



; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

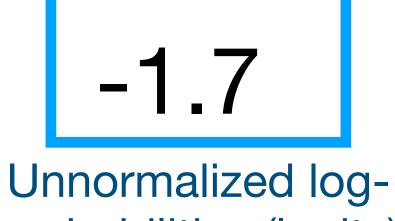
Want to interpret raw classifier scores as **probabilities**

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$ Softmax

Probabilities must be >=0

Unnormalized probabilities

0.18



probabilities (logits)

3.2

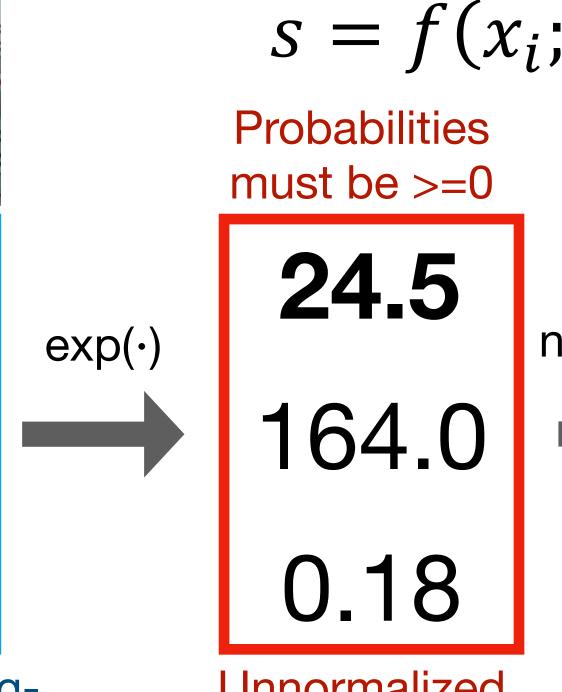
5.1

 $exp(\cdot)$

cracker

mug

sugar



Unnormalized probabilities



Unnormalized logprobabilities (logits)

3.2

5.1

cracker

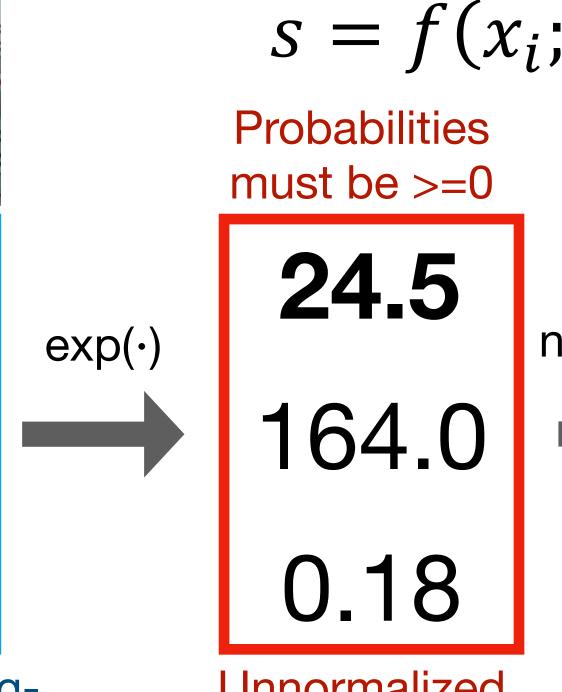
mug

sugar

Want to interpret raw classifier scores as **probabilities**

(*W*)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
Probabilities
must sum to 1
0.13
0.87
0.00

Probabilities



Unnormalized probabilities



Unnormalized logprobabilities (logits)

3.2

5.1

cracker

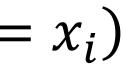
mug

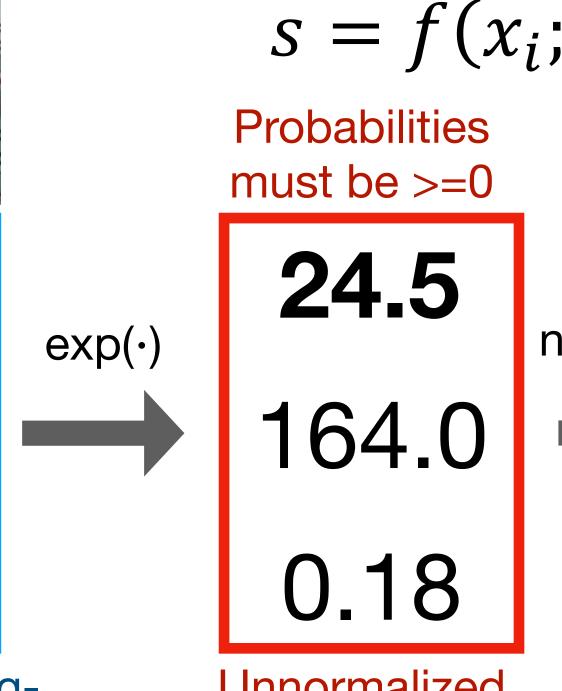
sugar

Want to interpret raw classifier scores as **probabilities**

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax} \\ \text{Frobabilities} \\ \text{must sum to 1} \\ \textbf{0.13} \\ \textbf{0.13} \\ \textbf{0.87} \\ \textbf{0.00} \\ \end{bmatrix} \quad L_i = -\log P(Y = y_i \mid X = L_i) \\ L_i = -\log(0.13) \\ = 2.04 \\ \textbf{0.00} \\ \end{bmatrix}$$

