

DeepRob

Lecture 2 **Image Classification University of Michigan and University of Minnesota**

Robot

Project 0

- Instructions and code available on the website
 - Here: <u>deeprob.org/projects/project0/</u>
- Uses Python, PyTorch and Google Colab
- Introduction to PyTorch Tensors

Due this Thursday (January 12th), 11:59 PM EST

- If you choose to develop locally
 - **PyTorch Version 1.13.0**
- Ensure you save your notebook file before uploading submission
- Close any Colab notebooks not in use to avoid usage limits

Project 0 Suggestions

Discussion Forum

- <u>Ed Stem</u> available for course discussion and questions
 - Forum is shared across UMich and UMinn students
 - Participation and use is not required
 - Opt-in using this Google form

Discussion of quizzes and verbatim code must be private

Enrollment

- Additional class permissions being issued
 - Both sections (498 & 599)
- If you haven't received a class permission contact Anthony and Prof. Jenkins

Image Classification

Image Classification—A Core Computer Vision Task

Input: image

Output: assign image to one of a fixed set of categories

Chocolate Pretzels

Granola Bar

Potato Chips

Water Bottle

Popcorn

Problem—Semantic Gap

Input: image

[[102	107	100	100	100	100	100	100	106	105	100	100	107	106	1021
[105,	100	109,	109,	100,	100,	105,	102	100,	100,	109,	190,	107,	100,	105],
[105,	100,	109,	100,	100,	109,	191,	195,	107,	104	191,	109,	100,	105,	105],
[100,	189,	189,	187,	10/,	100,	189,	189,	192,	194,	169,	184,	102,	105,	10/],
[188,	188,	188,	190,	190,	189,	189,	190,	190,	189,	185,	184,	185,	188,	188],
[187,	187,	188,	192,	191,	189,	191,	193,	191,	186,	185,	189,	187,	187,	185],
[186,	186,	189,	191,	190,	189,	190,	192,	191,	188,	190,	193,	186,	186,	184],
[189,	186,	189,	192,	192,	190,	191,	193,	184,	188,	190,	192,	186,	187,	186],
[191,	189,	189,	190,	189,	190,	190,	190,	183,	187,	186,	188,	187,	189,	188],
[192,	194,	193,	189,	188,	193,	194,	191,	191,	192,	186,	186,	187,	186,	187],
[190,	192,	193,	191,	191,	195,	194,	191,	191,	192,	188,	189,	189,	186,	188],
[189,	188,	190,	189,	190,	189,	187,	187,	185,	190,	188,	189,	192,	192,	191],
[191,	188,	187,	186,	188,	190,	189,	190,	186,	193,	190,	187,	194,	194,	192],
[194,	193,	189,	186,	189,	190,	191,	194,	192,	191,	192,	194,	194,	194,	188],
[196,	196,	196,	193,	191,	190,	191,	195,	194,	191,	193,	194,	192,	190,	187],
[194,	193,	194,	191,	188,	189,	190,	193,	193,	191,	193,	192,	190,	190,	190],
[197,	194,	193,	191,	188,	189,	191,	192,	192,	192,	194,	192,	190,	193,	193],
[202,	201,	202,	200,	196,	193,	192,	192,	190,	191,	194,	193,	191,	193,	193]
[205,	206,	207,	206,	202,	198,	196,	194,	189,	190,	191,	192,	191,	191,	190]
[207]	207,	204,	202,	199.	198.	199,	199,	195,	192,	192,	194,	193,	191,	190]
[205]	203.	200.	200.	199.	196.	198.	202,	199.	194.	193.	195.	193.	191.	192]
[199.	196.	196.	201.	205.	204.	202.	202.	199.	194.	192.	193.	191.	189.	1921.
[195.	194.	193.	196.	201.	205.	205.	203.	200.	196.	195.	195.	192.	190.	1921.
[194]	194.	193.	194.	196.	199.	202.	204.	201.	200.	200.	199.	196.	195.	1961.
[194	193.	192	195	197	199	202	204	200	203	204	202	199.	200	2001
[199	201	201	200	200	201	201	205	202	206	207	205	203	205	20311
	,	,	,	,	,	,		,	,	,	,	,	,	

What the computer sees

An image is just a grid of numbers between [0, 255]

e.g. 800 x 600 x 3 (3 channels RGB)

Challenges—Viewpoint Variation

[[183,	187,	189,	189,	188,	188,	189,	190,	186,	185,	189,	190,	187,	186,	183],
[185,	188,	189,	188,	188,	189,	191,	193,	187,	190,	191,	189,	186,	185,	185]
[186,	189,	189,	187,	187,	188,	189,	189,	192,	194,	189,	184,	182,	185,	187],
[188,	188,	188,	190,	190,	189,	189,	190,	190,	189,	185,	184,	185,	188,	188],
[187,	187,	188,	192,	191,	189,	191,	193,	191,	186,	185,	189,	187,	187,	185],
[186,	186,	189,	191,	190,	189,	190,	192,	191,	188,	190,	193,	186,	186,	184],
[189,	186,	189,	192,	192,	190,	191,	193,	184,	188,	190,	192,	186,	187,	186],
[191,	189,	189,	190,	189,	190,	190,	190,	183,	187,	186,	188,	187,	189,	188],
[192,	194,	193,	189,	188,	193,	194,	191,	191,	192,	186,	186,	187,	186,	187],
[190,	192,	193,	191,	191,	195,	194,	191,	191,	192,	188,	189,	189,	186,	188],
[189,	188,	190,	189,	190,	189,	187,	187,	185,	190,	188,	189,	192,	192,	191],
[191,	188,	187,	186,	188,	190,	189,	190,	186,	193,	190,	187,	194,	194,	192],
[194,	193,	189,	186,	189,	190,	191,	194,	192,	191,	192,	194,	194,	194,	188],
[196,	196,	196,	193,	191,	190,	191,	195,	194,	191,	193,	194,	192,	190,	187],
[194,	193,	194,	191,	188,	189,	190,	193,	193,	191,	193,	192,	190,	190,	190],
[197,	194,	193,	191,	188,	189,	191,	192,	192,	192,	194,	192,	190,	193,	193],
[202,	201,	202,	200,	196,	193,	192,	192,	190,	191,	194,	193,	191,	193,	193],
[205,	206,	207,	206,	202,	198,	196,	194,	189,	190,	191,	192,	191,	191,	190],
[207,	207,	204,	202,	199,	198,	199,	199,	195,	192,	192,	194,	193,	191,	190],
[205,	203,	200,	200,	199,	196,	198,	202,	199,	194,	193,	195,	193,	191,	192],
[199,	196,	196,	201,	205,	204,	202,	202,	199,	194,	192,	193,	191,	189,	192],
[195,	194,	193,	196,	201,	205,	205,	203,	200,	196,	195,	195,	192,	190,	1921,
[194,	194,	193,	194,	196,	199,	202,	204,	201,	200,	200,	199,	196,	195,	196],
[194,	193,	192,	195,	197,	199,	202,	204,	200,	203,	204,	202,	199,	200,	200],
[199,	201,	201,	200,	200,	201,	201,	205,	202,	206,	207,	205,	203,	205,	203]]