Probabilities





Unnormalized probabilities

Unnormalized logprobabilities (logits)

3.2

5.1

cracker

mug

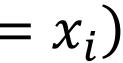
sugar

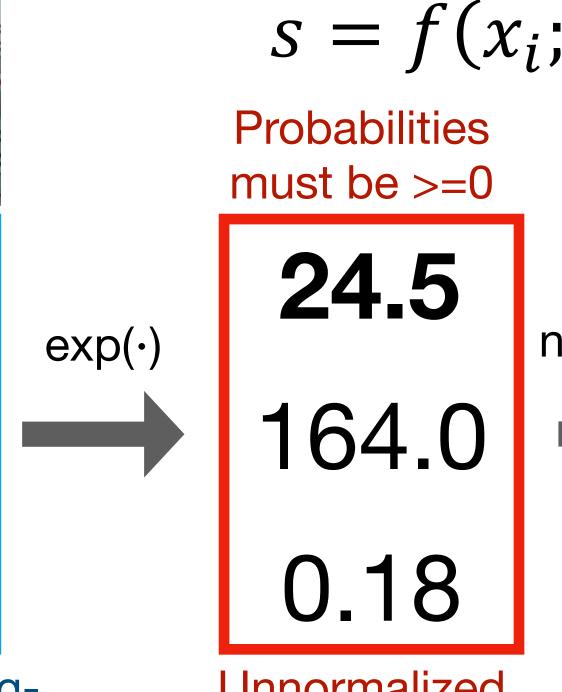
Want to interpret raw classifier scores as **probabilities**

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
Frobabilities
must sum to 1
 $L_i = -\log P(Y = y_i | X = L_i = -\log(0.13))$
 $= 2.04$
Maximum Likelihood Estim
Choose weights to maximize

Probabilities

unouse weights to maximize the likelihood of the observed data (see EECS 445 or EECS 545)





Unnormalized probabilities

Unnormalized logprobabilities (logits)

3.2

5.1

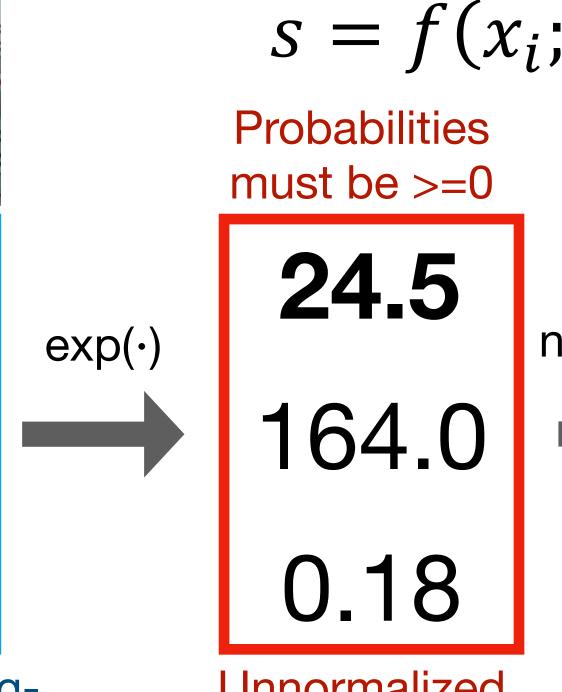
cracker

mug

sugar

Want to interpret raw classifier scores as **probabilities**

(W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax
function
Probabilities
must sum to 1
0.13
0.87
0.87
0.00
Probabilities



Unnormalized probabilities

Unnormalized logprobabilities (logits)

3.2

5.1

cracker

mug

sugar

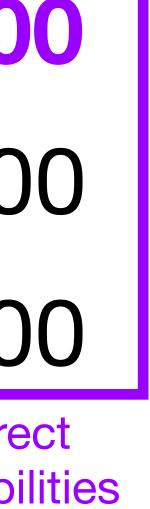
Want to interpret raw classifier scores as **probabilities**

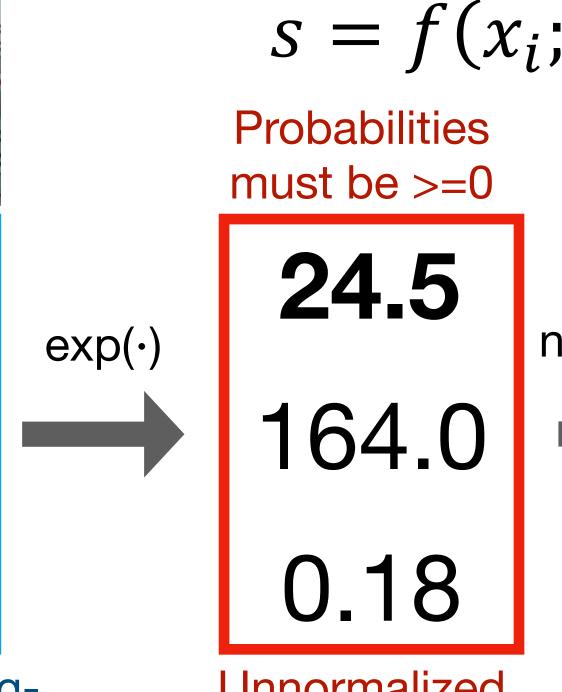
$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$
Probabilities
must sum to 1
$$O.13 \quad O.13 \quad \text{compare} \quad 1.0$$