Challenges—Viewpoint Variation

[[183,	187,	189,	189,	188,	188,	189,	190,	186,	185,	189,	190,	187,	186,	183],
[185,	188,	189,	188,	188,	189,	191,	193,	187,	190,	191,	189,	186,	185,	185],
[186,	189,	189,	187,	187,	188,	189,	189,	192,	194,	189,	184,	182,	185,	187],
[188,	188,	188,	190,	190,	189,	189,	190,	190,	189,	185,	184,	185,	188,	188],
[187,	187,	188,	192,	191,	189,	191,	193,	191,	186,	185,	189,	187,	187,	185],
[186,	186,	189,	191,	190,	189,	190,	192,	191,	188,	190,	193,	186,	186,	184],
[189,	186,	189,	192,	192,	190,	191,	193,	184,	188,	190,	192,	186,	187,	186],
[191,	189,	189,	190,	189,	190,	190,	190,	183,	187,	186,	188,	187,	189,	188],
[192,	194,	193,	189,	188,	193,	194,	191,	191,	192,	186,	186,	187,	186,	187],
[190,	192,	193,	191,	191,	195,	194,	191,	191,	192,	188,	189,	189,	186,	188],
[189,	188,	190,	189,	190,	189,	187,	187,	185,	190,	188,	189,	192,	192,	191],
[191,	188,	187,	186,	188,	190,	189,	190,	186,	193,	190,	187,	194,	194,	192],
[194,	193,	189,	186,	189,	190,	191,	194,	192,	191,	192,	194,	194,	194,	188],
[196,	196,	196,	193,	191,	190,	191,	195,	194,	191,	193,	194,	192,	190,	187],
[194,	193,	194,	191,	188,	189,	190,	193,	193,	191,	193,	192,	190,	190,	190],
[197,	194,	193,	191,	188,	189,	191,	192,	192,	192,	194,	192,	190,	193,	193],
[202,	201,	202,	200,	196,	193,	192,	192,	190,	191,	194,	193,	191,	193,	193],
[205,	206,	207,	206,	202,	198,	196,	194,	189,	190,	191,	192,	191,	191,	190],
[207,	207,	204,	202,	199,	198,	199,	199,	195,	192,	192,	194,	193,	191,	190],
[205,	203,	200,	200,	199,	196,	198,	202,	199,	194,	193,	195,	193,	191,	192],
[199,	196,	196,	201,	205,	204,	202,	202,	199,	194,	192,	193,	191,	189,	192],
[195,	194,	193,	196,	201,	205,	205,	203,	200,	196,	195,	195,	192,	190,	1921,
[194,	194,	193,	194,	196,	199,	202,	204,	201,	200,	200,	199,	196,	195,	196],
[194,	193,	192,	195,	197,	199,	202,	204,	200,	203,	204,	202,	199,	200,	200],
[199,	201,	201,	<i>200,</i>	200,	201,	201,	205,	202,	206,	207,	205,	203,	205,	203]]

Challenges—Viewpoint Variation

[[133,	134,	134,	136,	136,	134,	134,	134,	134,	135,	135,	133,	133,	133,	132],
[133,	132,	132,	134,	135,	135,	134,	133,	133,	134,	134,	133,	133,	135,	135],
[135,	136,	135,	134,	133,	134,	134,	132,	133,	134,	134,	133,	134,	136,	136],
[137,	138,	137,	135,	133,	133,	133,	133,	133,	135,	134,	133,	133,	133,	133],
[136,	133,	132,	134,	134,	133,	134,	134,	135,	135,	134,	134,	134,	133,	131],
[135,	131,	132,	135,	136,	134,	134,	134,	133,	134,	134,	135,	136,	134,	132],
[135,	134,	135,	137,	135,	134,	133,	134,	134,	134,	134,	134,	135,	134,	132],
[133,	134,	136,	135,	133,	133,	134,	135,	135,	134,	133,	133,	133,	133,	132],
[134,	136,	136,	135,	132,	132,	134,	134,	133,	134,	133,	133,	133,	134,	133],
[138,	137,	136,	134,	132,	133,	133,	132,	133,	134,	134,	133,	134,	134,	134],
[136,	136,	135,	133,	131,	132,	134,	132,	134,	135,	134,	133,	133,	134,	133],
[133,	133,	135,	133,	132,	134,	137,	134,	134,	134,	134,	133,	133,	134,	133],
[135,	134,	134,	133,	134,	138,	139,	135,	133,	134,	134,	133,	134,	134,	134],
[134,	132,	133,	132,	133,	136,	138,	136,	134,	134,	134,	134,	134,	134,	134],
[135,	134,	134,	133,	133,	134,	134,	134,	134,	134,	134,	134,	133,	133,	133],
[134,	134,	135,	135,	134,	134,	133,	135,	134,	134,	134,	134,	134,	134,	134],
[132,	132,	134,	134,	134,	133,	132,	134,	135,	134,	134,	134,	134,	134,	134],
[134,	133,	134,	134,	134,	133,	131,	133,	134,	134,	134,	134,	133,	134,	134],
[134,	133,	133,	133,	134,	133,	131,	133,	134,	134,	134,	134,	133,	133,	133],
[133,	132,	132,	131,	132,	133,	133,	134,	134,	134,	134,	133,	132,	132,	132],
[134,	133,	133,	132,	133,	134,	135,	134,	135,	135,	135,	134,	133,	133,	133],
[134,	135,	134,	134,	133,	135,	136,	133,	135,	135,	133,	133,	133,	133,	134],
[134,	135,	134,	134,	134,	136,	137,	134,	134,	132,	132,	132,	132,	133,	128],
[133,	134,	133,	133,	133,	135,	137,	133,	132,	132,	132,	132,	133,	131,	127],
[131,	131,	132,	132,	133,	133,	133,	131,	132,	131,	128,	127,	124,	127,	124]]

Pixels change when the camera moves

Challenges—Intraclass Variation

Challenges—Fine-Grained Categories

Milk Chocolate

White Chocolate

Cookies N' Creme

Peanut Butter

PAYE

Ambiguous Category

Challenges—Background Clutter

iPhone 14 Camera

DR

Challenges—Image Resolution

ASUS RGB-D Camera

640x480

Challenges—Illumination Changes

Challenges—Illumination Changes

Want our robot's perception system to be reliable in all conditions

Challenges—Subject Deformation

Scene Clutter

DR

Challenges—Occlusion

Robot Actuator

Transparency

Challenges—Semantic Relationships

Reflections

Contact Relationships

Challenges—Semantic Relationships

Reflections

Robots have to act on the state they perceive

Contact Relationships

Applications of Image Classification

Lévy et al., "Breast Mass Classification from Mammograms using Deep Convolutional Neural Networks", arXiv:1612.00542, 2016

Trail Direction Classification

Giusti et al., "A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots", IEEE RAL, 2016

Galaxy Classification

Dieleman et al., "Rotation-invariant convolutional neural networks for galaxy morphology prediction", 2015

> From left to right: public domain by NASA, usage permitted by ESA/Hubble, public domain by NASA, and public domain

Tomato Ripeness Classification

Zhang et al., "Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot", IEEE Access, 2016

Example: Object Detection

Example: Pose Estimation

Example: Pose Estimation

Example: Pose Estimation

An Image Classifier

def classify_image(image): # Some magic here? return class_label

DR

An Image Classifier

Some magic here? return class_label

Unlike well defined programming (e.g. sorting a list)

No obvious way to hard-code the algorithm for recognizing each class

DR

def classify_image(image):

An Image Classifier

Input: image

DR

Detect: Edges

Detect: Corners

- Collect a dataset of images and labels
- Use Machine Learning to train a classifier 2.
- Evaluate the classifier on new images 3.

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

Machine Learning—Data-Driven Approach

Example training set

28

Image Classification Datasets—MNIST

10 classes: Digits 0 to 928x28 grayscale images50k training images10k test images

Due to relatively small size, results on MNIST often do not hold on more complex datasets

Image Classification Datasets—CIFAR10

airplane automobile bird cat deer dog frog horse ship

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

truck

10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

Image Classification Datasets—CIFAR100

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

100 classes 32x32 RGB images 50k training images (500 per class) **10k** test images (100 per class)

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, otter, seal, whale

Trees: maple, oak, palm, pine, willow

Image Classification Datasets—ImageNet

flamingo

ruffed grouse

quail

Egyptian cat

lynx

dalmatiar

keeshond miniature schnauzer standard schnauzer giant schnauzer

Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, 2009. Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015.