$$O.87 \quad \text{Kullback-Leibler} \quad 0.0$$

$$O.00 \quad D_{KL}(P \mid |Q) = \quad 0.0$$
Probabilities
$$\sum_{y} P(y) \log \frac{P(y)}{Q(y)} \quad \text{correptoble}$$

y





Unnormalized probabilities

Unnormalized logprobabilities (logits)

3.2

5.1

cracker

mug

sugar

Want to interpret raw classifier scores as **probabilities**

$$(W) \quad P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \quad \text{Softmax function}$$

Probabilities
must sum to 1
$$(O.13) \quad \bigoplus \text{ compare} \quad 1.0$$

$$(O.13) \quad \bigoplus \text{ compare} \quad 1.0$$

$$(O.13) \quad \bigoplus \text{ compare} \quad 1.0$$

$$(O.10) \quad H(P, Q) = H(P) + D_{KL}(P \mid Q)$$

Probabilities

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

mug
$$5.1$$

sugar -1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: What is the min / max possible loss L_i ?

cracker	3.2
mug	5.1
sugar	-1.7

; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

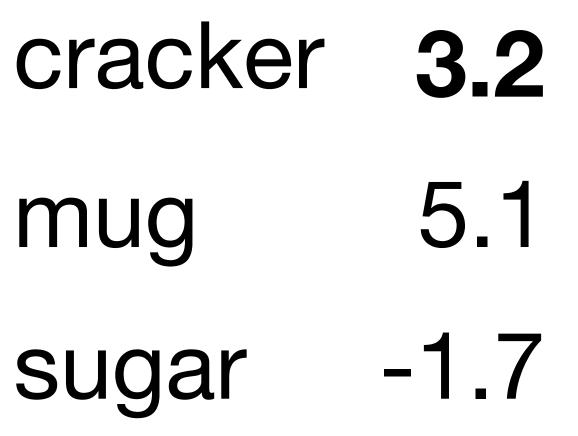
A: Min: 0, Max: $+\infty$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: If all scores are small random values, what is the loss?



; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

Putting it all together

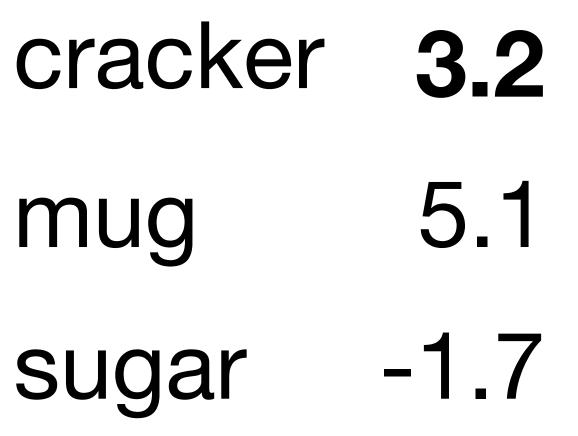
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

Want to interpret raw classifier scores as **probabilities**

 $s = f(x_i)$

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Q: If all scores are small random values, what is the loss?



; W)
$$P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

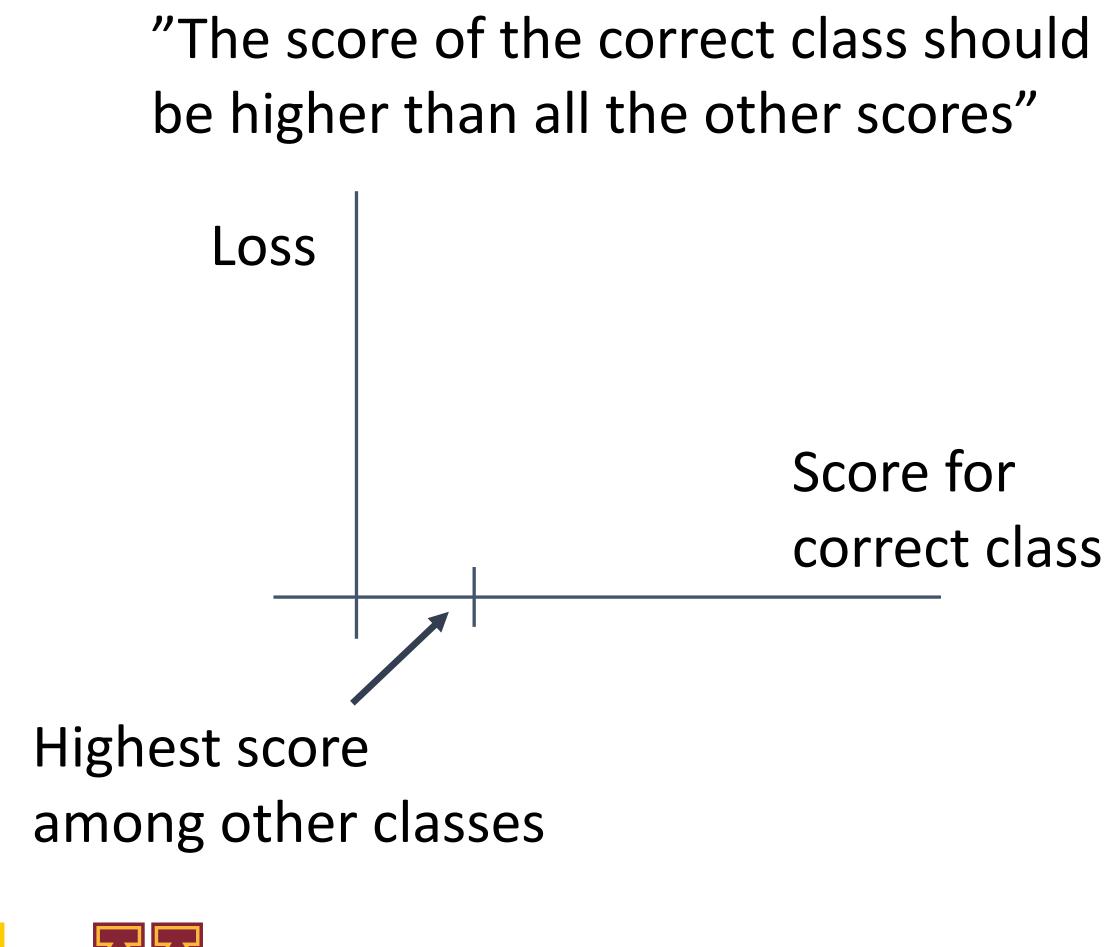
Maximize probability of correct class