~1.3M training images (~1.3K per class) **50k** validation images (50 per class) **100K** test images (100 per class)

Performance metric: **Top 5 accuracy** Algorithm predicts 5 labels for each image, one must be right

Image Classification Datasets—ImageNet

flamingo

ruffed grouse

quail

Egyptian cat

lynx

dalmatian

keeshond miniature schnauzer standard schnauzer giant schnauzer

Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, 2009. Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015.

hnauze

1000 classes

~1.3M training images (~1.3K per class)
50k validation images (50 per class)
100K test images (100 per class)
test labels are secret!

Images have variable size, but often resized to **256x256** for training

There is also a 22K category version of ImageNet, but less commonly used

Image Classification Datasets—MIT Places

365 classes of different scene types

~8M training images **18.25K** val images (50 per class) **328.5K** test images (900 per class)

Images have variable size, but often resized to 256x256 for training

Image Classification Datasets—PROPS

Progress Robot Object Perception Samples Dataset

Chen et al., "ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception", IROS, 2022.

10 classes 32x32 RGB images **50k** training images (5k per class) **10k** test images (1k per class)

			PROPS	
1.0700	\mathbb{N}	INIST	 CIFAR10	_
1.ETU/				
1 E±07	~	′47M	~154M	
1.E+08				_
1.E+09				
1.E+10				
1.E+11				
1.E+12				
1.E+13				

DR

Classification Datasets—Number of Training Pixels

ImageNet CIFAR100 Places365

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

First Classifier—Nearest Neighbor

Memorize all data and labels

Predict the label of the most similar training image

Distance Metric to Compare Images

L1 distance: d_1

test image					
56	32	10	18		10
90	23	128	133		8
24	26	178	200	-	12
2	0	<mark>255</mark>	220		4

$$I_{1}(I_{1}, I_{2}) = \sum_{p} |I_{1}^{p} - I_{2}^{p}|$$

training image

20

10

16

32

pixel-wise absolute value differences

5				
24	17			
89	100			
178	170			
233	112			

<mark>46</mark>	12	14	1	
82	13	39	33	add
12	10	0	30	- 456
2	32	22	<mark>108</mark>	


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
```

```
num test = X.shape[0]
```

```
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test): # find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

""" X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data

""" X is N x D where each row is an example we wish to predict label for """

import numpy as np

```
class NearestNeighbor:
 def __init__(self):
    pass
```

```
def train(self, X, y):
  """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y
```

def predict(self, X):

""" X is N x D where each row is an example we wish to predict label for """ num test = X.shape[0] # lets make sure that the output type matches the input type

```
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Memorize training data


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
```

for i in xrange(num test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

For each test image: Find nearest training image Return label of nearest image


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
```

```
num test = X.shape[0]
```

```
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test): # find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

""" X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data

""" X is N x D where each row is an example we wish to predict label for """

Q: With N examples how fast is training?

A: O(1)


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
```

```
num test = X.shape[0]
```

```
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test): # find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

""" X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data

""" X is N x D where each row is an example we wish to predict label for """

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
```

```
num test = X.shape[0]
```

```
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test): # find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

""" X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data

""" X is N x D where each row is an example we wish to predict label for """

Q: With N examples how fast is training?

A: O(1)

Q: With N examples how fast is testing?

A: O(N)

This is a problem: we can train slow offline but need fast testing!


```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
```

```
num test = X.shape[0]
```

```
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
```

for i in xrange(num test): # find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

""" X is N x D where each row is an example. Y is 1-dimension of size N """

""" X is N x D where each row is an example we wish to predict label for """

There are many methods for fast / approximate nearest neighbors

e.g. github.com/facebookresearch/faiss

PROPS dataset is instance-level

CIFAR10 dataset is category-level

Nearest neighbors in two dimensions

Nearest neighbors in two dimensions

 X_1

Points are training examples; colors give training labels.

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

Nearest neighbors in two dimensions

Points are training examples; colors give training labels.

Background colors give the category a test point would be assigned

Decision boundary is the boundary between two classification regions

Nearest neighbors in two dimensions

Points are training examples; colors give training labels.

Background colors give the category a test point would be assigned

Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

Nearest neighbors in two dimensions

Points are training examples; colors give training labels.