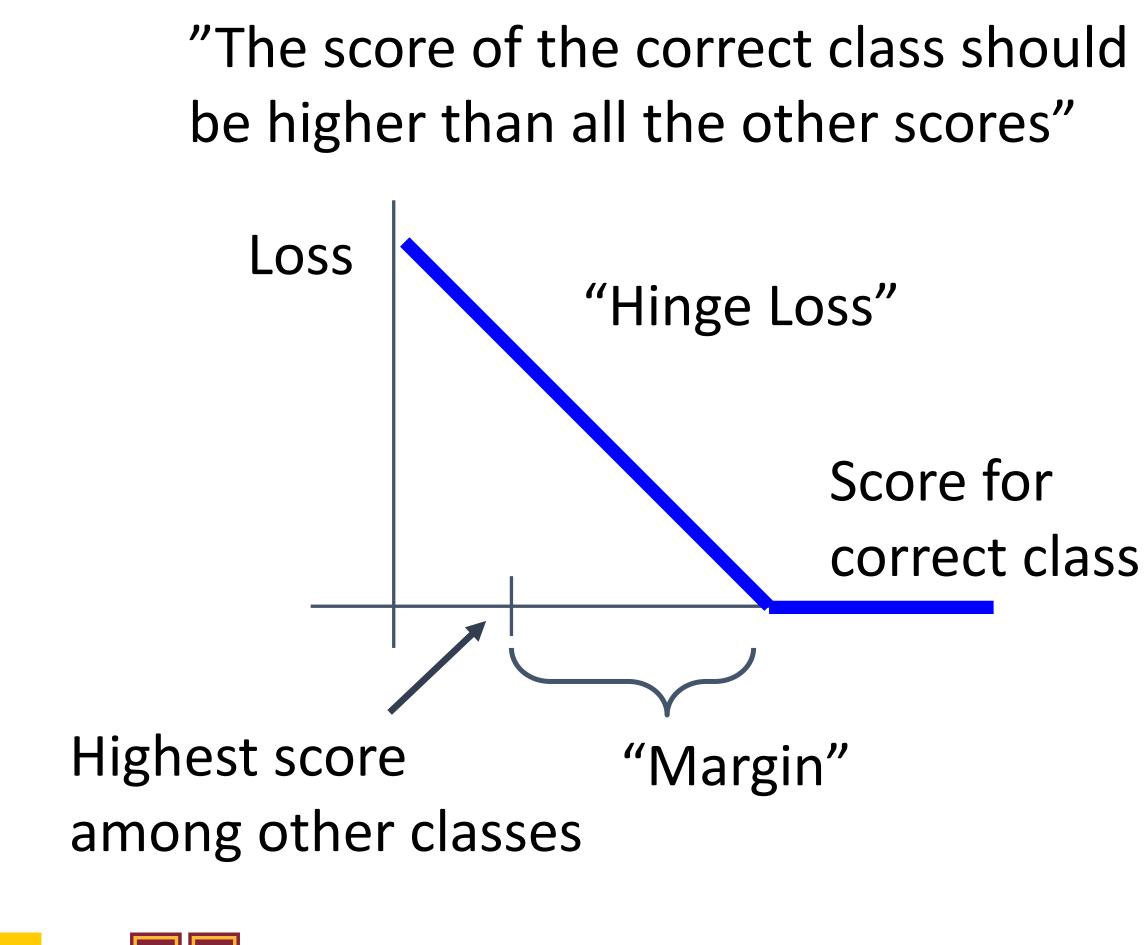
Putting it all together

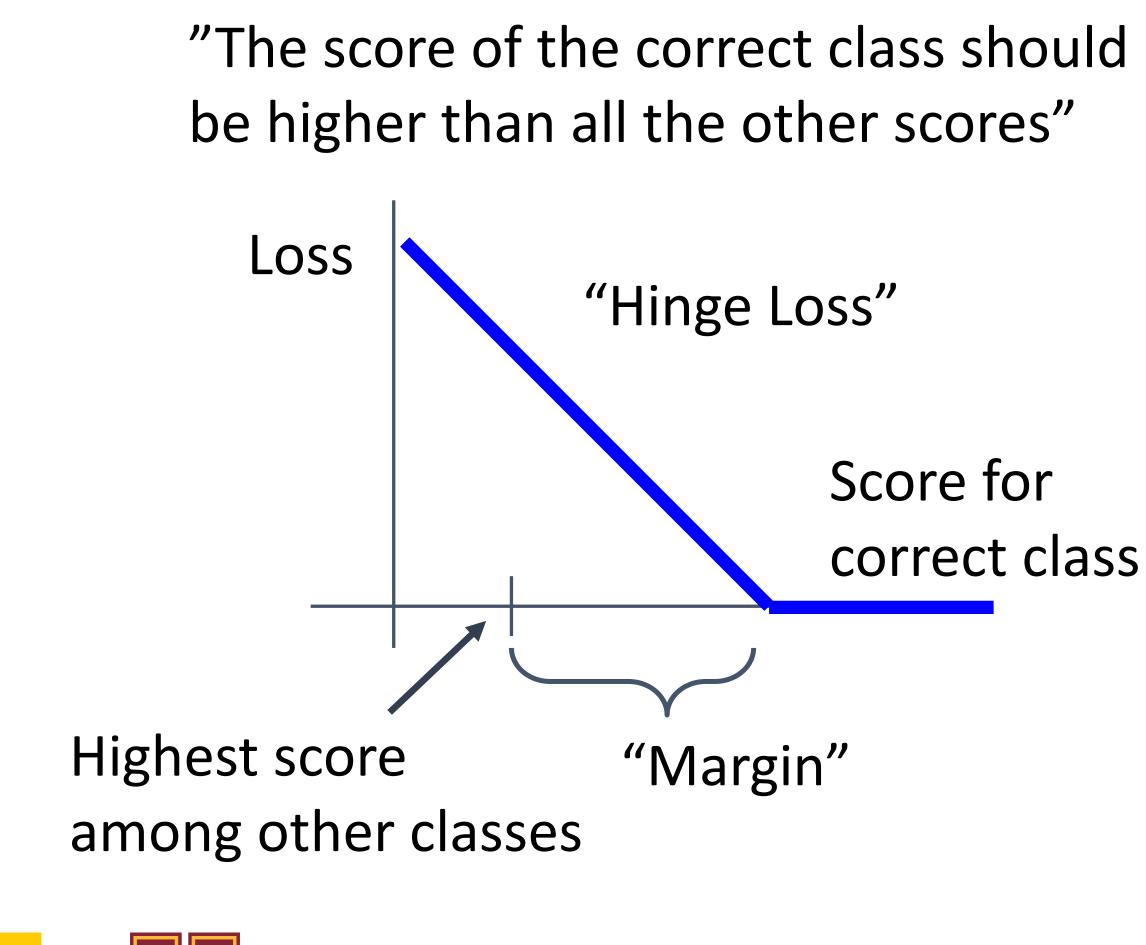
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

A:
$$-\log(\frac{1}{C})$$

 $\log(\frac{1}{10}) \approx 2.3$







Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

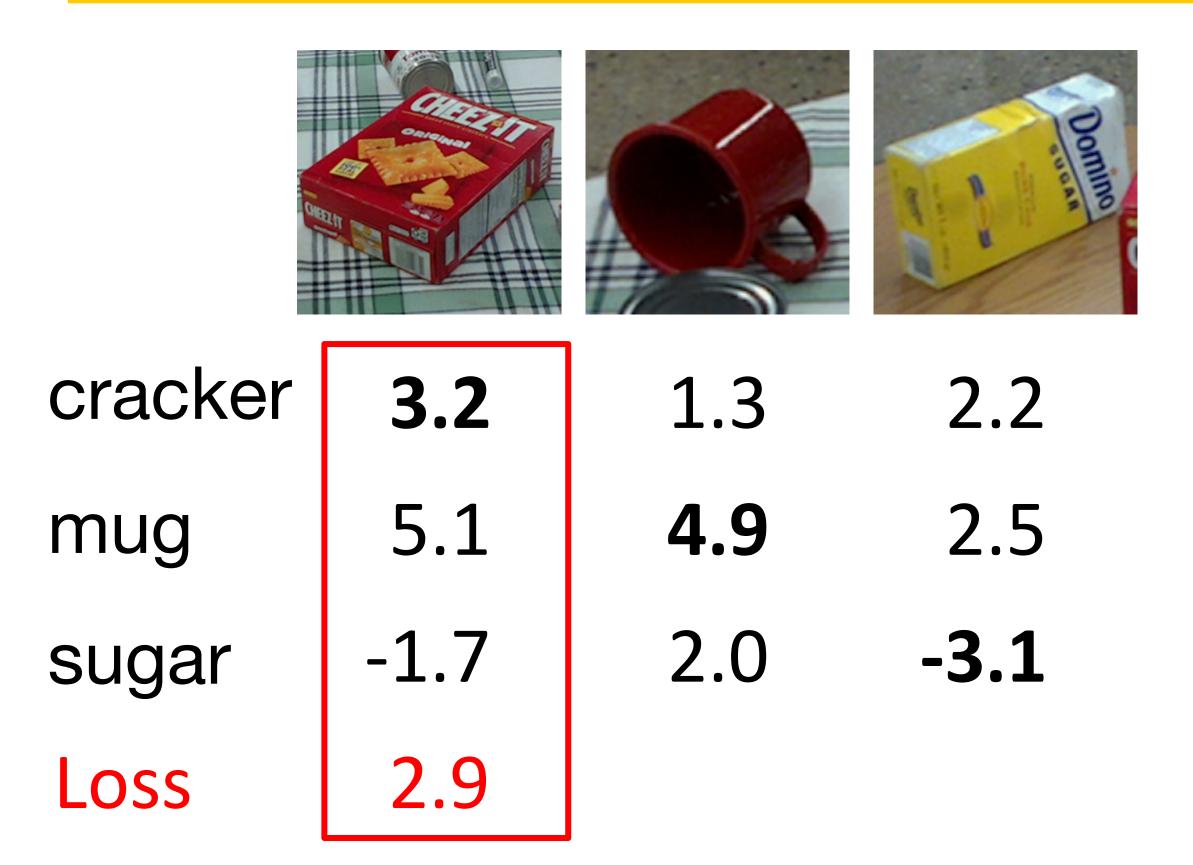
Then the SVM loss has the form: $L_i = \sum_{\substack{j \neq y_i \\ j \neq y_i}} \max(0, s_j - s_{y_i} + 1)$