Background colors give the category a test point would be assigned

Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

How to smooth the decision boundaries? Use more neighbors!

K = 1

Instead of copying label from nearest neighbor, take majority vote from K closest training points

Using more neighbors helps smooth out rough decision boundaries

K = 1

Using more neighbors helps reduce the effect of outliers

K = 1

Need to break ties somehow!

When K > 1 there can be ties between classes.

K = 1

Need to break ties somehow!

When K > 1 there can be ties between classes.

K-Nearest Neighbors – Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$

L2 (Euclidean) distance

$$d_2(I_1, I_2) = (\sum_{p} (I_1^p - I_2^p)^2)^{\frac{1}{2}}$$

K-Nearest Neighbors—Distance Metric

L1 (Manhattan) distance

 $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$

L2 (Euclidean) distance

 $d_2(I_1, I_2) = (\sum_{1} (I_1^p - I_2^p)^2)^{\frac{1}{2}}$

K = 1

K-Nearest Neighbors – Distance Metric

With the right choice of distance metric, we can apply K-Nearest Neighbors to any type of data!

K-Nearest Neighbors – Web Demo

Interactively move points around and see decision boundaries change

Observe results with L1 vs L2 metrics

Observe results with changing number of training points and value of K

vision.stanford.edu/teaching/cs231n-demos/knn/

Metric

Num classes

Num Neighbors (K)

1	2	3	4	5	6	7

Num points

20 30	40	50	60
-------	----	----	----

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

These are examples of **hyperparemeters**: choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Hyperparameters

What is the best value of K to use? What is the best **distance metric** to use?

These are examples of **hyperparameters**: choices about our learning algorithm that we don't learn from the training data Instead we set them at the start of the learning process

Very problem-dependent. In general need to try them all and observe what works best for our data.

Idea #1: Choose hyperparameters that work best on the data

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Idea #1: Choose hyperparameters that work best on the data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train

BAD: K = 1 always works perfectly on training data

test

Idea #1: Choose hyperparameters that work best on the data

Your

Idea #2: Split data into train and test, cl hyperparameters that work best on test data

train

BAD: K = 1 always works perfectly on training data

h	0	0	S	e
L		-	┻	_

BAD: No idea how algorithm will perform on new data

	test
--	------

Idea #1: Choose hyperparameters that work best on the data

Your

Idea #2: Split data into train and test, check hyperparameters that work best on test

train

Idea #3: Split data into train, val, and te hyperparameters on val and evaluate of

train

BAD: K = 1 always works perfectly on training data

Dataset			
hoose t data	BA wil	D : No idea how algorithi I perform on new data	
		test	
e st ; choose n test	Better!		
	validation	test	

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

DR

DR

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k ~ 7 works best for this data)

120

DR

Problem—Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Problem—Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Number of possible 32x32 binary images

$2^{32X32} \approx 10^{308}$

Problem—Curse of Dimensionality

Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Number of possible 32x32 binary images

$2^{32}X^{32} \approx 10^{308}$

Number of elementary particles in the visible source

 $\approx 10^{97}$

Very slow at test time Distance metrics on pixels are not informative

Original

Boxed

All 3 images have same L2 distance to the original

K-Nearest Neighbors Seldom Used on Raw Pixels

Shifted

Tinted

K-Nearest Neighbors with Convent Features Works Well

Devlin et al., "Exploring Nearest Neighbor Approaches for Image Captioning", 2015.

DR

Summary

- In **image classification** we start with a training set of images and labels, and must predict labels for a test set
- Image classification is challenging due to the semantic gap: we need invariance to occlusion, deformation, lighting, sensor variation, etc.
- Image classification is a **building block** for other vision tasks
- The **K-Nearest Neighbors** classifier predicts labels from nearest training samples
- Distance metric and K are hyperparameters
- Choose hyper parameters using the validation set; only run on the test set once at the very end!

Next time: Linear Classifiers

DeepRob

Lecture 2 **Image Classification University of Michigan and University of Minnesota**