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

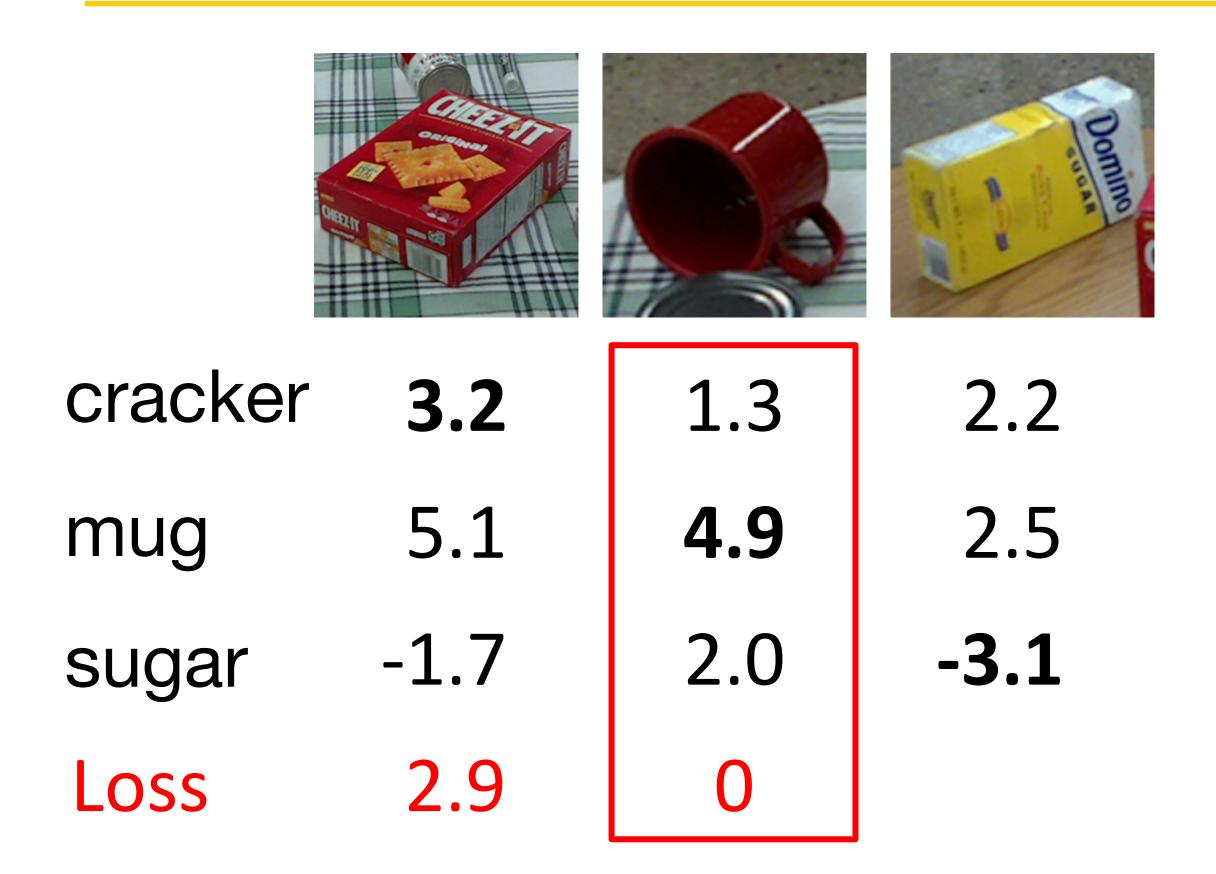


Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 5.1 - 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$ $= \max(0, 2.9) + \max(0, -3.9)$ = 2.9 + 0 = 2.9





Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0 = 0

0

cracker	3.2	1.3
mug	5.1	4.9
sugar	-1.7	2.0

2.9

Loss

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$ $= \max(0, 2.2 - (-3.1) + 1)$ $+\max(0, 2.5 - (-3.1) + 1)$ $= \max(0, 6.3) + \max(0, 6.6)$ = 6.3 + 6.6 = 12.9

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Loss over the dataset is: L = (2.9 + 0.0 + 12.9) / 3 = 5.27

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: What happens to the loss if the scores for the mug image change a bit?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q2: What are the min and max possible loss?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q3: If all the scores were random, what loss would we expect?

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q4: What would happen if the sum were over all classes? (including $i = y_i$)

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q5: What if the loss used a mean instead of a sum?

Multiclass SVM Loss

cracker	3.2	1.3	2.2
mug	5.1	4.9	2.5
sugar	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Q6: What if we used this loss instead? $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

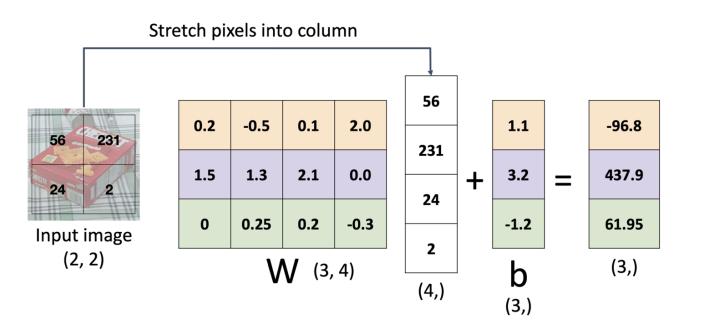
assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- **Q**: What happens to each loss if I double the score of the correct class from 10 to 20?
- A: Cross-entropy loss will decrease, SVM loss still 0

Algebraic Viewpoint

f(x,W) = Wx



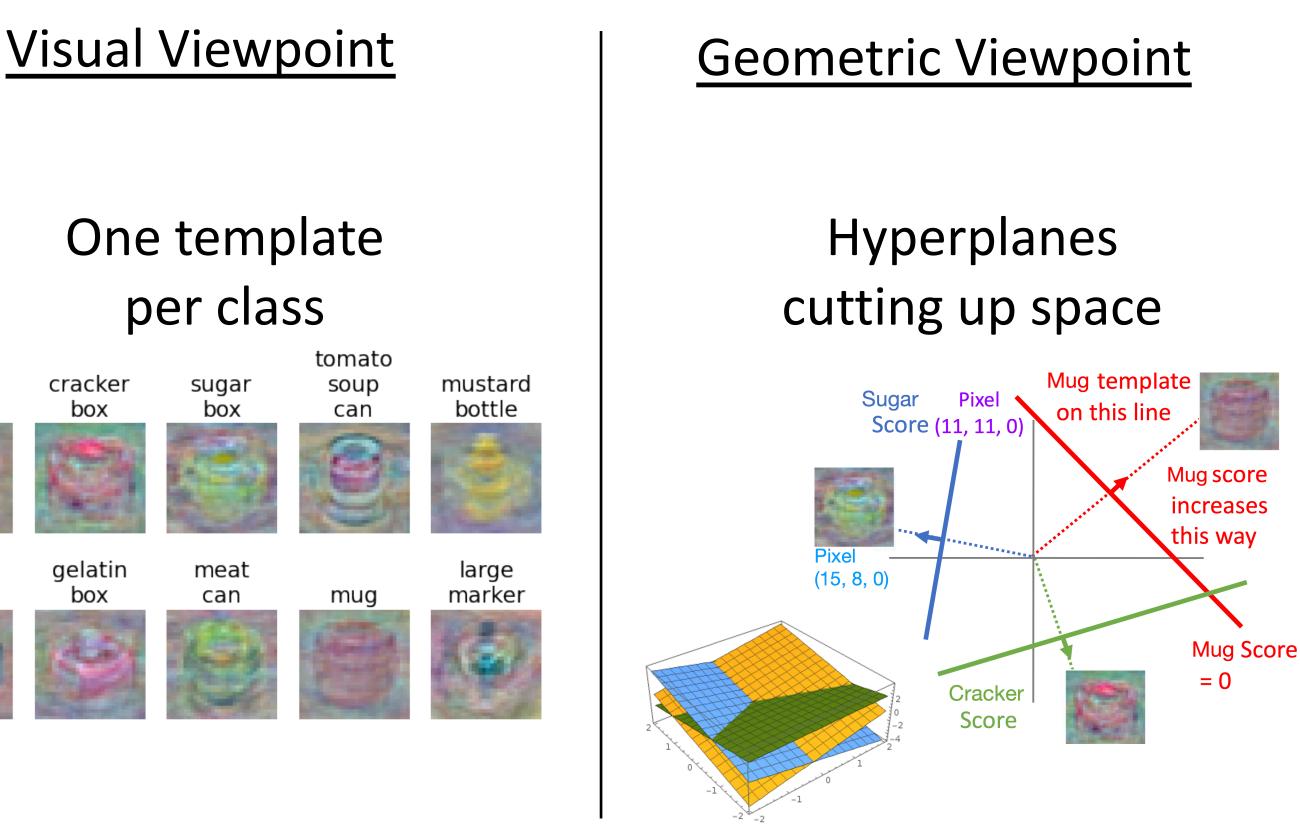
master chef can

box

fish can

box

Recap—Three Ways to Interpret Linear Classifiers



Plot created using Wolfram Cloud

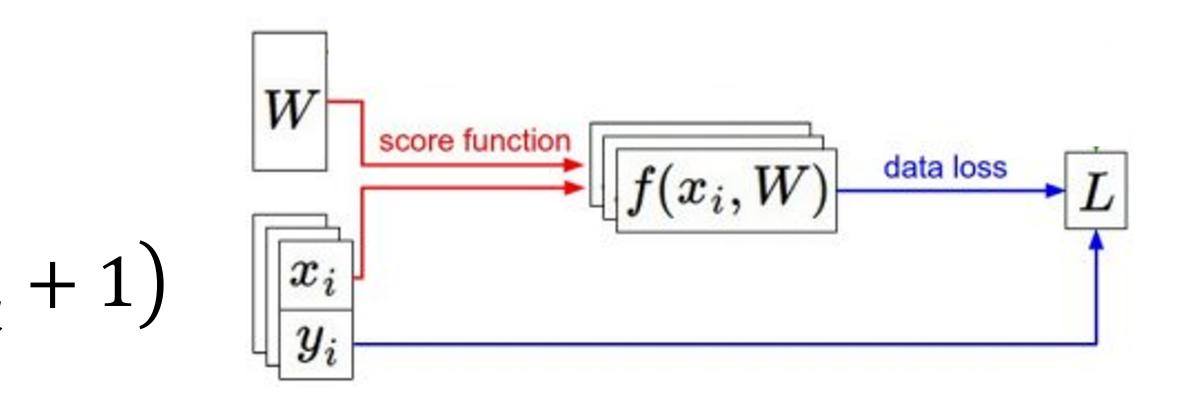
- We have some dataset of (x, y)
- We have a **score function:**
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i})$

Recap—Loss Functions Quantify Preferences

s = f(x; W, b) = Wx + bLinear classifier



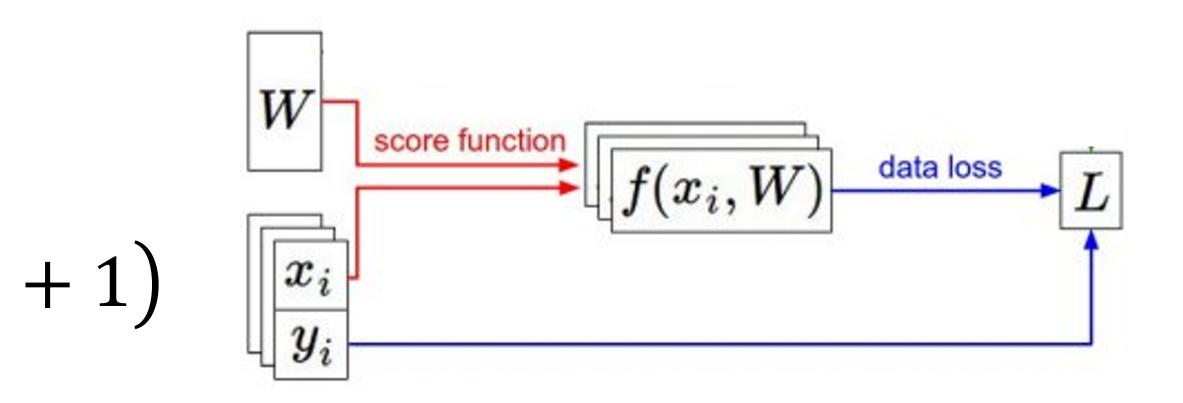
- We have some dataset of (x, y)
- We have a **score function:**
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i})$

Recap—Loss Functions Quantify Preferences

Q: How do we find the best W,b? s = f(x; W, b) = Wx + bLinear classifier



Next time: Regularization + Optimization

Negative gradient direction **Original W**



Lecture 3 **Linear Classifiers**

